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Abstract: Due to an aging population, assisted-care options are required so that senior citizens may
maintain their independence at home for a longer time and rely less on caretakers. Ambient Assisted
Living (AAL) encourages the creation of solutions that can help to optimize the environment for
senior citizens with assistance while greatly reducing their challenges. A framework based on the
Internet of Medical Things (IoMT) is used in the current study for the implementation of AAL technol-
ogy to help patients with Type-2 diabetes. A glucose oxide sensor is used to monitor diabetic elderly
people continuously. Spectrogram images are created from the recorded data from the sensor to assess
and detect aberrant glucose levels. DenseNet-169 examines and analyzes the spectrogram pictures,
and messages are sent to caregivers when aberrant glucose levels are detected. The current work
describes both the spectrogram image analysis and the signal-to-spectrogram generating method.
The study presents a future perspective model for a mobile application for real-time patient monitor-
ing. Benchmark metrics evaluate the application’s performances, including sensitivity, specificity,
accuracy, and F1-score. Several cross–validations are used to evaluate the model’s performance. The
findings demonstrate that the proposed model can correctly identify patients with abnormal blood
glucose levels.

Keywords: AAL; IoMT; Type-2 diabetes; biosensors; DenseNet-169; hyperparameters

1. Introduction

In affluent nations, a rising number of older individuals wish or are required to live as
autonomously as possible in their later years. Revolutionary technology such as Ambient
Assisted-Living solutions can support and ease the daily lives of the elderly, extending the
time they can live independently and supporting professional and volunteer caregivers.
On the other hand, caregivers can be spared from unneeded and routine checks on the
elderly, allowing them to use their time effectively and to be where their presence is needed
to support their clients. AAL involves the use of ICT infrastructure in a person’s way of
life to continue to be active longer, stay socially engaged, and lead an everyday life into
old age [1]. AAL implements and uses clever technology to help the elderly remain longer
in their preferred surroundings. There has been an explosion in the last decade in the
number of technology solutions for the care of the elderly and the physically challenged.
Personal coaching, activity monitoring, health-parameter tracking, emergency detection,
and other features are all possible with AL systems. User mobility and motion are two of
the essential indicators of a person’s well-being, and they may be monitored by various
technologies and utilized as contextual information for other systems and products. Older
adults’ daily routines and movement patterns are important in healthcare applications,
since they may help identify changes in habits, odd actions, or a worsening state of health.

Diagnostics 2022, 12, 2739. https://doi.org/10.3390/diagnostics12112739 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics12112739
https://doi.org/10.3390/diagnostics12112739
https://doi.org/10.3390/diagnostics12112739
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0003-1155-0991
https://orcid.org/0000-0001-9247-9132
https://orcid.org/0000-0001-7778-2838
https://doi.org/10.3390/diagnostics12112739
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics12112739?type=check_update&version=2


Diagnostics 2022, 12, 2739 2 of 20

Such information must be shared with caretakers, physicians, or other members of the
user’s social network [2]. The architecture of the proposed AAL technology over the IoMT
framework is presented in Figure 1.
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Older persons who were concerned about the impact of COVID-19 on their life,
according to recently published studies [3], were most concerned about their ability to make
plans and to engage in activities that influence their well-being. Remote communication
with loved ones was cited as a technique to combat the feeling of isolation. Various
Ambient or active assisted-living approaches have been developed to help senior citizens
live independently and safely in their environment, as technological advances, such as
the integration of various cross-domain aspects, e.g., the internet of things (IoT), machine
intelligence, sensors, cloud computing, cellular technologies, and assistive robotics, have
emerged in recent decades. With these innovations, older adults can better preserve their
physical and psychological well-being and improve the quality of their lives in their local
communities [4].

To enhance data collection in AAL contexts, the Internet of Medical Things (IoMT), a
development of the Internet of Things (IoT), has also been established. Many stakeholders
may benefit from this information, and the AAL can recommend services to help them
achieve their goals. When it comes down to it, IoMT’s main goal is to bring together peo-
ple, data, progress, and mobile apps to monitor patient health outcomes. Remote patient
monitoring is the most widely used IoMT-connected development for keeping tabs on a
patient’s health. Healthcare providers’ networks transmit data from their devices to cloud
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servers. Communication security is the most important aspect of IoMT networks, since
it protects patient privacy and safety. IoMT is undoubtedly the most acceptable solution
to streamline clinical workflows and enhance patient outcomes. Accurate diagnoses and
minimal expenses will be achieved using IoMT implementation. Machine learning (ML)
techniques are used to evaluate data, recognize patterns, learn from the recognized pat-
terns, and make decisions. A ML system automatically and intelligently analyzes data to
determine if a patient is worsening or improving. This faster method reduces hazards with
early discovery and guarantees patient safety. Integrating ML with AAL technology over
an IoMT framework would result in a better livelihood for citizens [5].

