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Abstract: In this paper, we propose a new Modified Laplacian Vector Median Filter (MLVMF) for
real-time denoising complex images corrupted by “salt and pepper” impulsive noise. The method
consists of two rounds with three steps each: the first round starts with the identification of pixels
that may be contaminated by noise using a Modified Laplacian Filter. Then, corrupted pixels pass a
neighborhood-based validation test. Finally, the Vector Median Filter is used to replace noisy pixels.
The MLVMF uses a 5 × 5 window to observe the intensity variations around each pixel of the image
with a rotation step of π/8 while the classic Laplacian filters often use rotation steps of π/2 or π/4. We
see better identification of noise-corrupted pixels thanks to this rotation step refinement. Despite this
advantage, a high percentage of the impulsive noise may cause two or more corrupted pixels (with
the same intensity) to collide, preventing the identification of noise-corrupted pixels. A second round
is then necessary using a second set of filters, still based on the Laplacian operator, but allowing
focusing only on the collision phenomenon. To validate our method, MLVMF is firstly tested on
standard images, with a noise percentage varying from 3% to 30%. Obtained performances in terms
of processing time, as well as image restoration quality through the PSNR (Peak Signal to Noise
Ratio) and the NCD (Normalized Color Difference) metrics, are compared to the performances of
VMF (Vector Median Filter), VMRHF (Vector Median-Rational Hybrid Filter), and MSMF (Modified
Switching Median Filter). A second test is performed on several noisy chest x-ray images used in
cardiovascular disease diagnosis as well as COVID-19 diagnosis. The proposed method shows a
very good quality of restoration on this type of image, particularly when the percentage of noise is
high. The MLVMF provides a high PSNR value of 5.5% and a low NCD value of 18.2%. Finally, an
optimized Field-Programmable Gate Array (FPGA) design is proposed to implement the proposed
method for real-time processing. The proposed hardware implementation allows an execution time
equal to 9 ms per 256 × 256 color image.

Keywords: MLVMF; impulsive noise; image denoising; chest X-ray images; cardiovascular diseases
diagnosis; HLS; FPGA

1. Introduction

The processes of creating, acquiring, saving, and transmitting images often generate
noise. A random alteration that an image undergoes can change the intensity of certain
pixels to the minimum or maximum value, either 0 or 255. This phenomenon, known
as impulsive noise or “salt and pepper” noise, can appear in a digital image due to data
transmission errors, the presence of fine particles on the sensor elements of the camera, or
faulty memory locations in the storage hardware. The presence of such noise considerably
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affects the process of understanding the image. Edge detection and segmentation are thus
biased. This is the reason why work dedicated to the filtering and denoising of images has,
for several years, taken an important place in the field of computer vision.

Various filters for removing noise have emerged. Several approaches have been
followed and validated. We can mainly cite the basic vector filters [1–7], the weighted vector
filters [8,9], the adaptive vector filters [10–17], the hybrid vector filters [18,19], the fuzzy
vector filters [20–22], the neural network based vector filters [23–26], and the morphological
based vector median filters [27,28]. The choice of a method remains dependent on the
application. In this work, we are looking for a real-time architecture capable of restoring
the chest x-ray images as well as possible. This will allow experts to better diagnose
possible pathologies such as cardiovascular diseases, asthma, lung cancer, pneumonia,
COVID-19, and tumors [29]. Maximum restoration quality also improves the performance
of recognition algorithms based on deep learning, multi-channel CNN architecture or angle
transformation, which has become very popular in recent years [30–36].

Among the families of filters mentioned above, the basic vector filters, the adap-
tive vector filters, and the hybrid vector filter are best suited for real-time implementa-
tion [17–19,37–40]. These filters are not greedy in terms of resources. This generally in-
volves applying one or more simple heuristics and performing a noisy image scan by
calculating a measurement for each pixel (a normalized sum of multiplications), making
it possible to distinguish the very strong frequency variations. Methods based on VMF
(Vector Median Filter) have always shown very good behavior in the case of low percentage
impulsive noise. Methods based on AVMF (Adaptive Vector Median Filter), as well as
HVF (Hybrid Vector Filter), are more complex to implement but far better in the case of
high percentage impulsive noise [41]. Cited families (based on VMF, AVMF, or HVF) look,
firstly, for corrupted pixels: we talk about noisy pixels identification. This step is very
important and determines the quality of the image restoration. If some noisy pixels are
not identified, they remain unchanged in the final result and disrupt the comprehension
process. Otherwise, if non-noisy pixels are identified as being noise, they will be replaced,
which negatively affects the quality of the restored image.

