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Abstract: According to the World Health Organization (WHO), Parkinson’s disease (PD) is a neurode-
generative disease of the brain that causes motor symptoms including slower movement, rigidity,
tremor, and imbalance in addition to other problems like Alzheimer’s disease (AD), psychiatric
problems, insomnia, anxiety, and sensory abnormalities. Techniques including artificial intelligence
(AI), machine learning (ML), and deep learning (DL) have been established for the classification
of PD and normal controls (NC) with similar therapeutic appearances in order to address these
problems and improve the diagnostic procedure for PD. In this article, we examine a literature survey
of research articles published up to September 2022 in order to present an in-depth analysis of the use
of datasets, various modalities, experimental setups, and architectures that have been applied in the
diagnosis of subjective disease. This analysis includes a total of 217 research publications with a list
of the various datasets, methodologies, and features. These findings suggest that ML/DL methods
and novel biomarkers hold promising results for application in medical decision-making, leading to
a more methodical and thorough detection of PD. Finally, we highlight the challenges and provide
appropriate recommendations on selecting approaches that might be used for subgrouping and con-
nection analysis with structural magnetic resonance imaging (sMRI), DaTSCAN, and single-photon
emission computerized tomography (SPECT) data for future Parkinson’s research.

Keywords: Parkinson’s disease; artificial neural network; machine learning; deep learning; diagnosis;
MRI

1. Introduction

Parkinson’s disease, commonly known as Tremor, is affected by a diminution in
dopamine levels in the brain, which damages a person’s motion functions, or physical
functioning. It is one of the world’s most common diseases. Intermittent neurological signs
and symptoms result from these lesions, which become worse as the disease progresses [1].
Because aging causes changes in our brains, such as loss of synaptic connections and
changes in neurotransmitters and neurohormones, this condition is more frequent among
elders. With the passage of time, the neurons in a person’s body begin to die and become
inimitable. The consequences of neurological problems and the falling dopamine levels in
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the patient’s body show gradually, making it difficult to detect until the patient’s condition
requires medical treatment [2]. However, the symptoms and severity levels are different for
individuals. Major symptoms of this disease are deficiency in speech, short-term memory
loss, loss of balance, and unbalanced posture [1].

Every year, 10 million cases of this disease are registered worldwide, as per the WHO
report. The chance of developing this disease rises with age; currently, there are 4% of
sufferers worldwide under 50 years of age [2–4]. This disease is the highly widespread
neurodegenerative disease in the world, after AD [3,4] impacting millions of people [5].
The therapy for this disease is still in its initial stages, and doctors can only assist patients in
alleviating the symptoms of the disease [6]. However, there are no definite diagnostics for
this disease, and the diagnosis is largely dependent on the medical history of the patient [1].
Invasive procedures are typically used for diagnosis and therapy, which are both expensive
and demanding [7].

Traditionally, motor symptoms have been used to make the PD diagnosis. Although
the cardinal signs of PD have been established in clinical assessments, the majority of
the rating scales used to determine the severity of the disease have not been thoroughly
examined and validated [8]. Despite the fact that non-motor symptoms, such as cognitive
and behavioral abnormalities, sleep disorders, and sensory abnormalities like olfactory dys-
function, are common in many patients before the onset of PD [8–14], they lack specificity,
are challenging to diagnose, and vary from patient to patient [15]. Therefore, non-motor
symptoms cannot yet be utilized to diagnose PD on their own [16], despite the fact that
some of them have been used as supportive diagnostic criteria [17].

In recent years, ML has emerged as a role model in the healthcare industry. As its
name suggests, ML enables a computer program to acquire knowledge and derive valuable
information from data with little to no human intervention. Numerous data modalities,
such as movement data (such as handwriting [18,19]) or gait [20–22], neuroimaging [23–25],
voice [26,27], cerebrospinal fluid [28,29] (CSF), cardiac scintigraphy [30], serum [31], and
optical coherence tomography (OCT) [32] have been subjected to the application of ML
models for the diagnosis of PD. In order to diagnose PD, ML also enables the combination
of other modalities, such as MRI and SPECT data [33,34]. We can therefore utilize ML tech-
niques to discover pertinent aspects that are not often used in the clinical diagnosis of PD
and rely on these alternative metrics to diagnose PD in preclinical stages or atypical forms.

1.1. Artificial Intelligence and Machine Learning-Based Detection of Parkinson’s Disease

Over the past few decades, researchers have looked at a new way of detecting this
disease through ML Techniques, a subset of AI. Clinical personnel might better recognize
this disease patients by combining traditional diagnostic indications with ML.

As walking is the most common activity in every person’s day-to-day life, it has
been linked to physical as well as neurological disorders. This disease, for example, has
identifiable using gait (mobility) data. The Gait analysis approaches offer advantages
such as being non-intrusive and having the future to be extensively used in residential
settings [35]. Few sections of researchers have attempted to combine ML methods to make
the procedure autonomous and possible to do offline [36].

Furthermore, persons with a subjective disease in its early stages might cause speech
problems [37]. These include dysphonia (weak vocal fluency), echoes repetitious (a tiny
assortment of audio variations), and hypophonia (vocal musculature disharmony) [7,38].
Information from human aural emissions might be detected and evaluated using a comput-
ing unit [39].

1.2. Research Problem and Motivation of Current Systematic Review

Presently, diagnosing PD in the early stage is quite challenging for the medical fra-
ternity. Even if their health deteriorates, people can enhance their quality of life if they
receive an early diagnosis. It’s challenging since PD symptoms coincide with those of other
diseases, making it possible for PD to go unrecognized or, worse, to receive a misdiagnosis.
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Another issue is that, typically, the diagnosis of PD requires a number of steps, including
gathering a thorough neurological history from the patient and examining their motor
abilities in various environments.

The main purpose of this study is to summarize and assess the review of AI algorithms,
data acquisition methods, and applications of AI in the diagnosis of subjective diseases
and challenges. The majority of recent studies deal with the homo dataset (text, speech,
video, or image). Many researchers applied voice data since they can only use so much data
(single data type). Problems with dataset modification and multi-data handling procedures
have been highlighted in the suggested study. The effectiveness of disease prediction is
regulated as a result of the examination of a particular dataset. More real-time solutions
are made possible by the use of ML-based techniques for multivariate data processing.
Multi-variatevocal data analysis (MVDA) is driven to provide multiple dataset attribute-
based PD identification utilizing ML approaches. This study examines the potential for
improving multi-variate and multimodal data processing, which aids in raising the disease
detection rate. The existing research simultaneously concentrated on various ML-based
such as support vector machines (SVM), naïve Bayes (NB), K nearest neighbor (K-NN), and
artificial neural network (ANN) evaluations of Parkinson’s data based on voice features. A
larger number of patients were selected for the study of Parkinson’s data in the experimental
works of current systems. The MVDA employs extensive datasets and ML approaches
to improve disease identification based on these works. The incorporation of numerous
patients’ multi-variate acoustic characteristics in the proposed MVDA is encouraged. The
subjective disease has been diagnosed with the help of proposed ML techniques under the
MVDA system.