This work is primarily motivated by the constraints of the standard technique of
diagnosis and the measurement of blood glucose in the human body, which traditionally
places the glucose oxide sensor over the human body, which is intrusive. Furthermore,
traditional models are only capable of forecasting problematic blood glucose levels. In a
sensing activity, biosensors may monitor or sense the surroundings. A biosensor performs
evaluations and records the results to transfer the information to a head office through a
caregiver or linked localization. The base station receives the recorded data for further
analysis. The primary goals of the current investigation are described in a point-by-point
format below:

• We study similar technologies used in the continuous monitoring of patients and
summarize the limitations to be addressed through our proposed model.

• We mechanize a model that would continuously monitor patients and sense their
abnormal blood glucose levels in a non-invasive manner.

• We present a technique that would assist in converting HR signals to spectrogram
images and label them accordingly for the training purpose.

• The features in the spectrogram images are localized, and any abnormalities in these
spectrogram images are acknowledged.

• An alarm is generated, and a notification about the abnormal glucose level is sensed
to provide better and timely treatment.

• The role of Ambient Assisted Living is demonstrated through an IoMT architecture
over future perspective models.

• We analyze the proposed model’s results to assess the classification model’s performance.

The paper is structured as follows. Section 1 presents an introduction to the field
of study, its motivation, and the study’s contributions. Section 2 offers literature on the
existing models in assisted living. Section 3 presents the mechanism for converting signal
data into spectrograms and labeling the images for training purposes. Section 4 presents
the procedure for analyzing the spectrogram images to identify abnormalities. Section 5
presents associated hyperparameters, and Section 6 presents the results and discussion.
Section 7 presents the IoMT integration in AAT and the future perspective model. Finally,
Section 8 offers the conclusions of the study.

2. Background

Ambien-Assisted Living is a skilled nursing technology that utilizes ambient intelli-
gence. It is possible to employ AAL to prevent, treat, and enhance the health and well-being
of older persons. Elderly people may better manage their health issues with AAL tech-
nologies, such as through medication management systems and patient education [6].
Employing mobile emergency service technologies, accident detection technologies, and
surveillance systems, AAL technology solutions may also enhance the safety of the elderly.
The monitoring of daily activities (ADL) and the issue of alerts are further AAL solutions
that aid in everyday activities. In addition, older individuals may use these technologies to
better engage and interact with their peers and family members.

When it comes to modern communication, the IoT is a logical transition. The IoT allows
many devices to interact, analyze, sense, and act. The elderly can live independently and
safely with the help of IoT sensors mounted in AAL surroundings. To keep seniors as secure
and autonomous as possible, many advanced technologies are utilized. Keep In Touch
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(KIT) [7] makes telemonitoring easier by using smart items and technology such as Near-
Field Communication and Radio-Frequency Identification. Using KIT technologies, closed-
loop medical services can analyze essential data and develop communication channels
among elderly patients and their surroundings, as well as various groups of caretakers
and medical practitioners. Closed-Loop Healthcare Services and KIT technology work
together to create an IoT infrastructure in AAL situations. Age-related limitations, such as
the inability to carry out essential daily tasks, the danger of falling, and chronic illnesses,
including dementia, depression, and social isolation, may all be addressed using IoT
solutions for AAL. Aging in one’s place of residence may be easier with IoT solutions and
global services tailored to the requirements of the elderly, such as location-based services
that promote functional independence.

Developing an AAL system involves a broad range of considerations that may be
stated in three words: who, where, and why, as shown in Figure 2. The technology has
to keep track of individuals with various illnesses and senior citizens (whom). From a
technical and operational standpoint, the deployment settings range from the indoors to
outdoor situations (where). It is also important to note that an AAL system has various
functions, from basic alarms to more comprehensive psychological profiling (why). In the
current context, the proposed technology aligns with the healthcare conditions of senior
citizens with diabetes in indoor and outdoor environments with the IoT framework through
biosensors for the continuous monitoring and alarming of abnormal glucose levels.
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Contextual factors, including private/public settings, confine the innovations that
may be employed, whether they are intrusive or not, whether they function with longer or
shorter range distance, etc. [8]. The characteristics that may be monitored can be drastically
altered by using a variety of sensors. In addition, the kind of individuals to be watched,
such as those with illnesses, those with impairments, and those who are otherwise healthy,
significantly impacts the technology used. The technique of data-processing selection is
undoubtedly an extra key feature of the development of AAL systems.

3. Literature Review

The human activity recognition model is a crucial aspect of AAL applications for promot-
ing liberated living citizens and maintaining the standard of living for elderly individuals [9,10].
MapReduce technology is used over the cloud platform for training and detecting the activities
of humans by processing mobile sensor data offloading to the cloud using K-nearest neighbor,
naive Bayes, and iterative dichotomizer classifiers. These classification methods have been
implemented using Hadoop and then evaluated through Elastic MapReduce. The authors
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used K-NN to categorize the mobile sensor data, which had a 71% accuracy [11]. The Home
Event Recognition System (HOMER) [12] model allows for the integration and configuration
of multiple home sensing devices and mobile robots, irrespective of underlying environmental
setup, to offer specialized procedures such as sensing when an individual has fallen and has
difficulty getting back up: an alarm can be activated.