In this paper, we propose a new approach to refine the search and identification
of noisy pixels. Considering a 5 × 5 window, our proposed MLVMF uses a modified
Laplacian filter to observe the intensity variations around each pixel of the image with a
rotation step of π/8 while the classic Laplacian filters often use rotation steps of π/2 or
π/4 [42–45]. Reducing the angle of rotation around the pixel makes it possible to take
advantage of additional information about its neighborhood. MLVMF does not stop at
this stage. Identification of corrupted pixels can still fail against a high percentage of
impulsive noise. Indeed, two or more noisy pixels having the same intensity (0 or 255) can
be 4-connected or 8-connected. The local second derivative around this kind of pixel will
not be able to detect strong variations. Once the noisy pixels are detected thanks to the new
proposed filters, then eliminated by a simple VMF, a second round is initiated to search for
the adjacent noisy pixels. We propose a second set of filters calculating, in eight directions,
the intensity variations around each pixel of the image without taking into account the
eight direct neighbors.

To validate our method, MLVMF is tested on standard images with a noise percentage
varying from 3% to 30%. Obtained performances in terms of PSNR (Peak Signal to Noise
Ratio) and NCD (Normalized Color Difference) are compared to the performances of VMF
(Vector Median Filter) [1], VMRHF (Vector Median-Rational Hybrid Filter) [40], and MSMF
(Modified Switching Median Filter) [46]. The results obtained show the effectiveness of the
proposed approach.

The third and last contribution in this paper is the hardware implementation of the
proposed nonlinear approach. Research has adopted hardware acceleration as a solution
to reduce implementation complexity. In [47], using two hardware architectures, authors
implement standard and multi-level median filters. According to [48], a novel 3 × 3 window
median filtering algorithm is developed based on a bit-serial sorting algorithm with a high
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speed of operation and low hardware complexity. In [40], a hardware implementation
of the VMRHF for color images is described. The relational function implementation is
simplified using some approximations in this hardware architecture. To implement VMF
efficiently, authors in [49] suggest a fast parallel architecture. VMF filter implementations
in this architecture use approximation to implement L2 norms. However, these hardware
architectures need more development time and lack the adaptability of design upgrading.
In fact, Low-Level Synthesis (LLS) using Hardware Description Language (HDL) on an
FPGA circuit is used to build and implement these systems. With LLS design, the Register
Transfer Level (RTL) description can be modified to produce an excellent, efficient netlist.
However, creating such an RTL description takes a lot of work and time, especially for
complicated applications [50–52]. This is because each low-level circuit’s activities must
be described. Nevertheless, only hardware designers with specialized knowledge and
abilities are capable of creating a sophisticated system. Therefore, in order to decrease the
complexity of the FPGA design, it is imperative to go from Low-Level Synthesis (LLS) to
High-Level Synthesis (HLS) [53–55]. The HLS tool synthesizes the formalized algorithms
into a behavioral and structural RTL hardware description utilizing software high-level
languages (systemC, C/C++, etc.). Thereby, several academic and commercial HLS tools
are developed, such as Xilinx Vivado HLS, Intel OpenCL, Catapult-C, and ROCCC. Thus,
our objective in this part is to use HLS flow to generate various hardware architectures for
our proposed denoising algorithm. These architectures are designed in terms of FPGA cost
and execution time. The best-designed architecture will be implemented and validated on
the Xilinx Zynq FPGA.

This paper is organized as follows. In Section 2, we present the proposed denoising
algorithm (MLVMF) by detailing its different stages as well as the filters used. To validate
the proposed method, Section 3 shows the MLVMF results tested on standard images with
a noise percentage varying from 3% to 30%. Obtained performances in terms of processing
time, as well as image restoration quality through the PSNR and the NCD measurement,
are compared to the performances of VMF, VMRHF, and MSMF. An additional test is
performed on noisy chest x-ray images used in cardiovascular disease diagnosis as well as
COVID-19 diagnosis. Finally, the HLS designs for the MLVMF are described in Section 4.

