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Abstract: In the last few years, artificial intelligence has shown a lot of promise in the medical
domain for the diagnosis and classification of human infections. Several computerized techniques
based on artificial intelligence (AI) have been introduced in the literature for gastrointestinal (GIT)
diseases such as ulcer, bleeding, polyp, and a few others. Manual diagnosis of these infections is
time consuming, expensive, and always requires an expert. As a result, computerized methods
that can assist doctors as a second opinion in clinics are widely required. The key challenges of a
computerized technique are accurate infected region segmentation because each infected region has
a change of shape and location. Moreover, the inaccurate segmentation affects the accurate feature
extraction that later impacts the classification accuracy. In this paper, we proposed an automated
framework for GIT disease segmentation and classification based on deep saliency maps and Bayesian
optimal deep learning feature selection. The proposed framework is made up of a few key steps, from
preprocessing to classification. Original images are improved in the preprocessing step by employing
a proposed contrast enhancement technique. In the following step, we proposed a deep saliency map
for segmenting infected regions. The segmented regions are then used to train a pre-trained fine-
tuned model called MobileNet-V2 using transfer learning. The fine-tuned model’s hyperparameters
were initialized using Bayesian optimization (BO). The average pooling layer is then used to extract
features. However, several redundant features are discovered during the analysis phase and must
be removed. As a result, we proposed a hybrid whale optimization algorithm for selecting the best
features. Finally, the selected features are classified using an extreme learning machine classifier.
The experiment was carried out on three datasets: Kvasir 1, Kvasir 2, and CUI Wah. The proposed
framework achieved accuracy of 98.20, 98.02, and 99.61% on these three datasets, respectively. When
compared to other methods, the proposed framework shows an improvement in accuracy.

Keywords: stomach diseases; contrast enhancement; saliency estimation; Bayesian optimization;
features optimization

1. Introduction

Cancer is a deadly disease that is currently the leading cause of death worldwide [1].
Cancer is caused primarily by genetics, but it is also influenced by environmental factors.
Environmental factors such as a person’s eating habits and community behaviors are the
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leading causes of 50% of cancer cases. This disease typically develops after 20–30 years of
exposure to harmful cancer-causing agents [2]. Modern medical technologies are being used
to detect cancer in its early stages, with radical resection being used to treat approximately
50% of cases. The stomach is a vital muscular part of the body that aids in food digestion. It
is positioned to the left of the upper abdomen. The food is removed from the esophagus via
a muscular valve known as the gastroesophageal sphincter [3]. The stomach is responsible
for three major functions. The first and most important task is to store the food that
we consume. Furthermore, by releasing gastric juices, it breaks down, and digests the
food consumed. Finally, the digested food is transferred to the small intestine. Stomach
infection, also known as gastric cancer, is one of the fourth leading causes of cancer deaths
worldwide, with an average survival ratio of less than 12 months for advanced cancer
stages. It is a polygenic disease in which multiple factors, both genetic and environmental,
play an important role in its development. Every year, an estimated 1 million new cases
are identified worldwide [4]. Gastric cancer cannot be avoided; if the warning signs are
ignored or not treated in the early stages, it can develop into a tumor. Most treatments for
it include chemotherapy, surgery, and radiation, among other things. Men have a higher
risk of developing gastric cancer compared to women. Aside from environmental and
genetic factors, Helicobacter pylori (H. pylori) are a type of bacteria that enters the body
and lives in the digestive region, resulting in ulcers and gastritis over time. Gastritis is an
inflammation of the stomach lining caused by the same bacterium that causes stomach
ulcers. Gastritis symptoms include hiccups, heartburn, and gagging [5].

The most common gastric disease is colorectal cancer, which is the third most common
cancer and affects both men and women equally [6]. Colorectal cancer, also known as
bowl cancer, is characterized by three infections: bleeding, ulcer, and polyp. According
to statistics, approximately 1.6 million people suffer from aching bowl infections, and
approximately 200,000 new cases of colorectal cancer are diagnosed each year [7]. These
gastrointestinal infections (GIT) can be cured if detected and treated early. The diagnosis
of GIT, particularly at an early stage with improved accuracy, has emerged as the focus of
current research [8].