1.3. Contribution

This research article covers the techniques of ML which are implemented in the
auditory analysis of speech to diagnose this disease. The benefits and shortcomings of these
algorithms in detecting the disease are thoroughly contrasted, and existing comparative
studies’ potential drawbacks are explored. The main contribution of this paper is as follows:

a. In this paper, we reviewed the significant statistics and relevant information collected
from 217 articles (from various resources) published from 2015–2022 on the diagnosis
and classification of PD.

b. The fundamental discussion on AI and ML with their significance in the field of
medical healthcare.

c. In order to improve the prediction of PD, we also present recommendations for future
perspectives to help researchers and scholars in recognizing various plausible paths
for them to work in the future.

1.4. Structure of Proposed Work

The structure of the study is as follows (Figure 1): Section 2 describes the methods
for the literature search strategy. Section 3 discusses the overview of AI, ML, and DL
techniques. Section 4 defines an overview of Parkinson’s disease. Section 5 illustrates
the state of the art. Section 6 discusses the current limitations as challenges and future
perspectives as recommendations. Finally, Section 7 defines the conclusion.
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2. Methods

The present literature evaluation was carried out in a systematic manner that is
generally in accordance with the most recent PRISMA criteria [40] as shown in Figure 2.
By using the PRISMA technique, the authors can easily evaluate various studies as well as
make decisions about the criteria for the final selection of the studies, the search strategy
and data sources, and inclusion and the exclusion process.
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2.1. Literature Search Strategy

Firstly, the most appropriate literature databases were chosen to review the research
article. Web of Science, Google Scholar, PubMed, Scopus, and IEEE are five significant
databases that were examined to determine and screen relevance. A total of 303 records
were identified through a web of science database searching by using the keyword “Parkin-
son’s Disease and Artificial Intelligence” where 147 were review articles, 40 were proceeding
papers, 7 were from early access, 109 were from open access, and 312 articles were found
through other sources.

For choosing the relevant articles, the most appropriate keywords were selected,
to ensure that papers that would address the presented research topics were included.
The keywords such as PD, AI, ML, and ANN are combined using the logical expression
“AND”. After making multiple revisions to assure the inclusion of all the methodologies
and techniques, the final technical keywords were chosen based on various approaches
covered in earlier review articles. The articles considered in this study were published
in journals, book chapters, abstract meetings, or conference proceedings from January
2015 to September 2022, and all the articles are written in English. After applying the
logical operation in the keywords (“Parkinson’s Disease” AND (Artificial Intelligence AND
Machine Learning AND Artificial Neural Network OR Deep Learning) AND (gait analysis
AND voice AND rigidity AND olfactory)) the total number of 33 research papers were
found from various reputed journals as shown in Figure 3. After refining the articles from
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the web of science core collection, the next search query was submitted to the Google
scholar database by using the same pattern and search strategy from 2015 to 2022 and a
total 67 results were shorted out. By using the same pattern and strategy, the queries were
submitted to the rest of the databases.
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2.2. Research Field: Journals

In this section, we organize a methodical study of the diagnosis of subjective disease
using the AI/ML/DL approaches by analyzing 246 articles published during 2015–2022.
The prominent journals publishing on the diagnosis of PD using different AI and ML
approaches are shown in Table 1. In order to conduct this analysis, we analyzed the research
papers from the MDPI (81), IEEE (86), Frontiers Media SA (31), PLOS (23), Nature (9),
Springer (6), Hindawi (5), Nature Portfolio (3), and Elsevier (2), as shown in Figure 4. The
research that has been included in this review shows that relevant information about the
motor and non-motor symptoms of PD may be retrieved using feature selection approaches
with the aid of ML algorithms, enabling clinicians to make decisions based on the given
dataset. Table 2 summarizes the scope of the review article to diagnose PD (2015–2022)
from the Web of Science Database.

Table 1. Major influential journals publishing on diagnosis of PD (2015–2022) from Web of Science
database.

Journal Name No. of Articles Publisher Indexing

Sensors 47 MDPI SCIE and Scopus

IEEE Access 32 IEEE SCIE

Plos One 23 Public Library Science SCIE

Frontiers in Neurology 17 Frontiers Media Sa SCIE

Frontiers in Neuroscience 14 Frontiers Media Sa SCIE

IEEE journal of biomedical and health informatics 14 IEEE SCIE

Diagnostics 13 MDPI SCIE and Scopus

Applied Sciences Basel 11 MDPI SCIE and Scopus
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Table 1. Cont.

Journal Name No. of Articles Publisher Indexing

IEEE Transactions on Neural Systems and Rehabilitation
Engineering 11 IEEE SCIE

IEEE Sensors Journal 10 IEEE SCIE

NPJ Parkinson’s Disease 9 Nature SCIE

Brain Sciences 8 MDPI SCIE and Scopus

IEEE Transactions on Biomedical Engineering 7 IEEE SCIE

Multimedia Tools and Applications 6 Springer SCIE

Journal of Healthcare Engineering 5 Hindawi SCIE

IEEE Journal of Transactional Engineering in Health and
Medicine 4 IEEE SCIE

Nature Communications 3 Nature Portfolio SCIE

Applied Acoustics 2 Elsevier SCIE

Electronics 2 MDPI SCIE and Scopus

IEEE ACM Transactions on Audio Speech and Language
Processing 2 IEEE SCIE

IEEE Transactions on Automation Science And Engineering 2 IEEE SCIE

IEEE Transactions on Biomedical Circuits and Systems 2 IEEE SCIE

IEEE Transactions on Radiations and Plasma
Medical Sciences 2 IEEE SCIE
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Table 2. Summary of review article to diagnose PD (2015–2022) from Web of Science database.

Authors Scope of the Review Citations Type of Study

Sibley, KG et al., 2021 [41] Analysis of Parkinson’s disease severity based on videos 16 A brief review

Belic, M et al., 2019 [42] Using artificial intelligence to aid in the diagnosis and evaluation
of Parkinson’s disease 74 A review

Landers, M et al., 2021 [43] Can artificial intelligence diagnose and treat Parkinson’s disease
instead of a movement disorders specialist? 1 A review

Palumbo, B et al., 2021 [44]
In order to more accurately diagnose Parkinson’s disease and

Parkinsonian symptoms, artificial intelligence approaches
enhance nuclear medicine modalities.

3 A review

Saravanan, S et al., 2022 [45] Artificial intelligence (AI)-based approaches for the diagnosis of
Parkinson’s disease. 1 A systematic review

Perju-Dumbrava, L et al., 2022 [46] Applications of robotic technology and artificial intelligence in
Parkinson’s disease. 0 A review

Giannakopoulou, KM et al., 2022 [47] Methods of the Iot technology and machine learning for the
detection, monitoring, and management of Parkinson’s disease. 2 A systematic review

Khachnaoui, H et al., 2020 [48] PET/SPECT imaging for Parkinson’s disease using machine
learning and deep learning. 5 A review

Narayanan, RR et al., 2022 [49] The effects of artificial intelligence (AI) on drug discovery and
product development. 0 A review

Termine, A et al., 2021 [50] A multi-layer view of neurodegenerative diseases: insights from
the application of artificial intelligence to big data. 8 A review

Lim, ACY et al., 2022 [51]
Adult gait analysis and the diagnosis of disorders that modify

their stride using artificial intelligence and personalised
algorithms with inertial wearable technology.