2. Modified Laplacian Vector Median Filter—MLVMF

A noisy pixel is always associated with a high frequency in its direct neighborship.
Impulsive noise is no exception to this rule. To identify a noisy pixel, it is, therefore,
necessary to calculate the variations in intensity locally. A double derivative around the
pixel makes it possible to measure this variation: this is the Laplacian operator. Let I be an
image of size n × m. Let (x,y) be the position of a pixel in the image I. The Laplacian L(x, y)
of an image with pixel intensity values I(x, y) is given by:

L(x, y) =
∂2 I
∂x2 +

∂2 I
∂y2 (1)

Since the input image is represented as a set of discrete pixels, we have to find a
discrete convolution kernel that can approximate the second derivatives in the definition of
the Laplacian. Two commonly used small kernels are shown in Figure 1.
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When searching for and identifying noisy pixels of the impulsive type, there is a
tendency to widen the Laplacian filters. In general, these filters are of size 5 × 5 instead of
3 × 3. This is dictated by the concern to ensure that it is indeed an isolated pixel in terms of
intensity. For these same reasons and contrary to the search for edges, the convolution is
not conducted all at once but rather in several directions around the pixel. Figure 2 shows
the four commonly used kernels in the case of impulsive noise identification.
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As shown in Figure 2, the rotation step of the Laplacian is equal to π
4 : kernel K1 at 0,

kernel K2 at π
4 , kernel K3 at π

2 , and kernel K4 at 3π
4 . A smaller rotation step allows a deeper

investigation of the neighborhood of a pixel. However, the rectangular aspect of the pixels
and the small size of the search window show no more than four discernible directions.
Increasing the size of the window will increase the calculation time. It is nevertheless
possible to approximate new directions. We propose, in Figure 3, four new kernels in order
to estimate the variations of intensity according to the directions π

8 , 3π
8 , 5π

8 , and 7π
8 . New

kernels are: kernel K5 at π
8 , kernel K6 at 3π

8 , kernel K7 at 5π
8 , and kernel K8 at 7π

8 .
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Identification of corrupted pixels can still fail against a high percentage of impulsive
noise. Indeed, two or more noisy pixels having the same intensity (0 or 255) can be 4-
connected or 8-connected. The local second derivative around this kind of pixel will not
be able to detect strong variations. We propose a second set of filters calculating in eight
directions the intensity variations around each pixel of the image without taking into
account the eight direct neighbors. Figure 4 shows the proposed eight kernels: K9 to K16.
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The calculation of the variation is carried out as follows. For each position (x, y) in
the image I, we compute the absolute value of the convolution product noted Vij between
the kernel Ki and the image Ij.

Vij(x, y) =
∣∣Ki ⊗ Ij

∣∣, (2)

where j varies from 1 to 3, such as I1 is the image red component, I2 is image green
component, and I3 is the image blue component. A first scan of the image is performed
with filters K1 to K8. For each image pixel, we, therefore, obtain 24 measurements of
variation. To judge the importance of the intensity variation around a pixel (x, y), we
observe the minimum value M1(x, y) among the 24 measurements obtained.

M1(x, y) = min[Vij(x, y), i = 1..8, j = 1..3], (3)

If M1(x, y) exceeds a predefined threshold T then the pixel (x, y) is considered a
candidate to be an impulsive noise. At this precise moment, we retrieve the color layer of
the image giving this minimum measurement and declare the pixel as noise if its intensity
at this layer is 0 or 255.

M1(x, y) = min[Vij(x, y), i = 1..8, j = 1..3]
if M1(x, y) > T then (iind, jind) = index

(
min[Vij(x, y), i = 1..8, j = 1..3

]
)

if Ijind(x, y) = 0 or 255 then pixel (x, y)is an impulsive noise

To eliminate the noisy pixel, we use the VMF method [1]. The image obtained and
noted Ic is then scanned again. This scan is performed with filters K9 to K16.

Vij(x, y) =
∣∣Ki ⊗ Icj

∣∣, i = 9..16, (4)

where j varies from 1 to 3, such as Ic1 is the image red component of Ic, Ic2 is image green
component of Ic, and Ic3 is the image blue component of Ic.
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For each image pixel, we also obtain 24 measurements of variation. We observe the
minimum value M2(x, y) among the 24 measurements obtained.