Endoscopy is an effective method for identifying gastric cancer and is one of several
diagnostic measures that could be used to detect it. The accuracy of endoscopy biopsy
removal is approximately 98%; however, this procedure is time consuming, costly, requires
trained medical specialists, and if not performed correctly, can result in multiple compli-
cations in the patient [9]. Another treatment for gastric cancer diagnosis is gastroscopy
and laparoscopy, in which a camera is inserted into a patient’s esophagus and stomach
and an analysis is made using double contrast imaging of the stomach. The majority of
gastrointestinal infections can lead to colorectal cancer, which manifests as short bowl
syndrome and hemorrhoids. Wireless capsule endoscopy (WEC) is a painless method of
identifying infections such as ulcers and polyps in the gastrointestinal tract (GIT) areas of
patients with limited access without the need for surgery [10]. In this procedure, the patient
is asked to swallow a camera in the shape of a capsule with dimensions of 11 × 30 mm2

and no exterior wiring, which captures images and sends them to a data recorder via an RF
transmitter as it travels to the gastrointestinal tract (GIT). The video frames captured have a
resolution of 255 × 255 pixels and are compressed in jpeg format. This entire process takes
an average of 120 min to complete, whereas in normal circumstances it takes approximately
2 h [11].

An average of 60,000 images of a single patient are manually analyzed, which is
sometimes impossible for even a qualified doctor to carry out [12]. Though analysis of all
image frames is not required, in order to obtain accurate results, the doctor evaluates all
captured frames, which lead to a major disagreement. To address this, specialists have used
a variety of computer aided diagnosis (CAD) techniques to help identify gastrointestinal
tract (GIT) infections using wireless capsule endoscopy (WCE) images. However, selecting
image frames containing abnormalities is a difficult task due to the similarity of signs
containing texture, shape, and color [13], which makes accurately categorizing the nature
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of infection difficult. To bridge this gap in computer aided diagnosis (CAD) systems,
various researchers used computational pathology techniques and algorithms from image
processing (IP), artificial intelligence (AI), machine learning (ML), and deep learning (DL),
with promising results [14]. Deep learning applications have yielded promising results
in the classification of cancer, cell segmentation, and predicting the outcome of several
gastrointestinal infections in recent years (GI) [15].

A significant amount of work has been done in the field of medical imaging to assist
general practitioners in the accurate identification and classification of human diseases such
as breast tumor, lung cancer, brain tumor [16], and infections linked to the stomach such
as gastrointestinal tract (GIT) using wireless capsule endoscopy (WCE) images [17]. The
stomach is an important organ in the human body. Gastritis, ulcers, polyps, and bleeding
are all examples of harmful stomach diseases. Khan et al. [18] presented a deep learning
architecture for the detection and classification of gastrointestinal tract (GIT) anomalies.
The entire procedure is evaluated using two datasets: Private and KVASIR. When com-
pared to the existing techniques, the proposed technique proves to be more effective. The
accuracy achieved for the private dataset is 99.8%, while the accuracy for the KVASIR
dataset is 86.4%. However, the study also addresses the disadvantage of varying texture
features for disease classification. A feature optimized DL technique for the classification of
gastrointestinal infections using wireless capsule endoscopy (WCE) images is proposed in
the study [19]. The proposed technique is evaluated using two publicly available datasets.
The assessed results’ accuracy is 99.5%, which is more effective when compared to ex-
isting methods and distinct optimal feature sets. However, the study also mentions the
applied fusion method’s shortcoming of being time consuming, which can be overcome
in future studies by building a CNN model from the start. Khan et al. [20] presented a
computerized automated system for classifying gastrointestinal tract (GIT) infections from
wireless capsule endoscopy (WCE) images using a robust deep CNN feature selection
method. Infected areas are segmented using the CFbLHS method before CNN features
are computed. Furthermore, only the best features were chosen for the final classification.
Private datasets are used to conduct the experiment, resulting in a maximum accuracy of
99.5% over a computational time period of 21.15 s. The shortcomings of manual procedures
for identifying gastric infections are overcome by the use of various high-tech practices that
help physicians detect gastric abnormalities using WCE images. The study [21] envisions a
fully computerized deep learning feature fusion centered architecture for the classification
of numerous gastric anomalies. For evaluating the results, a database for wireless capsule
endoscopy (WCE) images is created, resulting in a maximum accuracy of 99.46% when
compared to the existing techniques. The overall results show that the preprocessing phase
of the CNN model is effective in the learning procedure, and that the fusion of optimal
features improves the accuracy. However, unrelated features and redundancy were still
observed. A case study was conducted to assess the pathologist’s deep learning competence
in diagnosing gastric infections [22]. In this study, 16 professional pathologists inferred
a total of 110 whole slide images (WSI) containing 50 malignant and 60 benign tumors
with and without deep learning assistance. This case study concluded that deep learning-
based assistance aided in achieving maximum area curvature under ROC-AUC, higher
sensitivity, and a normal analysis time span when compared to unassisted deep learning.
As a result, it was determined that deep learning-based assistance was effective, accurate,
and efficient in the detection of gastric tumors. Majid et al. [23] presented an automated
technique for identifying and classifying stomach infections using endoscopic images. The
technique is divided into four phases: feature extraction, feature fusion, feature selection,
and classification. The proposed method is evaluated using a database comprised of four
datasets: CVC-ClinicDB, KVASIR, and ETIS-LaribPolypDB. The evaluation results show
that the features selection method performs well by refining the overall computational
time period, with a maximum accuracy of 96.5%. Authors in [24] presented a technique
for assessing and classifying gastric ailments using wireless capsule endoscopy (WCE)
images that cover the four stages. The first phase employs HSI color modification, which is
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followed by the infection segmentation phase via the saliency approach. For image fusion
in the third phase, a probability method is used. Finally, traditional features are extracted
and classified by machine learning methods. Al-Adhaileh et al. [25] presented a method for
the detection of gastrointestinal contagions. Three deep learning based models have been
employed such as AlexNet, GoogleNet, and ResNet-50 that can aid medical practitioners
to concentrate on the areas which have been overlooked during diagnosis. KVASIR dataset
is used for the evaluation process and achieved an accuracy of 97%.