1 A review

Xu, JJ et al., 2019 [52] Parkinson’s disease diagnosis studies using magnetic resonance
imaging and artificial intelligence. 21 A review

Zhang, Z et al., 2021 [53] Artificial intelligence used to classify human brain neurological
and psychiatric disorders using MRI. 3 A scoping review

Yadav, D et al., 2020 [54] Intelligent diagnostic tools using mechanobiological and artificial
intelligence methods. 2 A review

Patil, AD et al., 2022 [55] An understanding of neurodegenerative disease with artificial
intelligence in ophthalmology. 0 A review

Suri, JS et al., 2022 [56]
Using the atherosclerosis pathway and an artificial intelligence

paradigm, cardiovascular/stroke risk stratification in Parkinson’s
disease patients.

7 A systematic review

Vitale, A et al., 2021 [57] Neuroimaging data from Parkinson’s symptoms using artificial
intelligence. 3 A review

Cascianelli, S et al., 2017 [58] Molecular imaging modalities in neurodegenerative diseases. 21 A review

Rana, A et al., 2022 [59] Detection of Parkinson’s disease: the critical role of machine
learning algorithms. 0 A review

Raghavendra, U et al., 2022 [60] Automated diagnosis of neurological disorders using artificial
intelligence techniques. 81 A review

Singh, AV et al., 2021 [61] Artificial intelligence and nanorobotics: anew approach to cross
the BBB. 31 A review

Maitin, AM et al., 2022 [62] Analysis of EEG signals for Parkinson’s disease using machine
learning techniques. 1 A systematic review

Vatansever, S et al., 2021 [63]
Using artificial intelligence and machine learning to help in
medication development for illnesses of the central nervous

system.
38 State–of–the–art

Hansen, C et al., 2018 [64] How electronic health records and mobile health technology will
change Parkinson’s disease patient care. 29 A review

Luis-Martinez, R et al., 2020 [65] Using digital technology to integrate multidisciplinary care for
Parkinson’s disease. 21 A review

Fiandaca, MS et al., 2020 [66] Advances in Parkinson’s disease and other neurological diseases
gene treatments, approaches, and technology. 12 A review

Kubota, KJ et al., 2016 [67] Large-scale wearable sensor data for Parkinson’s disease using
machine learning. 180 A review
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3. Overview of Artificial Intelligence, Machine Learning, and Deep Learning

This section will provide a basic overview of how AI, ML, and DL work, the most
popular AI, ML, and DL algorithms, and the various technologies that may be used to
gather data to feed into these algorithms.

(a) Artificial Intelligence

AI is the area of computer science that aims to reproduce human intellectual abilities
in machines, especially computer systems. Some particular applications of AI include
expert systems, ML, speech recognition, and natural language processing (NLP) including
mundane tasks, formal tasks, and expert tasks [68]. Figure 5 represents the role of AI in
medical healthcare.
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For the past 50 years, AI in healthcare has been primarily focused on the diagnosis and
treatment of diseases. Early rule-based systems might have properly diagnosed and treated
diseases, but they were not entirely adopted in clinical practice. In addition to having a
less-than-perfect connection with clinical workflows and health record systems, they were
not significantly more accurate at diagnosing than humans.

(b) Machine Learning

ML is a subset of AI in which the machine constructs a prediction model using
historical data from its past experiences, predicts the outcome for new data, and becomes
better at doing so. It is different from traditional programming. In traditional programming,
rules are not explicitly learned from the data; rather, they are written in a computer
language. Unlike traditional programming, ML creates predictive models using data that
are then applied to predictions using data that have not yet been seen. Due to the intricacy
of the code, it might be highly challenging to design a rule-based program for some
problems. In these situations, ML can be employed if there are enough data available that
is pertinent to the problem under consideration [69]. ML can be classified into supervised
learning (SL), unsupervised learning (UL), and reinforcement learning (RL) as shown in
Figure 6. In SL, sample-labeled data are given to the ML model as a training dataset, and
on the basis of that, it predicts the outcome [70]. In UL, the ML model is trained with a
collection of unlabeled, unclassified, or uncategorized data, and the algorithm is required
to respond independently to that data. The main objective of UL is to reorganize the
input data into new features or a collection of objects with related patterns [71]. RL is a
form of ML approach where an intelligent agent (computer program) interacts with the
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environment and learns to function within that. By accumulating the greatest benefits over
time, the goal of RL is to identify the “policy” that works best. The policy decides what
should be conducted in a certain circumstance [72].
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(c) Deep Learning

Deep structured learning is a subfield of ML methods based on ANN with represen-
tation learning. DL has enormous potential in the fields of healthcare and medicine due
to the sheer amount of data being produced (150 exabytes, or 1018 bytes, in the United
States alone, expanding 48% annually) as well as the rising number of medical equipment
and electronic medical record systems [73]. DL algorithms are often effective with higher
dimensional data, such as audio, video, and images. DL algorithms are created dynamically
to run across several layers of neural networks, which are nothing more than a collection of
decision-making networks that have been pre-trained to do a certain task. Each of them is
then moved on to the following layer after being run through basic layered representations.
On datasets containing hundreds of features or columns, however, most ML techniques
are enhanced to perform quite well. ML often fails to detect a straightforward image with
dimensions of 800 × 1000 in RGB, regardless of how organized or unstructured the data set
is. A standard ML system would find handling such depths to be rather impractical [74].
Recently DL techniques have been introduced for the automatic detection and categoriza-
tion of PD using speech patterns and handwriting patterns recorded by a smart pen [75–78].
Examples of DL include CNN and ANN. ANNs, which are networks of computing units
that mimic the functioning of biological neural networks, are frequently employed for a
variety of tasks, including classification, regression, and time series analysis. They are made
up of several processing layers, with the input samples being held in the first layer and the
prediction being provided in the last layer. Additionally, CNN is an adaptation of ANN
that uses spatial filters (convolutional layers) to extract the textures, patterns, and intrinsic
properties of images [79]. By subsampling the features obtained by the convolutional layers,
pooling is also used to provide reliable features as shown in Figure 7. The main advantage
of the aforementioned techniques is their capacity to automatically learn EEG parameters
and detect anomalies based on those features.
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4. Parkinson’s Disease: An Overview