The ActiveAdvice project [13], a European AAL-funded initiative conducted in six
different countries, was created to fill these gaps by providing a web platform especially for
senior citizens and their family members, AAL business representatives, and governmental
organizations involved in aging issues throughout Europe. The architecture has offered
a comprehensive market outline by displaying a catalog of AAL goods and services and
advisory features that may enlighten and help people to discover a product that meets
their requirements [14]. Pace et al. [15] presented INTER-Health, an interoperable IoT-
driven service for delivering the ambient environment in diverse environments to identify
abnormal circumstances. In recent years, various sensing devices have been downsized and
made very energy-efficient. The most common wearable sensors include accelerometers,
gyroscopes, and magnetometers, frequently placed on the patient’s hip or waist. These have
been extensively employed for various purposes, including measuring a subject’s body
posture, detecting and categorizing falls, and monitoring the gait cycle. Furthermore, these
sensors are built into mobile devices such as smartphones and smartwatches, allowing for
continuous monitoring of biological, behavioral, and environmental data [16].

Syed et al. [17] distinguished 12 physical activities of older persons with 97.1% accu-
racy. Wearable sensors would be placed over the subject’s left ankle, right forearm, and
chest. Yassine et al. [18] offered a framework for IoT analytics data acquired from a smart
home environment. The authors installed fog nodes between a home automation system
and the cloud to direct processing resources from the cloud to the network’s edge. The
cloud and fog computing systems perform activity identification, event detection, and
psychosocial and predictive analytics. The outcomes are then sent to the home automation
system for initiating the appropriate action. Jie et al. [19] have proposed a Time-Bounded
Activity Recognition for Ambient Assisted Living over an IoMT framework. The Cumula-
tively Overlapping Windowing Approach for Ambient Recognition of Activities (COBRA)
is used to recognize real-time scenarios, especially within 10, 30, 60, or 120 s after an ac-
tivity’s start. COBRA employs novel sliding-window techniques and a logistic regression
classification model to identify the task being performed.

A study named BrainSmart [20] presented the use of AAL technology over smartphone
technology to recognize the activities and the falls of Parkinson’s disease patients. The
technology uses accelerometers and gyroscope sensors to identify situations in the AAL
environment. A study by Teller and Stivoric [21], carried out in 2004, has shown how
technology may be placed into clothing or accessories such as bracelets and watches to
assess, record, and relay various vital indicators. A study on situation awareness by
AAL technology relies on machine-to-machine (M2M) technology [22,23]. It provides the
adaptability needed by intelligent homes to help elderly citizens. The planned study will
also have a substantial influence on patient monitoring, which is advanced by the smart
city initiative. It is less usual to see socially assistive robots than wearable or ambient
sensors, but this developing technology has the potential to improve human activities,
particularly those involving physical exertion. In nursing homes, social-assistive robots
are used for various tasks, such as transporting food or medicine carts, picking up objects
for laundry collection, and more. They can also be used for transportation services, postal
services, logistic support, trash logistics, and the logistics of cleaning materials. The quality
of service and the happiness of residents and employees may rise due to the widespread
use of these new technologies [24].

In addition to the technologies covered in this section, several other technologies may
be used to provide healthcare services to consumers. There is a high need for wearable
sensor technology that can monitor glucose levels in real-time for the elderly and warn their
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caregivers of their health. The suggested technology primarily focuses on providing timely
medication for the patients, thereby enhancing the standard of livelihood of the elderly.

4. Data Acquisition and Labeling

This phase of the current research study focuses on acquiring the signal data from
biosensors placed on the human body. The acquired data is then used in generating spec-
trogram images from the signal data and labeling the spectrogram images for further
processing through deep-learning models. As a patient monitoring device that is non-
invasive, these glucose instruments for data collection that give continuous blood glucose
interpretations rely on the sensitivity and efficiency of biosensing devices to precisely and
efficiently communicate blood glucose concentrations. Biosensors have three components:
a bioreceptor, a signal transmitter, and an interface through which the signal can be in-
terpreted [25]. Through the detection of analyte attachment to proteins or molecules, the
device determines how much analyte has been deposited in a liquid sample. Binding and
output options are diverse in biosensor categories. Affinity biosensors, which employ genes
or antibodies to analyze the samples, are the second-most popular sensor. Sugar concen-
trations in many bodily fluids have been linked to blood glucose levels, including saliva,
urine, tears, and interstitial fluid. In recent years, there have been positive achievements
in the development of ubiquitous biosensing gadgets that measure blood sugar levels in
these body fluids. Glucose deposits may be assessed using sweat, which is created by most
people. A one-layer graphene-based biosensor with gold nanoparticles has been developed
to detect glucose concentration in the blood via perspiration [26,27].