Preprocessing of original images, segmentation of cancer region, feature extraction,
and classification are all important steps in a CAD system. Preprocessing is an important
step in medical image processing because it allows important information to be visualized
more effectively. This step improves the segmentation process, which has a later impact on
the extraction of accurate features. However, segmentation of the infected stomach region is
difficult due to the change in shape and the presence of the infected region on the boundary
region. Incorrect segmentation of infected regions not only reduces segmentation accuracy
but also raises the error rate in the classification phase due to the extraction of irrelevant
features. Feature extraction is an important step in accurate classification, but several
redundant features are sometimes extracted. The main reason is that deep models are
trained using raw images or inaccurately segmented images. Furthermore, recent studies
show that deep models were trained on static hyperparameters, which can be improved
by using a dynamic initialization approach. To address the issue of redundant features,
researchers developed several feature selection methods, including genetic algorithm-based
selection, ant colony-based selection, entropy-based selection, and others. The best features
are selected using these techniques; however, based on the analysis of these methods, it is
also discovered that some important features are also removed during the selection process.
In this paper, we proposed deep saliency estimation and an optimal deep features-based
framework for classifying stomach infections. The following are our major contributions:

• We proposed a hybrid sequential fusion approach for contrast enhancement. The
purpose of this approach is improving the contrast of infected region in the image that
further helps in better segmentation.

• A deep saliency-based infected region segmentation and localization technique
is proposed.

• A fine-tuned MobileNet-V2 model is trained on localized images and hyperparameters
are optimized using Bayesian Optimization. Usually, the hyperparameters were
initialized in a static way.

• A hybrid whale optimization algorithm is proposed for the selection of best features.

2. Materials and Methods

A new automated framework is proposed in this work for GIT diseases detection
and classification using saliency estimation and Bayesian optimization deep learning
features. The proposed framework consists of several steps that include preprocessing
to classification. Original images are improved in the preprocessing step that further
segmented through saliency map estimation and mathematical formulation. The segmented
regions are then used to train a pre-trained fine-tuned model called MobileNet-V2 using
transfer learning. The fine-tuned model’s hyperparameters were initialized using Bayesian
optimization (BO) and extract features from average pooling layer. After that, we proposed
a hybrid whale optimization algorithm for the selection of best features. Finally, the selected
features are classified using an extreme learning machine classifier. Figure 1 shows the
overall framework of GIT diseases segmentation and classification. The detail of each step
is provided in the below subsections.
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2.1. Proposed Contrast Enhancement

Contrast enhancement is an important step in the domain of image processing based
on some important properties such as low contrast improvement and noise estimation. In
this work, we proposed a hybrid approach for contrast enhancement that based on some
fusion of sequential steps. Consider, we have a database denoted by ∆ having several
images of different classes. Let φ(i, j) is an input image of dimension 256× 256× 3 and φ̃
is a resultant image. For this, initially a CNN-based denoising network is employed and
the bubble regions in the image is removed. This process is defined as follows:

I1 =
ci

∑3
i=1

(
C̃
) , C̃ ∈ (c1, c2, c3) (1)

f1 = ϕ(c1, ϕ̃) (2)

f2 = ϕ(c2, ϕ̃) (3)

f3 = ϕ(c3, ϕ̃) (4)

f4 = cat(3, f1, f2, f3) (5)

where ϕ̃ is pre-trained network [26], f4 is a denoise image, and ci denotes the extracted
three channels, respectively. In the next step, top-bottom hat filtering is applied on f4 to
improve the local and global information as follows:

φtop = Top( f4, s) (6)

φbot = Bot( f4, s) (7)

φ f used =
(
φtop + φbot

)
− φ(i, j) (8)

This resultant image has some brightness effects that are resolved through haze
removal existing approach [26]. The output can be written as follows:

φhz = HZ
(

φ f used

)
(9)

For highlighting the important information in the image, we performed multiplication
operation that was finally fused with φhz image for final output.

φml = φhz ∗ φnw (10)

φnw = φ f used ∗ φtop (11)

φ̃ = ∑(φml + φhz) (12)
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The resultant φ̃ is visually shown in Figure 2.
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2.2. Proposed Saliency Map Based Segmentation

Saliency-based segmentation of an object is a new domain of research in the imaging
and medical domain. In medical domain, the saliency-based segmentation of infected
region is a new challenge and can perform better than the traditional techniques such as
thresholding, clustering etc. In this work, we proposed a deep saliency based segmentation
method called deep saliency map of infected region. The proposed technique works in
four serial steps. In the first step, we design a 14 layered CNN architecture and trained
on enhanced images. In the second step, weights of second convolutional layer were
visualized and merged into a single image. In the third step, thresholding-based convert
image into a binary form that refined in the last step by employing some mathematical
operations such as closing and filling.

The newly designed 14 layered CNN architecture includes three convolutional layers
having filter size 3× 3 and stride 2× 2, 2 max pooling layers having filter size 2× 2 and
stride 2× 2, 3 batch normalization layers, 3 activation layers (ReLu), one average pooling
layer, one fully connected layer, and last one is Softmax layer (can be seen in Figure 3).
This designed architecture is trained on enhanced images, whereas the learning rate is
0.05, epochs are 100, mini batch size is 32, momentum value is 0.6, dropout factor is 0.5,
and stochastic gradient descent (SGD) is employed as optimizer. After the training, we
visualized the weights of second convolutional layer and merge all those sub-images which
have clear pattern into a single image.
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The resultant image is further refined by Equation (13) to improve the visual map of
infected region as follows:

Õmap =
[
Omap + ∑i=1 c1

(
φ̃
)]

(13)

Here, Õmap denotes the refined infection saliency map image, as illustrated in Figure 4,
Omap denotes the original saliency mapped image, φ̃ is proposed enhanced image. After
that, the resultant refined saliency mapped image is converted into a binary form by
employing the following equation:

φbinary =

{
1 i f Õmap ≥ t
0 Otherwise

, where t = Avg Value (14)
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The proposed binary image φbinary as shown in Figure 4 is further refined by mathemat-
ical operations such as filling and closing. The effects after the closing and filling operations
are shown in Figure 4. The final refined binary image is further localized through active
contour approach and infected regions are later utilized for the training of a deep model. A
few sample localized images have been illustrated in Figure 5.
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2.3. Deep Learning Features

In this work, we extracted deep learning features for the infected region classification.
For deep features extraction, a pre-trained MobileNet-V2 [27] deep model is employed. This
model contains around 154 layers including convolutional layers, pooling layers, and fully
connected. This model is specifically designed for the classification and general feature
generation of images. This model uses 3.4 M constraints that are fewer than other generally
preferred models of convolutional neural network (CNN) for example AlexNet uses 61 M,
ResNet50 uses 23 M constraints, VGGNets uses 138 M, and GoogleNet uses 7 M constraints.
Originally, the output layer of this model consists of 1000 object classes. We fine-tuned
this model and replaced the last layers with new layers according to the output classes of
proposed framework such as classes in selected datasets. The training is performed through
deep transfer learning, as shown in Figure 6. In this figure, it is noted that the knowledge is
transferred to the fine-tuned model. In the training process, usually static hyperparameters
have been initialized but in this work, we employed Bayesian optimization for the initial-
ization of hyperparameters. The following hyperparameters are initialized through BO-
learning rate (0.0001–1), momentum (0.6–0.8), and L2-Regularization (1e−10, 1e−2). After
that, a newly trained model is obtained that includes GIT disease classes.
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2.4. Bayesian Optimization

For the purpose to optimize the expensive noisy tasks of black box, Bayesian optimiza-
tion [28] is employed in this work. A substantial improvement with notional outcomes has
been stated by the current revolution in Bayesian optimization. The strategy of BO relies
over the assembly of heuristic model on which several objective tasks are disseminated to
the objective of concern from the input space.