The brain’s substantianigra area experiences nerve cell declension, which causes PD.
A neurotransmitter called dopamine, which was created by nerve cells is produced by this
region of the brain. Dopamine’s function is to serve as a connection between the brain
and the parts of the sensory organs that control and direct bodily movements [80]. When
these neurons die or are harmed, there is less dopamine in the brain. This suggests that
the area of the brain responsible for controlling movement is dysfunctional, which causes
sluggish, undesired, and erratic motions of the physical parts [81]. Nerve cell degeneration
happens gradually. PD symptoms start to manifest after around 80% of the nerve cells in
the substantianigra are destroyed [82]. Currently, a combination of ecological factors and
genetic abnormalities are thought to be the disease’s etiology. Although some inherited
factors have been shown to increase a person’s chance of developing PD, it is unclear
how these factors make some people more sensitive to the disease [83]. PD can occur
in families because the dysfunctional genes are passed down from parents to children.
But given the condition, this is an uncommon type of legacy. Some specialists claim that
ecological factors may potentially increase a person’s chance of developing PD [84]. The
AI-based algorithm may classify people as having PD or not (non-PD) based on their
motor symptoms (risk factors). The training model may be developed using the dataset,
which was created while evaluating the patients. Numerous PD risk factors, including
both motor and non-motor variables, are formed. Although the symptomatic data cannot
be statistically resolved, it is possible to improve PD detection by using an ML or DL to
better grasp both data classes [85]. In-feature AI is the best choice to accurately predict PD
while examining the symptomatic biology of the disease. Due to the progressive nature of
PD, its severity and status have been assessed using the following subjective and varied
assessment systems [86–91]—MoCA, screening questionnaire, GDS, RBD, UPDRS, STAI,
PIGD score, SCOPA-AUT, and MMSE, [92]. Figure 8 depicts the category of PD.
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Parkinsonian gait or festinating gait is the type of gait exhibited by patients with PD.
Parkinson’s patients frequently experience feeling as though they are “locked in place”
when taking a stride or turning, which raises the possibility of falling. This disorder is
brought on by a dopamine shortage in the basal ganglia circuit, which results in motor
impairments. Despite the fact that PD symptoms might vary, gait is one of the motor
features of this disorder that is most commonly impaired. Small, shuffling steps, general
slowness of movement (hypokinesia), and in severe cases, complete immobility (akinesia),
are the characteristic of Parkinsonian gait [93–95]. In contrast to longer double supports,
PD patients had shorter strides, slower walking speeds during spontaneous ambulation,
and higher cyclic rates [96–99].

Another symptom of PD is a speech disorder. PD patients may stumble over their
words, whisper, or falter toward the end of sentences. Whereas most people speak slowly,
others do so quickly and even stutter or stammer. Speech issues may be intensified by
PD motor symptoms such as less facial expression, slowness, and hunched posture. Deep
brain stimulation, surgery, speech therapy, pharmaceutical intervention, and vocal fold
augmentation are a few of the therapeutic approaches. Speech therapy for PD patients
should be provided as part of a multidisciplinary approach to patient care, despite the fact
that managing Parkinsonian dysarthria is clinically difficult [100].

Another feature of PD is small, cramped handwriting called micrographia, which is
typically one of the early signs. Micrographia is a neurological condition that results in
words that are often small and clustered together as well as other movement symptoms of
the disorder. Additionally, symptoms including rigidity, tremor, and slowness of movement
can all make it more difficult to write [101].

Recent research has shown that MRI can be used to detect and diagnose PD far
sooner than conventional techniques. In order to detect PD, MRIs scan the brain for
particular markers. These signs are frequently present even before Parkinson’s symptoms
appear [102].

Medical Approaches for Parkinson’s Disease Diagnosis

Most cases of PD are identified based on their clinical symptoms. An X-ray or blood test
cannot verify the disease. Nevertheless, non-invasive diagnostic imaging, such as positron
emission tomography (PET), can help a surgeon make a diagnosis. Conventional methods
for diagnosing Parkinsonism include the presence of two or more primary symptoms, the
absence of additional neurological symptoms upon examination, the absence of a history
of additional potential causes, such as the use of anesthetic drugs, head trauma, or stroke,
and responsiveness to levodopa or other Parkinson’s medications [66]. Following are some
clinical methods that are used to diagnose PD:

a. Medical Treatment

In most cases, medication is used to treat Parkinson’s patients in order to reduce
their disease symptoms. Levodopa drugs or anticholinergic pharmaceuticals stimulate
the residual substantia nigra cells to create further dopamine whereas levodopa medi-
cations suppress part of the acetylcholine production, which restores the homeostasis of
the brain’s chemical production. There are a wide variety of side effects associated with
each medication class [103]. Levodopa, which was created more than four decades ago,
is frequently referred to as the standard of Parkinson’s treatment. Levodopa is used in
lower doses in order to reduce the symptoms. This development significantly lessens acute
vomiting and nausea that are frequently encountered as levodopa side effects. Levodopa
often lessens the tremor, stiffness, and slowness symptoms in individuals. Patients with a
lack of spontaneous movement and muscular stiffness benefit the most from it [104].

b. Dopamine Agonists

The brain’s chemical messengers are imitated by drugs like bromocriptine, pergolide,
pramipexole, and ropinirole, which cause neurons to respond as they would to dopamine.
Medications can be prescribed either alone or in combination with levodopa, and they can
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be given to patients in the early stages of the illness or to extend the time that levodopa
will be effective. Before recommending dopamine agonists to patients, surgeons take into
account the fact that these drugs often have greater adverse effects than levodopa [103].

c. COMT Inhibitors

Inhibitors of catechol-O-methyl transferase (COMT) are among the amino groups that
contribute to the stability of levodopa levels. Entacapone, tolcapone, and opi-Capone are
the three main COMT inhibitors. These medications work by inhibiting the COMT enzyme,
which raises blood levels of levodopa without causing it to be peripherally degraded
into 3-O-methyldopa (3-OMD) [105]. Dyskinesia and diarrhea may include possible side
effects [103].

d. Selegiline

Monoamine oxidase B (MAO-B) is selectively inhibited by the drug selegiline. The
major enzyme responsible for the catabolism of dopamine is MAOs, which are intracellular
enzymes found on the mitochondrial membrane. It has been established that selegiline
may be used safely in PD patients due to its ability to alleviate symptoms when taken
as monotherapy, postpone the onset of levodopa, enhance wearing-off in individuals
with motor irregularities, and perhaps even have neuroprotective effects. Selegiline may
be considered an ancient medication, whereas rasagiline, a more contemporary MAO-B
inhibitor, is equivalent in terms of effectiveness [106].

e. Anticholinergic medications

The function of the neurotransmitter acetylcholine (ACh) in the central and autonomic
nervous systems is blocked by anticholinergic medicines, which leads to a wide range
of both beneficial and undesirable consequences. Since many of the most often given
medications for seniors are indicated for problems common to the aged, one-third to
one-half of these medications contain anticholinergic effects [107]. These medications are
particularly effective in treating tremors, stiffness of the muscles, and antidepressants for
Parkinsonism. Due to difficulties and major adverse effects, they are typically not advised
for prolonged use in elderly individuals [103].

f. Amantadine

Levodopa-related dyskinesia is typically treated with amantadine as an add-on medica-
tion, although more recently, novel long-acting amantadine formulations have been created
with additional indications to treat motor fluctuations. Amantadine is hardly associated to
impulse control problems and has not been found to produce dyskinesia [108]. Levodopa
or anticholinergic medicine may occasionally be used with amantadine. Some of its adverse
effects include confusion, sleeplessness, nightmares, irritability, and hallucinations. It may
also cause leg swelling [103].