Various researchers have carried out a few similar studies in the recent past. A study
on monitoring diabetic patients used the data classification technique with wi-fi (Ep8266)
for older adults [28]. The other research direction deals with monitoring essential vital
activities via smartphone technology using Near-Field Communication (NFC) activities [29].
Wang et al. [30] have discussed sensor models such as enzyme-free boronic acid-based
glucose sensors and fluorescence-based glucose sensors that depend on blood glucose
sensors for enhanced patient assessment and the management of blood sugar. Another
case study-based evolution model assists chronically sick patients in accessing and using
patient management services over the smartphone using the Transmission Control Protocol
(TCP) and wi-fi technology for accessing the services [31]. In the current study, glucose
oxide (GOD) sensors are used to analyze the body’s glucose levels in a non-invasive
manner. Aspergillus niger is the source of glucose oxidase, which is stored as a solution.
A plastic seal, anodic adhesive, and an ultrasonic connection are some of the existing
micro-packing methods for packaging tiny amounts of glucose oxidase solution [32]. Low-
temperature packaging is possible because parylene encapsulates glucose oxidase solution
with UV adhesives. There are two parts to the package: a glucose oxidase solution-filled
parylene capsule and an ultraviolet (UV)-curable adhesive cover for the capsule and
reaction chambers. A rise in glucose concentration leads to higher output currents while
the response time remains constant. The output of the GOD sensors is recorded in the
range of −1.0–6.0 nA, depending on the blood glucose concentration [33].

Assumption 1: It is assumed that an output of the GOD sensor in the range of −1.0–2.0 nA is
considered to be a low blood glucose level, 2.1–5.0 nA is assumed to be a normal blood glucose level,
and observations above 5.0 nA are assumed to be high blood glucose levels.

4.1. Spectrogram Generation

Many important signal components that are generally not recognized through detailed
spectral analysis can be detected and identified by analyzing non-stationary components.
This is especially true for components that only manifest themselves at a specific pace
throughout device-operational transient states. The spectrogram images are transformed
through Gabor transform. As a replacement for the Fourier transform, Dennis Gabor created
the Gabor transform. There is a problem with Fourier transform, in that it only provides the
signal’s frequency domain, but not its time domain. This is why a graph plotting frequency
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versus time may be created using the Gabor transform, a mix of the Fourier transform and
the Gaussian distribution function. The Gabor transform’s Gaussian distribution function
acts as a kernel, moving over the one-dimensional signals and calculating the Fourier
transform and Gaussian function multiplication inside its frame to provide information
on time when various frequencies occur [34,35]. The mathematical notation for the Gabor
transform is represented in Equations (1)–(3):

ĝ(s) =
∞∫
−∞

g(x)e−isxdx (1)

ka(t) = e−(t−τ)2/a2

(2)

T(g)(t, s) =
∫ ∞

−∞
g(τ)e−isτka(τ − t)dτ (3)

From the above equations, the variable ĝ denotes the Fourier transform, and the
Gaussian distribution function is denoted using the variable ka. The variables t and s
designate the time and the frequency, respectively. The symbol τ designates the frame’s
center, and Gaussian functions represent spread.

4.2. Image Labeling

In the spectrogram images, people with lower, normal, and high glucose levels are
indicated as −1, 0, and 1, respectively. In the present study, the labeling of the spectro-
gram images is performed manually based on the real-time blood glucose levels of the
patients. The labeled spectrograms are identified and used to train a model that can monitor
them. For example, persons with low, high, or normal blood sugar levels are shown in
spectrograms in Figure 3.
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Assumption 2: Image labeling for training purposes is performed manually, which is tedious when
labeling a large number of images. The images will be labeled automatically in real-time analysis for
easy handling and precise outcome.

4.3. Implementation Platform

The current study for alerting caretakers based on glucose intensities was simulated
on an independent computer. The machine has an Intel® Core i7 (11th Gen)—CPU@ 4.70
GHz and 16 GB of RAM running over a Windows 10 64-bit environment. The model runs
on the Jupiter notebook V6.4.4 platform using the Anaconda package over libraries such as
sklearn, PyTorch, NumPy, and pandas.
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5. DenseNet-169 for Spectrogram Classification

The DenseNet-169 model is used in the process of classifying the spectrogram images
that are obtained from the real-time surveillance of individuals. The spectrogram images
are classified into low, normal, and high blood glucose levels. The model is trained with
pre-existing data and utilizes input feature maps from previous sub-blocks to create a
single input feature map for the current sub-block. A dense connection is essential to tackle
vanishing gradient issues and minimize the number of parameters.

DenseNet-169 is a network that has 169 layers, and it is a prominent structure for
various classification applications. It has significantly fewer trainable parameters compared
to models with fewer layers. The DenseNet-169 network efficiently handles issues such
as the vanishing gradient problem, has a strong feature distribution strategy, restricts the
number of parameters, and encourages feature reuse, making it a dependable deep-learning
architecture. Deep learning packages such as Tensorflow (Keras 2.8.0) and PyTorandes
support DenseNet. Layers such as convolution, max_pool, dense (completely linked), and
transition make up the architecture. The final layer of SoftMax is activated using ReLu
throughout the model’s design. Using convolutional and max_pool layers, we may extract
the image’s features and minimize the dimensions of our inputs. The flattened layer, which
serves as an artificial neural system with a single array input, is followed by completely
interconnected layers.