D = {(ax, bx)}
N

x = 1
(15)

where N is the over-all sum of annotations of the input objective sets. An acquisition
function is applied to the variance and mean which is an interchange between exploitation
and exploration. In order to decide the next input for assessment, a proxy optimization is
executed by continuing the Bayesian optimization. Functions used in BO are disseminated
using GPs due to flexibility, ambiguity, and systematic properties. Hence to overcome
minimization complications, BO is utilized and defined as follows:

y∗ =
argmin
y ∈ X g(y) (16)

In the above stated equation, X denotes the dense subset of RK. For the meta-
parameters of substitute model, let borderline analytical variance of heuristic model be
σ2(y,Θ) = ∑(y, y; Θ) and µ(y; D, Θ) that represents the analytical mean and it is described
as follows:

γ(y) =
g(yBEST)− µ(y; D, Θ)

σ(y; D, Θ)
(17)

where g(yBEST) represents the minimum perceived value. The estimated enhanced bench-
mark is shown as:

αFI(y; D, Θ) = σ(y; D, Θ)·[γ(y)Φ (γ(y)) +M (γ(y); 0, 1)] (18)

Here, the symbol Φ represents the cumulative function and M(.;0, 1) signifies the
density of normal standard. After the training of this model on infected cropped regions, we
obtained a newly trained model that is later utilized for the features extraction. The features
are extracted from the average pooling layer of dimension N× 1280. As illustrated in Figure 1,
the extracted features are optimized through a hybrid whale optimization algorithm.
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2.5. Proposed Feature Selection Algorithm

Feature selection is a vital preprocessing phase in machine learning. The collection of
huge quantity of data and information may result into noise and irrelevant data which in
turn impacts the accuracy of the system. Feature selection is a significant approach that
selects the best features from the original feature matrix. The purpose of this step is to
ignore the redundant information and minimize the computational time. In this work, we
proposed a hybrid optimization algorithm based on Whale optimization [29] and Harris
Hawks optimization [30]. The mean deviation formulation is applied after both algorithms
to remove redundancy among features. Mathematically, the Whale optimization algorithm
is defined as follows: →

X =
→
U.
→
Y (v)−

→
Y(v) (19)

→
Y(v + 1) =

→
Y(v)−

→
W.X (20)

In the above stated equations,
→
Y* implies the top most attained result, whereas v

signifies the number of repetitions. The symbols
→
W and

→
U are constants and defined

as follows: →
W = 2

→
c .
→
d −→c (21)

→
U = 2.

→
d (22)

where
→
d implies random vector among [0, 1],

→
c is also a random vector which is meant

to regulate the overall conjunction method and it declines linearly from 2 to 0 during the
repetitions. The value of

→
c can be calculated using the below equation.

→
c = 2− v

2
V

(23)

where v implies the current repetition and V implies the large number of repetitions.

The transition course between exploration and exploitation is shown by vector
→
W. The

exploration agents will keep on exploring the space when the absolute value of vector
→
W is greater than one. Moreover, when absolute value of vector

→
W is less than one i.e.,

|
→
W| < 1, it will result in exploitation of the solution. The two major approaches included

in this algorithm are known as encircling technique and spiral shaped technique. The
encircling process can be attained by minimizing the value of W, whereas the second

process update the distance between the current search agent which is attained at point
→
Y*

and the exploration agent. Mathematically, it is formulated as follows:

Y (v + 1) = X.eal. cos(2πl) + Y∗(v) (24)

A probability value of 0.5 is set for the purpose of signifying the explorative behavior
for further execution. This procedure is stated below as:

→
Y(v + 1)=

{
Xl .eal . cos(2πl) + Y∗(v), P ≥ 0.5
→
Y
∗
(v)−

→
W.X , P ≤ 0.5

(25)

In Equation (25), the probability value of 0.5 is selected for the selection of final features
but after the analysis of this formulation on different probability values, we observed that
the static value is not a good choice; therefore, we modified this equation by employing
a median value of selected features instead of 0.5. Hence, the above equation can be
written as:

→
Y(v + 1)=

{
Xl .eal . cos(2πl) + Y∗(v), P ≥ MD
→
Y
∗
(v)−

→
W.X , P ≤ MD

(26)
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MD =

X∗
[

n+1
2

]
i f n is odd

X∗[ n
2 ]+X∗[ n

2 +1]
2 i f n is even

(27)

where MD denotes median value and X∗ denotes the current iteration features utilized for
the final selection through Equation (25). Through Equation (25), the dimension of selected
features is N × 728. These features are passed to Harris Hawks optimization for one extra
step refinement. Harris Hawks approach is replicated by the system in two states. During
first state, this approach settles at several random localities nearby their family or cluster.
In the second state, Harris Hawks can live around other supporters of household or cluster,
Q ≥MD is for the first scenario and for later state Q < MD.

Y (v + 1) =
{

YRAND − d1|Yrand(v)− 2d2Y(v)|, Q ≥ Mean
(YRABBIT(v)−YM(v)− d3(lb + d4(ub− lb)), Q < Mean

(28)

In the above stated question, Y (v + 1) represents the location of succeeding hawk
where as Yrand(v) represents the current point of the selected hawk from prevailing pop-
ulation. The mean value-based selection is performed instead of 0.5 static values. More
information can be found here [30]. The ELM classifier is selected as a fitness function
and fitness value is computed based on the error rate. This process was continued for
initialized iterations such as 200 in this work. At the end, we obtained a final selected
feature vector of dimension N × 624 that was finally classified using extreme learning
machine (ELM) classifier.

3. Results

The proposed framework experimental process is conducted in this section in the
form of numerical values and plots. Three publicly available datasets have been employed
for the experimental process such as Kvasir 1 [31], Kvasir 2 [32], and CUI Wah [33]. The
Kvasir datasets consists of eight different classes as illustrated in Figure 7. In the Kvasir V1,
each class includes 500 images (total 4000 images), whereas the Kvasir V2 dataset includes
1000 images in each class (total 8000 images). The 50:50 approach was opted for training
and testing of deep models. The cross validation opted for value 10. Several classifiers have
been utilized for the comparison of ELM classifier accuracy such as fine tree, quadratic
SVM (Q-SVM), weighted KNN (W-KNN), and bi-layered neural network (Bi-Layer NN).
The performance of each classifier is analyzed through accuracy and computational time.
The entire framework is simulated on MATLAB2022a using a desktop computer with 16
GB of Ram and 8 GB graphics card.
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3.1. CUI WCE Dataset Results

The classification results of proposed framework on CUI WCE dataset has been
presented in Table 1. This table presented the results in four different experiments. In
the first experiment (Org-MobV2), the fine-tuned MobileNet-V2 deep model is trained
on original dataset and extract features that are later utilized for the classification. In
the second experiment (Enh-MobV2), enhanced WCE images have been utilized and
passed to fine-tuned model for training that were later utilized for features extraction and
classification. In the third experiment (Seg-MobV2), localized infected images have been
fed to fine-tune MobileNet-V2 for training that were later utilized for features extraction
and classification. In the last experiment (Proposed), the entire proposed framework is
utilized and classification was performed.

Table 1. Proposed framework classification results on CUI WCE dataset.