5. State of the Art

In order to distinguish PD cases from healthy controls, a variety of modern ML
algorithms, including SVM, ANN, logistic regression, naïve Bayes, etc., were successfully
used. In this study, numerous databases, including Web of Science, Elsevier, MDPI, Scopus,
Science Direct, IEEE Xplore, Springer, and Google Scholar, were utilized to survey relevant
papers on PD.

5.1. Literature Review Based on Speech, Gait, and Handwriting Patterns to Diagnose PD

E. Avuçlu et al. [109] proposed a method to detect PD using multiple classifiers. In
their study, the authors used 195 sound samples and 22 acoustic vocal characteristics in
a variety of 75% training and 25% of test data. The ML classifiers used to detect PD are
naive Bayes, random forest, SVM, and KNN. According to research, the SVM accurately
diagnoses PD patients with a test data accuracy of 67.27% and a training data accuracy
of 87.06%. In a survey by KarimiRouzbahani, H et al. [110], the authors used KNN, SVM,
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and discrimination-based-function (DBF) classifiers for the diagnosis of PD. In their study,
they used several parameters like jitter, fundamental frequency, pitch, shimmer, and other
statistical measures. The best accuracy among these classifiers was obtained from KNN
with a 93.83% accuracy rate and it also provides good performance in other parameters
like sensitivity, specificity, and error rate also.

The authors Khamparia, A. et al. [111] used a CNN classifier applied to speech clas-
sification datasets. The accuracy reached throughout the training phase, which is over
77%, makes the results optimistic. In accordance with the works mentioned above, A.
Bourouhou et al. [112] examined a variety of classifiers to identify individuals who were
likely to have PD. They used 40 participants for their investigation, including 20 subjective
patients and 20 NC. According to the experimental findings, the naive Bayes classifier
has a detection accuracy, sensitivity rate, and specificity rate are 65%, 68%, and 66.6%,
respectively. Sharma, A. et al. [113] used three types of classifiers based on KNN, SVM, and
multilayer perceptron (MLP) to diagnose PD. Among all these ML classifiers, SVM using
an RBF kernel outperformed with an overall classification accuracy rate of 85.294% percent.

A summary of the most recent DL methods for audio signal processing is given in
another work by Purwins, H. et al. [114]. The works that have been examined include
CNN as well as other long short-term memory (LSTM) architecture models and audio-
specific neural network models. Similar to the previous studies, L. Zhang, Y. Qu, et al. [115]
detected PD using naive Bayes and other ML approaches. In their method, relevant features
were extracted from the voice signal of PD patients and healthy control (HC) subjects using
signal processing techniques. The naive Bayes algorithm shows a 69.24% detection accuracy
and 96.02% precision rate for the 22 voice characteristics. S. R. Kadiri et al. [116] suggested a
technique for detecting PD using SVM on shifted delta cepstral (SDC) and single frequency
filtering cepstral coefficients (SFFCC) features extracted from speech signals of PD patients
and HC. Comparing the standard MFCC + SDC features with the SDC + SFFCC features,
performance increases of 9% were observed. A 73.33% detection accuracy with a 73.32%
F1-score is displayed by the conventional SVM on SDC + SFCC features. In addition
to the naive Bayes classifier, several additional supervised methods, including but not
restricted to well-known DL methods, have been suggested to identify PD patients among
healthy controls.

In a survey conducted by M. Pramanik et al. [117], the authors examined two rec-
ognizing decision forests, i.e., SysFor and ForestPA, along with the most widely used
random forest classifier, which has been utilized as a Parkinson’s detector. In their study,
as compared with SysFor and ForestPA, random forest’s average detection accuracy on
incremental trees shows 93.58%. For the purpose of classifying PD through sets of acoustic
vocal (voice) characteristics, Gunduz, H. [118] suggested two frameworks based on CNN.
Both frameworks are used for the mixing of different feature sets, although they combine
feature sets in different ways. Although the second framework provides feature sets to the
parallel input levels that are directly connected to convolution layers, the first framework
first combines several feature sets before passing them as inputs to the nine-layered CNN.

One of the most important technological advancements of the twenty-first century has
been the use of AI and ML in society. Basic AI systems were in use in the late 20th century,
but during the past ten years, the creation of procedures and systems that employ ML and
other functions has risen tremendously. These tools help researchers in a huge range of
areas manage their data and work more efficiently. Clinical insights continue to employ
AI and ML in a variety of ways. The fact that AI technologies don’t only focus on one
component of clinical findings is one of their strongest features. For handling massive and
heterogeneous data sources, spotting complicated and hidden patterns, and forecasting
difficult outcomes, many ML algorithms are available. Because of this, ML has much to
offer in terms of clinical insights across the board, from preclinical drug development to
pre-trial planning to study execution to data storage and analysis [119].

AI is assisting physicians in better diagnosing and treating diseases like postoperative
hypotension, and more advanced future models may have even more widespread medical
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uses. The evolutionary step in the creation of therapeutic pathways and adherence is
ML. The real benefit of ML, however, is that it enables provider organizations to use
information about the patient population from their own systems of record to create
therapeutic pathways that are unique to their procedures, clientele, and physicians [120].

However, various algorithms such as SVM, ANN, naive Bayes, ensemble-based
method, and gradient-boosted trees [121–126] were used to diagnose PD based on speech
features where the highest accuracy of 94.93% was obtained from ANN [122]. For the
detection of PD using handwriting patterns, several algorithms such as SVM, random
forest, and CNN [127–133] were used where the highest accuracy of 97.23% was obtained
from CNN [132]. Similarly, diagnosing PD based on gait parameters using a different
algorithm such as SVM, fuzzy KNN, ANN, and deep CNN [134–140] where the highest
accuracy of 100% was obtained from SVM [137].

It can be seen from the reviews above that all the research has been conductedand is
only restricted to a small number of datasets. The above previous works inspired us to try
a new methodology. In this study, we experimented with several feature selection methods
before comparing the results with various ML classifiers. Table 3 represents the review
of AI/ML/DL techniques used to diagnose major symptoms of PD i.e., speech recording,
handwriting pattern, and gait features for 20 studies.