Assumption 3: Images are locally stored in the drive and used for training and testing the model.
Generally, in AAL technology, the images are fetched directly from biosensors connected to the
human body.

The details of each network layer, such as the convolutional layer, the max_pool layer,
the dense layer, the fully connected layer, and the soft_max layer of DenseNet-169, with
detailed explanations of their responsibilities, are elaborated in this section. The layered
framework of the DenseNet-169 is shown in Figure 4.
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Convolution Layer: The activation of a convolutional layer is the consequence of
applying a filter to an input. Repetition of filtering produces a feature map that shows the
strength of each feature as it appears at various points in the input. Activation functions
that are used in the current architecture are ReLU, which is applied to a feature map after it
has been constructed using several filters. It is common to execute a dot product operation
between a convolutional layer’s filter and the smallest input data. The square neuron
component of sizeR×R is trailed by a convolutional layer of dimension p× p that results
in a size output (R− p + 1) × (R− p + 1). This Equation shows how to combine the
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assistances from each of the primary layer cells to determine the non-linear feed to the
component sl

ij, shown in Equation (4) [36]:

sl
ij =

p−1

∑
x=0

p−1

∑
y=0

µxyLl−1
(i+x)(j+y) (4)

The non-linearity of the model is assessed through Equation (5):

Ll
ij = λ

(
sl

ij

)
(5)

Max_Pool Layer: Max pooling subsamples the tensors’ total dimension while keeping
the depth of tensors constant. An overlapping max pool refers to adjoining windows for
which the maximum value has been decided to overlap. The main advantage of including
the max-pool layer would be producing a higher rate of convergence with a higher degree
of generalization that is unaffected by scaling issues. It is linked to all or a subset of
convolution layers. The max_pool of filter size k with the dimensions

(
kx × ky × kz

)
over

the stride s assessed over the max_pooling layer Mp is shown in Equation (6):

Mp =
(kx − k + 1)

s
×
(
ky − k + 1

)
s

× kz (6)

Dense Layer: A dense layer is intimately coupled to its previous layer, which means
that every neuron in the layer is connected to each neuron in the previous layer. A dense-
layer neuron conducts matrix-vector multiplication over the input of each neuron in the
previous layer. As indicated in the Equation, the usual formula for matrix-vector multipli-
cation is as follows (7) [37]:

X·η =

x11 x12 . . . . . . . . . x1n p1
x21 x22 . . . . . . . . . x2n p2

...
...

...
...

...
...

...
...

xm1 xm2 . . . . . . . . . xmn pm

(7)

The variable X in the above equation signifies the dimensions of vector m× n, and the
variable p specifies another one-dimensional matrix 1×m. The symbol η designates the
trainable parameters of the previous layer, updated via backpropagation in the training
process. Backpropagation is used to change the weights associated with layer l denoted
by the variable lω and the corresponding bias indicated by lb, which are assessed by
Equations (8) and (9) over the learning rate κ:

l′ω = lw − κ × dlω (8)

l′b = lb − κ × dlb (9)

In the above equations, the variables l′ω and l′b designate the new weight and the bias
associated with layer l. The variables dlω and dlb denote the partial derivates of weight
and bias of the loss function, assessed using the chain rule. The details of dense blocks are
shown in Table 1.
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Table 1. Details of the dense blocks used in the current study.

Layer Kernel Size

Dense Block 1 1 × 1 × 6 (Conv_operation) Output: 56 × 56 Dropout factor 0.2
3 × 3 × 6 (Conv_operation)

Dense Block 2 1 × 1 × 12 (Conv_operation) Output: 28 × 28 Dropout factor 0.2
3 × 3 × 12 (Conv_operation)

Dense Block 3 1 × 1 × 32 (Conv_operation) Output: 14 × 14 Dropout factor 0.2
3 × 3 × 32 (Conv_operation)

Dense Block 4 1 × 1 × 32 (Conv_operation) Output: 7 × 7 Dropout factor 0.2
3 × 3 × 32 (Conv_operation)

Transition layer: The transition layer executes two activities: convolution and pooling,
simultaneously, which are employed in a neural network model to minimize model com-
plexity. A typical transition layer uses a 1 × 1 convolutional layer to minimize the sum of
channels and a stride 2 filter to reduce the input dimensions by half. The transition layer
performs downsampling operations. The details of the transition layer are shown in Table 2.

Table 2. Details of the transaction block used in the current study.