Classifier Org-MobV2 Enh-MobV2 Seg-MobV2 Proposed Accuracy (%) Time (s)
√

95.24 116.5424

ELM
√

96.94 110.2010
√

97.39 103.1152
√

99.61 69.5442
√

90.56 131.5032

Fine Tree
√

91.04 122.5629
√

92.39 116.0424
√

94.84 74.5006
√

92.10 147.0302

Q-SVM
√

94.56 141.5624
√

94.90 136.9206
√

96.36 89.1432
√

91.04 134.1142

W-KNN
√

92.50 129.5260
√

94.14 121.1124
√

94.80 80.5142
√

92.52 119.4504

Bi-Layer NN
√

94.06 113.1492
√

95.84 106.5824
√

98.16 71.0062

XGBOOST

√
92.26 126.0047

√
92.95 110.8072

√
93.60 106.4921

√
94.00 70.6075

In Table 1, the maximum obtained accuracy of first experiment called Org-Mobv2 is
95.24% on ELM classifier whereas the minimum computational time is 116.5424 s. Moreover,
the lowest accuracy of this experiment is 90.56% for fine-tree classifier. The best accuracy
of the second experiment (Enh-MobV2) is 96.94% on ELM, whereas the lowest accuracy
is 91.06% on fine-tree. The minimum computational time of this experiment is 110.2010 s,
whereas the highest noted time is 141.5624 s. In the third experiment (Seg-MobV2), the
maximum obtained accuracy is 97.39% that improved compared to the first two exper-
iments. Moreover, it is also noted that computational time is little decreased after this
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experiment. For the proposed framework, the maximum obtained accuracy is 99.61% that
is significantly improved compared to the first three experiments. Moreover, the computa-
tional time is significantly reduced after this step due to the use of optimization algorithm.
In addition, Figure 8 illustrated a confusion matrix of ELM classifier that can be utilized
for the verification of proposed accuracy. Hence, overall proposed framework obtained
improved accuracy and consumes less time compared to the previous experiments.
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3.2. KVASIR V1 Dataset Results

The classification results of Kvasir V1 dataset has been presented in Table 2. Similar to
results of CUI WCE dataset as presented in Section 3.1, the four experiments have been
performed on Kvasir V1 dataset. In the first experiment, the maximum achieved accuracy
is 95.24% whereas the minimum noted computational time is 92.1124 s. In the second
experiment, the best obtained accuracy is 95.80% on ELM classifier. Compared to the
first experiment, the current accuracy is little improved and also the computational time
is reduced from 92.1124 s to 90.3645 s. The best obtained accuracy of third experiment
is 96.14% on ELM classifier that is improved compared to the first two experiments. In
addition, the computational time is reduced from 92.1123 s to 84.1046 s. The proposed
framework obtained maximum accuracy of 98.20%, which is improved compared to the
previous three experiments. Moreover, the lowest accuracy of this experiment is 93.02% W-
KNN classifier. Moreover, the computational time of proposed framework is significantly
reduced. Figure 9 shows the confusion matrix of ELM classifier for the proposed framework
that can be utilized for the verification of the obtained accuracy of 98.20%. Based on the
results, we can determine that the proposed framework performed better in both accuracy
and computational time.

Table 2. Proposed framework classification results on Kvasir V1 dataset.

Classifier Org-MobV2 Enh-MobV2 Seg-MobV2 Proposed Accuracy (%) Time (s)
√

95.24 92.1124

ELM
√

95.80 90.3645
√

96.14 84.1046
√

98.20 52.5046
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Table 2. Cont.

Classifier Org-MobV2 Enh-MobV2 Seg-MobV2 Proposed Accuracy (%) Time (s)
√

93.04 98.2446

Fine Tree
√

93.64 95.3604
√

94.03 87.2942
√

96.46 63.1142
√

91.62 97.3046

Q-SVM
√

92.14 94.2946
√

93.42 87.5042
√

95.14 71.0246
√

90.54 99.6214

W-KNN
√

91.32 97.5429
√

91.98 90.1120
√

93.02 61.1129
√

94.34 94.1126

Bi-Layer NN
√

94.96 91.6624
√

95.70 86.2404
√

97.10 55.5246

XGBOOST

√
93.58 104.5093

√
94.02 101.9226

√
95.16 93.5521

√
95.90 69.4050
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3.3. KVASIR V2 Classification Results

The classification results of proposed framework on Kvasir V2 dataset have been
presented in Table 3. Similar to Tables 1 and 2, four experiments have been performed
for this dataset to analyze the entire framework. For experiment 1, 94.20% accuracy is
obtained on ELM classifier that is better compared to the other classifiers listed in this
table. The lowest obtained accuracy of this experiment is 92.14% on fine-tree classifier.
In addition, the computational time is also noted for each classifier and minimum time
is 191.5246 s. In the second experiment, 95.18% best accuracy is obtained on ELM that
is improved compared to the first experiment. This shows the importance of contrast
enhancement step. In the third experiment, 96.76% accuracy is achieved that is better
compared to the first two experiments. Moreover, this experiment consumes less time
i.e., 173.1142 s, compared to the other listed experiments. Finally, proposed framework is
employed and obtained an accuracy of 98.02% that is significantly improved compared to
the other experiments. Moreover, the computational time of this experiment is far better
than the other experiments on all classifiers. Figure 10 illustrates the confusion matrix of
Kvasir V2 dataset on ELM classifier that can be utilized for the verification of the proposed
framework accuracy.

Table 3. Proposed framework classification results on Kvasir V2 dataset.