Table 3. Comparative research on Parkinson’s disease diagnosis using machine learning approaches
(a. speech, b. handwriting patterns, and c. gait parameter).

a. Speech Parameter

Reference Modality Algorithms
Used Objective Tools Source of Data Subjects Performance

Sakar et al.,
2019 [121] Speech Support Vector

Machine
Classification

of PD from HC

JupyterLab
with python

programming
language

Collected from
participants

188 PD and
64 HC

Accuracy
(ACC.)—86%

Yasar A. et al.,
2019 [122] Speech

Artificial
Neural

Network
Classification

of PD from HC MATLAB Collected from
participants

40 PD and
40 HC ACC.—94.93%

Ouhmida, A,
2021 [123] Speech SVM, K-NN,

Decision Tree
Classification

of PD from HC Not mentioned
UCI machine

learning
repository

Not mentioned AUC-98.26%

Marar et al.,
2018 [124] Speech Naive Bayes Classification

of PD from HC
R

programming
Collected from

participants
23 PD and

8 HC ACC.—94.87%

Sheibani R
etal., 2019 [125] Speech

Ensemble-
Based

Method
Classification

of PD from HC
Python

programming
UCI machine

learning
repository

23 PD and
8 HC ACC.—90.6%

John M. Tracy
etal., 2020 [126] Speech Gradient

Boosted Trees
Classification

of PD from HC Python Not mentioned 246 PD and
2023 HC ACC.—79.7%

b. Handwriting Patterns

Reference Modality Algorithms
Used Objective Tools Source of Data Subjects Performance

Cibulka et al.,
2019 [127]

Handwriting
Patterns Random Forest Classification

of PD from HC Not mentioned Collected from
participants

150 PD and
120 HC Not mentioned

Hsu S-Y et al.,
2019 [128]

Handwriting
Patterns

Support Vector
Machine

Classification
of PD from HC Weka PACS 196 PD and

6 HC ACC.—83.2%

Drotár, P et al.,
2016 [129]

Handwriting
Patterns

K-NN,
Ensemble

AdaBoostClas-
sifier, Support

Vector Machine

Classification
of PD from HC

Python
[scikit-learn

library]

PaHaW
database

37 PD and
38 HC ACC.—81.3%

Fabian Maass
etal., 2020 [130]

Handwriting
Patterns

Support Vector
Machine

Classification
of PD from HC Not mentioned Collected from

participants
82 PD and

68 HC
Sensitivity—

80%

J. Mucha et al.,
2018 [131]

Handwriting
Patterns

Random Forest
Classifier

Classification
of PD from HC Not mentioned Collected from

participants
33 PD and

36 HC
ACC.—90%

and
Sensitivity—89%
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Table 3. Cont.

b. Handwriting Patterns

Reference Modality Algorithms
Used Objective Tools Source of Data Subjects Performance

Wenzel et al.,
2019 [132]

Handwriting
Patterns

Convolutional
Neural

Network
Classification

of PD from HC MATLAB Not mentioned 438 PD and
207 HC ACC.—97.23%

Segovia, F. etal.,
2019 [133]

Handwriting
Patterns

Support Vector
Machine

Classification
of PD from HC

Python
programming Not mentioned 95 PD and

94 HC ACC.—94.2%

c. Gait Parameter

Reference Modality Algorithms
Used Objective Tools Source of Data Subjects Performance

Ye, Q. et al.,
2018 [134] Gait Support Vector

Machine
Classification

of PD from HC Not mentioned Collected from
participants

15 PD and
16 HC ACC.—90.32%

Klomsae, A
et al., 2018

[135]
Gait Fuzzy KNN Classification

of PD from HC Not mentioned Collected from
participants

15 PD and
16 HC ACC.—96.43%

J. P. Félix et al.,
2019 [136] Gait Support Vector

Machine
Classification

of PD from HC MATLAB Not mentioned 15 PD and
16 HC ACC.—96.8%

Andrei et al.,
2019 [137] Gait SVM Classification

of PD from HC Not mentioned
Laboratory for
Gait & Neuro-

dynamics
93 PD and

73 HC ACC.—100%

Priya SJ et al.,
2021 [138] Gait ANN Classification

of PD from HC MATLAB
Laboratory for
Gait & Neuro-

dynamics
93 PD and

73 HC ACC.—96.28%

Oğul, et al.,
2020 [139] Gait ANN Classification

of PD from HC MATLAB
Laboratory for
Gait & Neuro-

dynamics
93 PD and

73 HC ACC.—98.3%

Li B et al.,
2020 [140] Gait Deep CNN Classification

of PD from HC Not mentioned Collected from
participants

10 PD and
10 HC ACC.—91.9%

5.2. Literature Review on Neuroimagingto Diagnose PD

Since neuroimaging has demonstrated its efficacy in the diagnosis of PD, CAD that
is based on neuroimaging has received a lot of attention. The classifier module is one
of the important components of a CAD system that directly affects classification perfor-
mance [141].

Chakraborty, S. et al. [142] discussed that a total of 906 people participated in the
survey, of whom 203 served as controls, 66 as prodromal subjects, and 637 as symptoms of
PD. Eight subcortical regions were separated from the obtained MRI scans by using atlas-
based segmentation in order to examine the MRI scans for the diagnosis of the subjective
disease. In addition, morphological, textural, and statistical information were recovered
from the eight extracted subcortical structures using feature extraction. For each MRI scan,
an exhaustive collection of 107 features was produced after the feature extraction procedure.
In order to determine the optimal feature set for the identification of PD, a two-level feature
extraction technique was used.

Bhan et al. [143] proposed a deep-learning methodology to diagnose PD among healthy
controls and subjective disease. According to a study, taking the right actions early greatly
improves the likelihood of healing, and using a machine to carry out the detection process
might save a lot of time. The MRI data of PD participants were effectively separated from
healthy controls using the CNN and the LeNet-5 architecture.

A methodology was suggested by Kumar, R. et al. [144] to use a discrete wavelet
transform-based fusion of MRI sequences and radiomics feature extraction as the approach
for a novel framework for classifying brain tumors. The performance evaluation of the
authors’ method was conducted using the Brain Tumor Segmentation 2018 Challenge
training dataset, and features were taken from three areas of interest created by combining
several tumor regions. The authors employed various ML classifiers to train the model.
They also used filter and wrapper method-based feature selection strategies to choose a
meaningful collection of features.
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In a survey conducted by Pang, Y. et al. [145], the authors assessed a hand and finger
motion capture wearable device that is basically used to record the hand and finger motion
of HC and subjective disease patients. Using the DWT, the specific three-dimensional
motion properties of each finger joint were recovered. By examining the motion variations
in the frequency domain on four types of motion from 5 subjective patients and 22 healthy
control subjects, the degree of tremor for each finger joint was measured.

According to A. Radziunas, et al. [146], the authors examined 28 PD patients for
sleep problems using the PDSS and underwent brain MRIs conducted on 14 males and
14 females, all of whom were between the ages of 58. Using the FreeSurfer program,
automated vowel-based image analysis was carried out.

D. Zhang, J. et al. [147] used multivariate pattern analysis to distinguish between
subjective patients and NC by using the characteristics of the inconsistency of tremor
using a multiple linear regression model. For this experiment, the data were collected
from the 36 participants where 16 were affected by PD and 20 matched healthy controls.
For each person, wavelet-based functional and morphological brain networks were then
built. According to graph-based network analysis, individuals with PD had a disruption in
information translation efficiency within the wavelet scale 2 of the functional brain network.

In the study by Kiryu, S. et al. [148], the authors performed the accuracies of diagnostic
performances for progressive supranuclear palsy (PSP), multiple system atrophy with
predominant parkinsonian features (MSA-P), PD, and HC subjects were 93.7%, 95.2%,
96.8%, and 98.4%, respectively. For separating each disorder from others PSP, MSA-P, PD,
and healthy individuals were 98.2%, 99%, 99.5%, and 100%, respectively.