Layer Kernel Size

Transition Block 1 1 × 1 (Conv_operation) 56 × 56 Stride = 2
2 × 2 (avgpool) 28 × 28

Transition Block 2 1 × 1 (Conv_operation) 28 × 28 Stride = 2
2 × 2 (avgpool) 14 × 14

Transition Block 3 1 × 1 (Conv_operation) 14 × 14 Stride = 2
2 × 2 (avgpool) 7 × 7

Global Average Pooling: As a substitute for the flattening layer following the final
pooling layer of the convolutional neural network, global average pooling blocks, which
do not have any trainable parameters, can be used. This basic technique greatly minimizes
the input and qualifies the system for the subsequent classification layer. The global
average pooling layer would assist in the removal of all trainable parameters and decrease
the possibility of over-fitting, which must be addressed in fully linked layers through
dropout. A tensor of dimensions l × b × h is shrunk to 1× 1× d using global average
pooling layers, which is a more extreme kind of dimensionality reduction. The mean of
all lb values is all that global average pooling layers do to reduce each hb feature map to a
single integer.

Fully Connected Layer: Each input neuron is linked to each output neuron in a neural
network using a fully connected layer, which is a linear layer. Levels with complete
connectivity classify data based on information gleaned from preceding layers. A fully
connected layer has the significant benefit of being structure-agnostic, meaning that no
particular assumptions about the input are required. A multilayer perceptron function
(MPF) that attempts to translate the xl

1× xl
2× xl

3 activation from the various previous layers
is composed of a class probability distribution. Thus, the multilayer perceptron’s output
layer will contain xl−m

1 output neurons, where m designates the sum of layers using the
MPF. The MPF is shown in Equation (10):

pl′
i = f

 xl
1

∑
j=1

ωl′
i,j × pl

i

 (10)

The goal of the entire fully connected structure would be adjusting the weight parame-
ters ωl

i,j to generate a probability interpretation of every category depending on the feature
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map created by the linear combination of the convolutional, non-linearity, rectification, and
pooling layers.

Softmax Layer: The probability of input fitting to distinct classes would be evaluated
by the softmax layer. The combination of all the possibilities is equal to one. Based on the
likelihood of input data being correct, a classification is made. Low glucose, normal glucose,
and high glucose are the three input categories in the proposed model. The formula for the
softmax is shown in Equation (11).

σ
→
(p)i =

epi

∑k
j epj

(11)

The input vector’s values are represented by the variable epi in Equation (11). Each
member of the input vector is subjected to the conventional exponential function. This
produces a positive number greater than zero, which is extremely low when the input is
negative and high over the more significant input value. All values of the input vector
are members of the softmax function’s input vector, and they may accept either any value
that is positive, negative, or zero. Due to the normalization factor, it is possible to obtain a
probability distribution from the softmax evaluation, where the denominator contains the
normalizing factor. The softmax layer is associated with 3,029,214 parameters identified at
the current layer through the activation function.

Hyperparameters

Training and validation loss measurements and training and validation accuracy
metrics are crucial for evaluating the efficiency of the network and spotting overfitting
contexts during network construction. Overfitting occurs when a model has learned
too much from training samples, especially unpredictability, compromising its ability to
assess the correct outcome from validation data. The training loss plot decreases as the
number of epochs grows, but it does so before increasing. Underfitting occurs when a
machine fails to learn from data and fails to generalize adequately across validation data.
The training accuracy curve may be flat or have large loss values, suggesting that the model
could not acquire knowledge from the training samples [38]. The performance curves
associated with DenseNet-169 are shown in Figure 5.
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The model’s learning rate is the other significant hyperparameter used in accessing
the model’s performance. To begin with, the learning rate is raised linearly up to a certain
value, and then it gradually decreases until it is zero. An overly high learning rate can
lead to numerical instability because of the random distribution used to initialize the
parameters of the model; however, training an initial model cautiously for a few epochs can
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allow us to use a higher learning rate later on in training, leading to a better classification
performance. The network’s learning rate is drawn from a random distribution ranging
various magnitudes in the expectation that most units will obtain a learning rate close to
optimal, as shown in Figure 6.
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6. Results and Discussion

The model’s performance is measured following the ground facts linked with input
images. The proposed model over DenseNet-169 is assessed by measuring the model’s
true positive, true negative, false positive, and false negative instances. Based on the
assessments, sensitivity, specificity, accuracy, and recall are calculated. A proper prediction
of a normal glucose level is termed true positive, and a correct detection of an abnormal
glucose level is considered to be true negative. Similarly, misinterpreting abnormal glucose
levels as normal glucose levels results in a false positive, whereas misinterpreting normal
glucose levels as abnormal glucose levels results in a false negative. In the current study,
the images are classified into three classes, i.e., low, normal, and high glucose levels.
Performance evaluations are also performed for each class. Figure 7 depicts the confusion
matrix linked with the predictions. The precision and recall values of each class are
independently shown in Table 3.
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Table 3. Precision and recall values of individual class.