M2(x, y) = min[Vij(x, y), i = 9..16, j = 1..3], (5)

To declare a pixel as noise, we proceed in the same way as for the first scan using
the same value of predefined threshold T. To eliminate the noisy pixel, we use the VMF
method [1]. Figure 5 shows the MLVMF flowchart.
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3. MLVMF Performances

The proposed MLVMF filter is assessed in terms of image restoration quality and
execution time to remove the impulsive “salt and pepper” in color images. We compare
MLVMF performances to the performances of VMF, VMRHF, and MSMF filters. The
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metrics used in this comparative study are: The Peak Signal to Noise Ratio (PSNR) and the
Normalized Color Difference (NCD). PSNR is defined by (6)–(8).

PSNR = 10 log
(

2552

MSE

)
, (6)

MSEl =
1

nm

n

∑
i=1

m

∑
j=1

(Il(i, j)− Icl(i, j))2, (7)

MSE =
MSEr + MSEg + MSEb

3
, (8)

where l the index of the color channel of a color image (r = red, g = green, b = blue). I
represents the original image. Ic is the filtered image. n is the number of rows of an image
and m the number of columns.

Color distortion is estimated using the NCD, which is defined by (9).

NCD =
∑n

i=1 ∑m
j=1

√
(Y(i, j)− Yc(i, j))2 + (U(i, j)− Uc(i, j))2 + (V(i, j)− Vc(i, j))2

∑n
i=1 ∑m

j=1

√
(Y(i, j))2 + (U(i, j))2 + (V(i, j))2

, (9)

where Y represents the original image luminance, Yc is the filtered image luminance, U and
V are original image chrominance components, Uc and Vc are filtered image chrominance
components.

The proposed MLVMF is developed using C/C++ programming language, compiled
by Visual C++ 2010 software tool. Execution is performed under Core™i7-1165g7@2.80ghz
Intel processor. The processor timer is used to determine the execution time. We choose
five test images (Figure 6), including two standard images (Lena and Peppers) and three
chest x-ray images (CXR1, CXR2, and CXR3) [56]. All images used are 256 × 256 in size.
Test images are corrupted by various levels of “salt and pepper” impulsive noise. These
levels are 3%, 5%, 10%, 20%, and 30%. Based on several experimental tests, we set the
threshold T at 75.

Table 1 shows the values of quality measurements according to PSNR and NCD after
the filtering process performed by VMF, VMRHF, MSMF, and proposed MLVMF filters.
According to this table, we can notice that the MLVMF is more efficient than the other three
filters. Compared to the MSMF, which has the best performance among the three filters in
question in terms of PSNR, the MLVMF provides a high PSNR value of 5.5%. Compared to
the VMF, which has the best performance among the same three filters in terms of NCD, the
MLVMF provides a low NCD value of 18.2%. Moreover, subjective measurement confirms
the efficiency of our proposed MLVMF. Figure 6 confirms that the filtered images (Lena,
Peppers, CRX1, CRX2, and CRX3) obtained after MLVMF processing are too close to the
original images, thanks to a better quality of restoration. Figure 7 shows the comparison of
performances measured in terms of PSNR and NCD metrics using Lena, Peppers, CRX1,
CRX2, and CRX3 images for various levels of impulsive noise (3%, 5%, 10%, 20%, and
30%). In addition to the fact that the MLVMF is clearly superior in the case of a low and
medium noise percentage, the proposed filter is clearly distinguished from other filters
when the noise is high. This mainly comes down to the investigation carried out by the
filters K9 to K16 and which succeeded in identifying the adjacent corrupted pixels. The
execution time of the proposed MLVMF under Core™i7-1165g7@2.80ghz Intel processor
reaches 1483 ms per 256 × 256 color image. To decrease this execution time and allow
real-time calculation, Section 4 describes a proposed High-Level Synthesis (HLS) design for
the MLVMF filter.



Diagnostics 2022, 12, 2738 8 of 15Diagnostics 2022, 12, x FOR PEER REVIEW 9 of 15 
 

 

 
Figure 6. (a) Original images. (b) Corrupted images with 10% impulsive noise. Filtered images 
using (c) VMF, (d) VMRHF, (e) MSMF, and (f) MLVMF filters. 