Magesh, P. R. et al. [149] suggested a CNN-based regression approach for differentiat-
ing between subjective patients and NC. Data for 252 patients were obtained for this study
from the PPMI database. The trained network was tested using ten-fold cross-validation,
and the performance parameter was the absolute difference between predicted and actual
scores. Evaluation of prediction using inputs with and without DAT images.

Mabrouk, R. et al. [150] proposed five models of ML for distinguishing PD patients
and HC using clinical evaluation and image-based features applied later on in the SWEDD
group as a potential application of motor and non-motor data in understanding PD charac-
teristics. In binary classification, the five models had a high degree of accuracy (75.4–78.4%
for motor characteristics and 71–82.2% for non-motor data). In this manner, the authors
have shown how ML models may be used to binary classify SPECT data, proving their
applicability and utility.

The study proposed by Quan, J. et al. [151], demonstrates a deep-CNN methodology
and assesses the effectiveness of the method for categorizing DaTSCAN SPECT images.
The InceptionV3 architecture, which placed second in the 2015 ImageNet Large Scale Visual
Recognition Competition (ILSVRC), serves as the foundation model for the deep neural
network used in this study. On top of this basis, a unique, binary classifier block was
created. The effectiveness of the model was assessed using ten-fold cross-validation in
order to adjust for the short dataset size.

In accordance with the aforementioned studies, the authors Moon, S. et al. [152]
proposed a number of ML methods, including an SVM, decision tree, gradient boosting,
and neural network for the diagnosis of PD patients using an F1-score dummy model. For
this study, authors used balance and gait variables collected during the instrumented stand
and walk test from people with 524 PD patients and 43 essential tremors (ET).

In the study by Adams, M. P. et al. [153], the authors created a method based on
CNN that predicts clinical motor function evaluation scores from longitudinal DAT SPECT
images and clinical measurements that are not imaging-based.

In line with the above works, Khachnaoui, H. et al. [154] suggested an ML method-
ology used to differentiate PD patients from HC within a SWEDD group. The authors
analyzed data from 548 participants using principal component analysis (PCA) and lin-
ear discriminant analysis (LDA) methods. The authors developed density-based spatial
(DBSCAN), K-means, and hierarchical clustering using the results of the best reduction
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approach. In terms of accuracy, sensitivity, and specificity, hierarchical clustering outper-
formed DBSCAN and K-means algorithms by 64%, 78.13%, and 38.89%, respectively. The
suggested approach showed that ML models could successfully separate PD patients from
HC participants within a SWEDD group.

As stated by Oliveira, F. P. et al. [155], the authors aimed to evaluate the possibility
of a collection of features derived from FP-CIT SPECT brain images to be employed in
computer-aided “in vivo” confirmation of dopaminergic degradation and afterward to
support clinical decision-making to diagnose Parkinson’s disease.

According to Saponaro, S et al. [156], the authors addressed the case-control ML sepa-
ration capacity in the analysis of a multi-center MRI dataset, the authors showed how the
use of a harmonization strategy on brain structural variables unlocks this capability. On
the ABIDE data collection, which included people across a wide age range, this impact is
proven. Following data harmonization, the overall capacity of a random forest classifier
to distinguish between autism spectrum disorders (ASD) and normal development (ND)
increases from very poor performance (AUC = 0.58 ± 0.04) to a still low but reassuringly sig-
nificant AUC = 0.67 ± 0.03. AUC = 0.62 ± 0.02, AUC = 0.65 ± 0.03, and AUC = 0.69 ± 0.06,
respectively, were obtained when the RF classifier’s performances were assessed in the
age-specific subgroups of children, adolescents, and adults.

According to Tufail, A. B. et al. [157], using PET and SPECT neuroimaging modalities
to separate Alzheimer’s disease (AD), PD, and NC classes, the authors employed a 3D CNN
to extract features for multiclass classification of both AD and PD. Along with random
weak Gaussian blurring, random zooming in and out, and discrete cosine transform, both
frequency and spatial domain learning techniques have been used.

In the study by Antikainen, E. et al. [158], the authors investigated 23 SPECT image
characteristics on 646 individuals for the early detection of PD. The authors demonstrated
that matching accuracy may be reached with only eight features, including unique features,
and achieve 94% balanced classification accuracy in independent test data utilizing the
whole feature space. All of the qualities that are being provided can be produced by
commonly accessible clinical software, making it simple to extract and use them.

In the work by Salvatore, C. et al. [159], the authors proposed Morphological T1-
weighted MRIs of PD patients (28), PSP patients (28), and HC subjects (28) were used by
a supervised machine learning algorithm based on the combination of PCA as feature
extraction technique and on SVM as classification algorithm. The algorithm was able to
obtain voxel-based morphological biomarkers of PD and PSP.

The authors Martínez-Ibañez, M., et al. [160] discussed computing isosurfaces as a
method of removing pertinent information from 3D brain images. These isosurfaces are then
used to implement a computer-aided diagnosis (CAD) system to help with the diagnosis of
PD. This system uses the most well-known CNN architecture, LeNet, to classify DaTSCAN
images with an average accuracy of 95.1% and AUC = 97%, obtaining comparable (slightly
better) values to those obtained for the majority of the recently proposed systems. Therefore,
it may be inferred that computing isosurfaces considerably decrease the complexity of the
inputs, producing good classification accuracy with little processing load.

According to the above-mentioned work, Kurmi, A. et al. [161] suggested utilizing
DaTSCAN images to predict Parkinson’s using a collection of DL models. The classification
of PD was initially conducted using four DL models: VGG16, ResNet50, Inception-V3,
and Xception. To improve the classification model’s overall performance, they used a
Fuzzy Fusion logic-based ensemble technique in the next step. The suggested model
outperforms the individual model in terms of attained recognition accuracy, precision,
sensitivity, specificity, and F1-score, which are each 98.45%, 98.84%, 98.84%, 97.67%, and
98.84%, respectively. Additionally, they have created a software application with a graphical
user interface (GUI) for the general public that accurately and promptly identifies all classes
in MRI.

The evaluations mentioned above demonstrate that all the research has been completed
and is only limited to a few datasets. The aforementioned earlier efforts motivated us to take
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a different approach. In this work, we evaluated a variety of feature selection techniques
and then compared the outcomes with a number of ML classifiers. Tremor, DaTSCAN,
SPECT, and MRI-T are some of the key symptoms of PD that may be diagnosed with ML
methods, as shown in Table 4.

Table 4. Comparative research on Parkinson’s disease diagnosis using machine learning approaches
(neuroimaging-based).