Classifier Org-MobV2 Enh-MobV2 Seg-MobV2 Proposed Accuracy (%) Time (s)
√

94.20 191.5246

ELM
√

95.18 186.5509
√

96.76 173.1142
√

98.02 102.5026
√

92.14 205.0426

Fine Tree
√

93.24 201.0020
√

93.60 191.5462
√

95.46 120.2500
√

92.92 226.2042

Q-SVM
√

93.60 216.1120
√

94.10 204.0526
√

96.40 140.0329
√

92.62 207.1246

W-KNN
√

92.94 203.0204
√

93.56 195.5509
√

95.84 120.5426
√

93.04 195.0694

Bi-Layer NN
√

94.16 191.1124
√

94.86 185.0329
√

96.94 110.0046

XGBOOST

√
93.00 220.0945

√
93.84 211.2572

√
94.10 182.9443

√
94.90 136.0790
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3.4. Discussion and Comparison

A brief discussion of proposed framework is also presented in terms of some visual
facts and quantitative values. Figure 5 shows the qualitative results of infected lesion
localization using proposed saliency based segmentation. From this figure, it is clearly
illustrated that the proposed framework correctly segmented both larger and smaller
infected regions. The quantitative results of all selected datasets have been presented under
Tables 1–3 and confusion matrices in Figures 8–10. From these figures, it is observed that
the accuracy is improved by employing the proposed algorithm compared to the other
mentioned methods such as Org-MobV2, Enh-MobV2, and Seg-MobV2. We also performed
a t-test [34,35] and presented a hypothesis in which we assume that the accuracy will
not degrade after employing the proposed algorithm (h = 1) and accuracy will degrade
after employing the proposed algorithm (h = 0). We consider only ELM classifier values
for all three selected datasets. For CUI WCE dataset, the performance results for ELM
classifier were highly significant such as p = 1.74× 10(−6) for t-test. For Kvasir V1 dataset,
the p value is computed by t-test and shows that the performance of ELM classifier is
significant such as p = 6.63× 10(−7). Similarly, the t-test is peformed for Kvasir V2 dataset
and obtained p value of p = 1.50× 10(−6) that shows the significance performance of ELM
classifier for proposed framework.

Moreover, a comparison is also conducted of proposed framework with some other
deep neural nets such as VGG16, VGG19, AlexNet, and ResNet50. A few quantitative
facts are presented in Table 4. Based on this table, it clearly proves the better performance
of proposed framework. Finally, we compare the proposed framework accuracy with
some recent techniques such as Khan et al. [36]. In this technique, the authors used a deep
learning-based framework and achieved accuracies of 99.42, 97.85, and 97.2%, for CUI
WCE dataset, Kvasir V1, and Kvasir V2, respectively. The proposed framework achieved
accuracies of 99.61, 98.20, and 98.02%, respectively.
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Table 4. Comparison of proposed framework with other neural nets using selected datasets.

Method
Accuracy (%)

CUI WCE Dataset Kvasir V1 Dataset Kvasir V2 Dataset

VGG16 Model embedded in Figure 1 instead of
MobileNetV2 95.80 94.28 95.11

VGG19 Model embedded in Figure 1 instead of
MobileNetV2 96.24 95.02 95.76

AlexNet Model embedded in Figure 1 instead of
MobileNetV2 95.16 94.66 94.90

ResNet50 Model embedded in Figure 1 instead of
MobileNetV2 97.88 95.89 96.16

Khan et al. [36], 2022 99.42 97.85 97.85

Proposed Framework 99.61 98.20 98.02

4. Conclusions

This article proposes a new deep saliency estimation and Bayesian Optimization
learning-based framework for detecting and classifying GIT diseases. The experiment was
carried out on three publicly available datasets and yielded accuracies of 99.61, 98.20, and
98.02%, which were better compared to the previous method. The classification accuracy
was improved by the contrast enhancement step. This step also increases the likelihood of
correctly locating the infected region in the image. MobileNet-V2, a pre-trained deep model,
is chosen and trained using Bayesian optimization and deep transfer learning. The benefit
of this step was improved hyperparameter initialization, which was used for fine-tuning
model training. In addition, we proposed a hybrid optimization algorithm for selecting
the best features. This algorithm selects the best features to improve classification accuracy
while decreasing computational time. The contrast enhancement and hyperparameter
optimization were the work’s strengths. Furthermore, feature optimization reduced ir-
relevant information. As a future work, the contrast enhanced images will be passed to
CNN models such as UNET and MASK RCNN for infected lesion segmentation. Moreover,
weights of CNN models will be optimized through evolutionary optimization techniques.
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