  

Figure 6. (a) Original images. (b) Corrupted images with 10% impulsive noise. Filtered images using
(c) VMF, (d) VMRHF, (e) MSMF, and (f) MLVMF filters.



Diagnostics 2022, 12, 2738 9 of 15

Table 1. PSNR and NCD values of the VMF, VMRHF, MSMF, and MLVMF filters for various levels of
impulsive noise.

Filter VMF VMRHF MSMF MLVMF

Image Noise PSNR
(dB) NCD PSNR

(dB) NCD PSNR
(dB) NCD PSNR

(dB) NCD

Lena

3% 32.340147 0.017115 32.782660 0.015688 35.472474 0.004766 37.423460 0.0042894
5% 31.728372 0.018811 32.100663 0.017784 33.911660 0.008693 35.844625 0.0079106
10% 29.577089 0.023299 29.734905 0.024349 30.400635 0.017641 32.087870 0.0159651
20% 25.232852 0.041481 25.244443 0.052842 25.084609 0.049493 26.414093 0.0345932
30% 20.856752 0.096637 21.130595 0.118374 20.657001 0.116282 21.731165 0.0955841

Peppers

3% 34.518151 0.012914 35.044101 0.011567 36.409296 0.005163 38.375398 0.0045951
5% 33.217095 0.014426 33.596334 0.013441 34.123878 0.009285 36.068939 0.0084494
10% 30.370972 0.018116 30.448538 0.019125 30.270752 0.020890 32.026456 0.0181743
20% 25.730744 0.035530 25.695894 0.046225 25.121437 0.057862 26.477995 0.0314972
30% 21.196992 0.083353 21.466820 0.103619 20.905560 0.117288 22.034460 0.0764975

CXR1

3% 33.637944 0.007440 33.797730 0.008316 35.523118 0.002363 37.476889 0.0021267
5% 32.265345 0.008059 32.343503 0.010048 33.248306 0.004593 35.209956 0.0041796
10% 29.716387 0.011066 29.690418 0.016741 29.858881 0.011025 31.590696 0.0099776
20% 24.991928 0.027388 24.956495 0.046715 24.704409 0.038274 25.939629 0.0274849
30% 20.404829 0.081102 20.680126 0.113743 20.243625 0.101027 21.296294 0.0717325

CXR2

3% 35.571872 0.009196 35.826513 0.007403 36.795335 0.003027 38.782283 0.0026940
5% 33.170338 0.010195 33.264613 0.008741 33.436260 0.005518 35.342127 0.0050214
10% 30.882192 0.011984 30.774950 0.013983 30.471932 0.011975 32.239304 0.0104183
20% 25.765780 0.025517 25.680567 0.040658 25.238697 0.033607 26.601587 0.0239102
30% 20.448200 0.079880 20.697093 0.112506 20.281939 0.091909 21.377164 0.0734534

CXR3

3% 37.002201 0.004489 37.195887 0.004118 38.126856 0.002395 40.223833 0.0021555
5% 34.776916 0.005016 34.799607 0.005191 35.126686 0.004735 37.128907 0.0043089
10% 31.703067 0.006751 31.494476 0.009411 31.463504 0.010426 33.209728 0.0054355
20% 26.207766 0.021795 26.062978 0.038572 25.760547 0.036464 27.125856 0.0188541
30% 21.351850 0.077362 21.600711 0.107416 21.129428 0.097884 22.228158 0.0738787

Average - 28.906630 0.029957 29.044420 0.038663 29.350670 0.034503 30.970270 0.0253275
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4. High-Level Synthesis (HLS) Designs for the MLVMF Filter

The HLS flow used with FPGA is an important tool for engineers to quickly explore
the design space from a given behavioral description based on a high-level programming
language (e.g., SystemC, C/C++). Because of this, the HLS has become a useful and effective
tool for boosting design productivity and decreasing design cycle time. Various HLS tools
have been developed in this regard, such as the Xilinx Vivado HLS tool, which offers a
number of directives to produce an optimum hardware design for any algorithm. In fact,
the RESOURCE directive allows the arrays to be implemented as registers or memories.
Additionally, the ALLOCATION directive can be used to optimize how the arithmetic
operation is implemented. Furthermore, using the PIPELINE and UNROLL directives,
the loops can be pipelined, not unrolled, or fully/partially unrolled to increase the loop
iterations’ performance (i.e., to reach a higher throughput).