Overall
True Samples Precision Recall

Class 1 (low) 153 92.6 90.85
Class 2 (Normal) 133 98.47 98.47

Class 3 (High) 141 87.67 87.67

On further evaluation of the model’s performance, it is observed that it has exhibited
an accuracy of 92.7% across all three classes. The efficiency of the DenseNet-169 model
is evaluated vis-à-vis state-of-the-art models in a similar field by considering the metrics
such as sensitivity, specificity, accuracy, and Matthews correlation coefficient (MCC), as
shown in Table 4. There are only a few studies available that diagnose the real-time blood
glucose level through spectrogram images. Electronic healthcare records (EHR) data deal
with tabular datasets that include PIMA [39] and Luzhou [40] datasets.

Table 4. Performance analysis with the existing models for diabetes prediction.

Approach Data Type Sensitivity Specificity Accuracy MCC

Decision Tree [41] EHR data 0.781 0.561 0.744 0.762
Random Forest [41] EHR data 0.789 0.661 0.840 0.436

Support Vector Machine [41] EHR data 0.775 0.666 0.856 0.416
Naive Bayes [41] EHR data 0.820 0.687 0.840 0.502

Finetuned AlexNet [27] Spectrogram Images 0.826 0.725 0.925 0.484
Recurrent Neural Network EHR data 0.837 0.774 0.818 0.591

Densenet-169 Spectrogram Images 0.912 0.881 0.927 ~

The ablation study is carried over the same dataset by considering the two classes, i.e.,
the spectrogram images of normal glucose levels as one class and the samples with higher
glucose levels as the other class, which are identified as the abnormal glucose level. The
corresponding confusion matrix for the two classes is shown in Figure 8, and the evaluated
metrics are shown in Table 5.
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Table 5. Ablation analysis against the number of classes.

Approach Data Type Sensitivity Specificity Accuracy

Densenet-169 (2-Classes) Spectrogram Images 0.933 0.945 0.938
Densenet-169 (3-Classes) Spectrogram Images 0.912 0.881 0.927

The ablation study has shown that the model’s performance depends on the number
of classes. Table 5 shows that the model’s performance in the two classes is comparatively
better than the three classes.
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Other commonly used performance assessment indicators, such as the receiver op-
erating characteristic curve (ROC curve) [42], assess the performance of the classification
model. ROC curves consider both the true positive and the false positive measures. The
ROC curve is generally applied to a model with binary classes. However, in the current
study, the samples in the dataset are classified across three classes, i.e., low, normal, and
high blood glucose levels. ROC curves are populated by considering the dataset as two
samples, i.e., class 1, which holds all the samples of low and normal blood glucose levels,
and class 2, which maintains the information of all the samples of higher blood glucose
levels. The obtained ROC curve for the proposed model is presented in Figure 9.
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Cross-validation (CV) [43] is a performance-assessment measure for classification
issues that works by separating information into numerous folds and guaranteeing that
each fold is used as testing data. The variable k designates the number of folds every
testing data has to be divided into for validation. As a result, it is referred to as k-fold
cross-validation. Table 6 shows the results attained after assessing the model through
numerous folds, and Figure 10 shows the associated graphs.

Table 6. Performance analysis with the existing models for diabetes prediction.

K = 2 K = 5 K = 8 K = 10

DenseNet-169 0.793 0.825 0.862 0.897
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Using k-fold cross-validation, the dataset is split into k non-overlapping folds. Each k-
fold is given the option of operating as a test set, and the remaining folds are used together
as a training dataset. The mean performance is presented after training and testing the k
hold-out test sets. The values of k have been determined to be 2, 5, and 10, respectively.



Diagnostics 2022, 12, 2739 15 of 20

The results in Figure 9 demonstrate that the model consistently improves its performance
with the intensification of the folds of data.

It can be observed from the tabulated values that the model’s accuracy increases with
the increase in the number of folds. In the current study, the instances are categorized into
three classes, considering the problem as two classes, i.e., high and low blood glucose levels,
as the abnormal glucose levels would result in a binary class problem, whose accuracy
is considerably better than a multi-class problem. Optimizing the network with weight
optimization would improve the number of features considered in the evaluation process.

7. IoMT Integration in AAT

The Internet of Medical Things (IoMT) is a subset of the Internet of Things (IoT)
technology comprised of interconnected medical equipment for healthcare monitoring.
IoMT devices, also known as healthcare IoT, integrate automating, interfacial sensors, and
machine learning to provide human intervention-free healthcare monitoring [44]. IoMT
technology links patients and physicians through medical devices, providing remote access
to gather, analyze, and send medical data via a secure network. IoMT technologies help
reduce needless hospital visits and related health expenses by enabling wireless surveillance
of health indicators. Wearable, in-home, personalized, real-time health monitoring is
covered under the IoMT medical technology category. The patient’s health condition in the
Ambient assisted environment is consistently monitored, and abnormal situations alarm
caretakers over the IoMT architecture. The IoMT architecture involves various networking
nodes and sensor devices that work collaboratively. The integration of the nodes and
devices is performed over an intelligent platform. The healthcare applications maintained
by the caretakers would keep a complete log of the patient information and their health
conditions. A local monitoring agent would notify a caretaker as to the abnormal situation
that is prevalent for the client, i.e., the patient, and the head office would keep track of the
patient’s condition and assist in reaching the associated hospital if the situation is out of
control [45,46]. The local agents then generate an alert to the head office or the nodal station
for their support. The head office would have direct access to hospital services. They might
alert hospital staff based on the severity of the situation. The IoMT architecture diagram of
future perspective technology is shown in Figure 11.
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Future Perspective Model