Figure 8 shows the block diagram of the hardware architecture generated for the
MLVMF filter. The generation process is performed by Xilinx Vivado HLS 18.1 tool from
a specific C/C++ code. Our architecture uses 5 DMA (Direct Memory Access) to transfer
five image lines in parallel in order to increase the throughput of our MLVMF filter. The
hardware architecture of the proposed MLVMF is based on a 5 × 5 modified Laplacian filter
and a 3 × 3 VMF filter. Each denoising RGB pixel (in 24 bit) is concatenated and stored in
256 × 256 × 24-bit internal memory. To optimize the architecture, some directives (such
as PARTITION and PIPELINE) are incrementally introduced to the MLVMF C/C++ code.
So, we produce various MLVMF hardware designs. We then retain the optimized design,
which gives a compromise between hardware cost and processing time. The hardware
requirements in terms of Lookup-Table (LUT), Flip-Flops (FF), BRAM blocks, and DSP
blocks for the various MLVMF designs on the Zynq XCZU9EG FPGA are shown in Table 2.

Table 2. FPGA resources and performances of the MLVMF-designed architectures.

LUT FF BRAM_18K DSP48E Cycles

Solution1 10,687 (4%) 6590 (1%) 125 (7%) 13 (0.5%) 209,546,135
Solution2 43,343 (16%) 42,228 (8%) 125 (7%) 650 (26%) 5,304,902
Solution3 45,939 (17%) 43,685 (8%) 135 (8%) 665 (26%) 1,135,576

In Table 2, Solution 1 presents the hardware architecture without any optimization.
It is clear that this solution is not greedy in terms of resources but requires a very large
number of clock cycles to filter the entire image. With a clock frequency equal to 115 MHz,
Solution 1 needs 1810 ms per 256 × 256 color image. In Solution 2, we propose to apply
the PIPELINE directive. Hardware cost increases but is still well below the maximum
capacities of the hardware. On the other hand, the number of clock cycles decreases by
97.5%. An image can, therefore, be processed in 46 ms. With the aim of further reducing
the number of clock cycles, we add in Solution 3 the PARTITION directive, which allows
splitting the filtering window (Figure 8) into small blocks and promoting parallel access
to data. Thank to Solution 3, we reach a computation time equal to 9 ms, i.e., 200 times
faster than Solution 1. Hardware resources will be consumed more but remain well below
hardware capacity. Finally, it should be noted that the quality of the filtering with Solution
2 and Solution 3 are the same obtained during the software implementation of Section 3.
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5. Conclusions

In this work, a new Modified Laplacian Vector Median Filter (MLVMF) for real-time
denoising complex images corrupted by “salt and pepper” impulsive noise is proposed.
The aim is to provide a real-time architecture capable of restoring the chest x-ray images
as well as possible. This will allow experts to better diagnose possible pathologies such
as cardiovascular diseases, asthma, lung cancer, pneumonia, COVID-19, and tumors. We
propose two sets of modified Laplacian filters to identify corrupted pixels. The first set
investigates images using a smaller rotation step compared to existing methods. This allows
better detection of corrupted pixels. The second set of proposed filters allows the detection
of adjacent noisy pixels. These pixels go unnoticed in front of conventional filters, which
leads to a bad reconstruction of the image when the percentage of impulsive noise is high.
New High-Level Synthesis (HLS) Designs for the proposed MLVMF Filter are presented.
The proposed MLVMF shows better performances compared to VMF, VMRHF, and MSMF
filters in terms of PSNR and NCD measurements. In fact, The MLVMF provides a high
PSNR value of 5.5% and a low NCD value of 18.2%. A proposed Hardware implementation
based on High-Level Synthesis (HLS) designs of the MLVMF enabled real-time processing
allowing an execution time equal to 9 ms per 256 × 256 color image.

Our method allows, as shown by the experimental results, a very good detection of
impulsive noise. However, the work presented here does not deal with the operation of
replacing the corrupted pixel. To eliminate a noisy pixel after having identified it, we use
the VMF approach. We believe that a more intelligent estimation of the true color of the
noisy pixel is possible. However, this estimate can be costly in terms of resources and
computation time. Future work will focus on this point because a better estimate of the true
color of a corrupted pixel, added to the very good identification presented in this work,
can bring us closer to the ideal denoising.
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