The user interface is exceptionally important for stakeholders’ easy access to tech-
nology. The real-time monitoring dashboard of the patient’s health situation could be
accessible to the individual being monitored, his or her family members, the caretaker,
and the agency that provides healthcare assistance. The interfaces for the individuals,
family members, and caretakers are provided with a mobile application, and the health-
care agencies work on a desktop application in order to operate. The mobile system’s
front-end interface might be utilized to install the suggested smart diagnostic technology
for monitoring blood glucose levels. The model continuously acquires the data from the
sensor devices over the IoMT architecture. The architecture’s back-end relies on services
such as REST API and Flask, which connect the iOS platform to Kaggle. The model can be
safeguarded with a user authentication technique and a secure socket layer (SSL). The user
authentication at the caretaker’s end will ensure that access to the user data is provided
only to a legitimate user, which functions by validating a username and the corresponding
password of the user. SSL encrypts data as it is sent between a web browser and a server.
SSL [47] encrypts the connection between a web server and a browser using the asymmetric
key mechanism, ensuring that all data transmitted between parties remain private and
secure. The user details and their monitored data are stored using NoSQL MongoDB. This
provides people with a better feeling of authority over their sensitive data, i.e., the security
and confidentiality of their health-related data.

The technology outlined above can transform the future perspective model into a user-
centric model with all the essentials. The mobile application’s user interface of the proposed
model is shown in Figures. Figure 12 presents the dashboard of the caretaker, whereas
Figure 12a shows a list of regions across the cities where Ambient assisted healthcare
services are provided. Upon clicking on the respective regions in the city, Figure 12b shows
the list of the patients whom the agency is monitoring. The details of each individual are
provided to the caretakers of the associated region to monitor them remotely, as shown
in Figure 13. Figure 12a presents the user dashboard in which details such as name, age,
city, region, the disease being monitored, caretaker, nearby primary healthcare centers,
consultant doctors, and recently recorded blood sugar levels are presented. Now, upon
clicking on the monitor, the patient’s current blood glucose levels are presented, as shown
in Figure 13b, in which a real-time graph is demonstrated with a provision to rescan to
handle real-time errors.
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Furthermore, as previously described in healthcare, real-time data analysis is a trend
that is becoming a reality. Doctors may, in reality, check the historical healthcare data asso-
ciated with patients. Doctors are also authorized to request information before drafting a
report explaining the state of the patient’s health and prescribing the appropriate treatment.
In such a context, the future perspective model would essentially assist in providing better
patient treatment. Network latency and the privacy of the patient’s information are some
of the potential challenges of the practical implication model [48]. The caretaker agent can
access the patient data of all the users upon a successful login to the console. Therefore, it
is favorable to regulate access to the limited records of the associated region to those whom
the agent needs access. Latency is the other factor that determines any delay in response
to the user query, which is usually incurred by processing in the business layer and net-
working delays. Such latencies are desired to be minimal, and future technologies must
mechanize robust techniques that can efficiently handle the challenges mentioned above.

8. Conclusions and Future Scope

Many studies are impacting the outcomes and applications of assisted-living technol-
ogy. They can monitor the overall health of people who live alone and may aid in reducing
the overall expense of providing daily medical care for elderly citizens. The suggested
system for continuously reviewing diabetic patients for better patient-centric treatment
and lifestyle has shown fair effectiveness in recognizing clients with abnormal glucose
levels and supporting caregivers in prompt treatment. The current study analyzes the
spectrogram images generated from real-time HR signals using the DenseNet-169 model
over three distinct classes. The performance is reasonably fair for the three-class problem,
with an accuracy of 92.7%. The proposed model has exhibited a reasonable performance in
monitoring the patients continuously in a non-invasive approach. Finally, the suggested
technique is intended to supplement rather than replace current disease-diagnostic tools.
When diagnosing a medical condition, laboratory results will almost always be more
accurate than a remote examination alone.

The future perspective of the current study includes various divergent issues to
be addressed, including the length of the generated spectrogram images. The current
spectrogram images are of 25 s lengths. However, spectrogram images of 5 s and 10 s will
not be the same. Further, the accuracies would differ, as the number of features is influenced
by the duration of time. The security of the data exchanged among the sensor devices and
base stations is the other major concern that must be addressed using robust encryption
algorithms and maintaining the lifetime of sensor nodes using energy-aware algorithms
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to retain a better performance of sensing patients’ health conditions. The current work
has been implemented over a limited dataset, and more samples are desired for optimal
performance. In this context, deploying a self-learning model would result in a better
performance. The technology could also be integrated with mobile application interfaces to
make them easily accessible for the end users.
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