Reference Modality Algorithms
Used Objective Tools Source of Data Subjects Performance

Hosseini and
Makki, 2013

[162]
Essential

Tremor (ET)

Auto
Associative

Neural
Network

Classification of
ET, PD from HC Not Mentioned Collected from

participants
20 ET and 20

PD and ACC.—87.5%

Challa et al.,
2016 [163]

DaTSCAN
SPECT

Boosted
Logistic

Regression
Classification of

PD from HC Weka PPMI Database 402 PD ACC.—97.159%

Choi et al.
2017 [164] SPECT

Deep
Convolutional

Neural
Network

Classification of
PD from HC MATLAB PPMI Database

431 PD,
193 HC,

77 SWEDD

ACC.—98.8%
and

sensitivity—
98.6%

Kim, Wit,
and Thurston

2018 [165]
SPECT Inception-V3

(Pre-trained)
Classification of

PD from HC Not mentioned Not mentioned 54 PD and 54
HC

Sensitivity—
96.3%

Esmaeilzadeh
et al., 2018 [166] MRI-T

Convolutional
Neural

Network
Classification of

PD from HC Not mentioned PPMI Database 452 PD and
204 HC ACC.—100%

Kim, Lee,
et al., 2018 [167] Tremor

Convolutional
Neural

Network
Classification of

PD from HC Not mentioned Collected from
the participants

92 PD and 95
HC ACC.—85%

Martinez-
Murcia et al.,

2017 [168]
SPECT

Convolutional
Neural

Network
Classification of

PD from HC Not mentioned PPMI Database
158 PD and
32 SWEDD
and 111 HC

ACC.-PD vs
HC:

95.5 ± 0.44 and
sensitivity-PD

vs HC:
96.2 ± 0.051

Qin et al.,
2019 [169] Tremor

Convolutional
Neural

Network
Classification of

PD from HC Not mentioned Collected from
the participants 147 PD ACC.—90.55%

Kollia et al.,
2019 [170]

MRI and
DaTSCAN

Convolutional
Neural

Network and
Recurrent

Neural
Network

Classification of
PD from HC Not mentioned Not mentioned 55 PD and

23HC ACC.—98%

Szumilas
et al., 2020 [171] Tremor

Recurrent
Neural

Network

Develop a
prediction
model to

evaluate tremor
severity in PD

patients

Not mentioned Collected from
the participants 64 PD Not mentioned

Oktay and
Kocer 2020

[172]
Tremor

Convolutional
Long

Short-Term
Memory

Classification of
PD from HC

C++ with Leap
motion API

Medical Faculty
Teaching
Hospital

Neurology
Istanbul

Medeniyet
University

23 Parkinson’s
tremors and 17

ET
ACC.—90%

Shahtalebi, S
et al., 2020 [173] Tremor

3D
Convolutional

Neural
Network

Develop a deep
recurrent model
to predict and
eliminate the

PHT
component of
hand motion

Not mentioned Collected from
the participants 81 PD Not mentioned

Veeraragavan
et al., 2020 [174] MRI

Artificial
Neural

Network
Classification of

PD from HC Not mentioned Collected from
the participants

93 PD and 73
HC

ACC.—97.41%
and

sensitivity—
97.70%
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Table 4. Cont.

Reference Modality Algorithms
Used Objective Tools Source of Data Subjects Performance

Chien et al.,
2021 [175] DAT-SPECT

Artificial
Neural

Network
Classification of

PD from HC MATLAB 2018B Collected from
the participants 234 PD

ACC.—99.22%
and

sensitivity—
81.8%

Yasaka et al.,
2021 [176] MRI

2D
Convolutional

Neural
Network

Classification of
PD from HC MATLAB

Collected from
the participants
from Juntendo

University
Hospital

115 PD and 115
HC Not Mentioned

Yang et al.,
2021 [177] MRI + CI

Ensemble
(SVM, RF,

KNN, ANN,
LR)

Classification of
PD from HC Not mentioned Not mentioned 65 PD and 36

HC

ACC.—96.88%
and

sensitivity—
95.0%

Vyas et al.,
2021 [178] MRI

2D and 3D
Convolutional

Neural
Network

Classification of
PD from HC Not mentioned PPMI Database 236 PD and 82

HC

ACC. from 2D
and 3D 88.9%
and 72.22%,
respectively,

and
sensitivity—

92% and 100%,
respectively

Yadav 2021
[179] fMRI

Bayesian
3D-

Convolutional
Neural

Network

Classification of
PD from HC Not mentioned ADNI Dataset 15 PD and 15

HC ACC.—97.92%

6. Discussion: Challenges and Recommendations

Although there is no known cure for PD, with an accurate and timely diagnosis, we
can reduce and control its progression. Compared with traditional PD detection methods,
AI is a strong choice for detecting early-stage PD. The use of AI can help with global
epidemiology initiatives and patient symptom monitoring. Despite how stimulating these
applications are, it is important to consider both the value and potential limitations of
these cutting-edge analytical techniques. The most promising applications of AI are yet
futuristic [180–182].

In this section, we summarized the current limitations and challenges and made
prospective suggestions (recommendations) for the future that might lead to efficient AI
and ML methods to address the issues.

6.1. Current Limitations and Challenges

Currently, DL-based CAD systems are usually applied as diagnostic aids or for educa-
tional purposes [183]. With the help of useful research, the software may now be developed
in the real world to diagnose Parkinson’s disease utilizing MRI modalities. However, there
are still a few challenges faced by researchers which are listed as follows:

a. Issues with Multimodality datasets for PD detection

Another difficulty in diagnosing PD for researchers is the unavailability of multi-
modality neuroimaging datasets. The diagnosis of brain disorders including PD, AD,
and schizophrenia (SZ) is often greatly aided by multimodality neuroimaging data [184].
Various clinical investigations have described the reliable detection of PD using a com-
bination of neuroimaging modalities, such as EEG-fMRI [185–188], MRI-PET [189–192],
fMRI-MEG [193,194], and fMRI-sMRI [195–197]. Diagnosis of PD using multimodality neu-
roimaging data is complicated and time-consuming for doctors, despite all the advantages.
The lack of multimodality neuroimaging datasets for PD detection has been a significant
problem for researchers. The accessibility of multimodality neuroimaging datasets might
result in significant research on PD diagnosis utilizing AI methods.

b. Issues with Machine Learning Techniques

Another challenge to diagnosing PD is related to the use of ML techniques, including
that the most essential aspect of CADS is extracting the distinctive features that might
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result in useful PD biomarkers. An extensive understanding of the AI area is needed
to implement CADS based on ML. It is challenging to choose the algorithms for each
component of an ML-based CADS in order to make a highly precise PD diagnosis. ML-
based CADS, however, is not a function that should be used for large amounts of data
input. The fact that MRI uses several imaging procedures and does not have a function
that is appropriate for processing these data simultaneously presents another challenge.
Developing practical software for detecting Parkinson’s disease is quite challenging due to
these challenges.

c. Issues with Clinical Validation

The effectiveness of deep learning models for PD detection is mostly evaluated using
standard ML parameters including accuracy, sensitivity, specificity, and/or area under
the curve of a receiver operating characteristic curve. These measures may not accurately
represent clinical effectiveness and anticipated positive adjustments to patient treatment.
Additionally, before using AI-powered diagnostic tools in the clinic, physicians must receive
training on how to use them because some of these metrics are difficult to interpret [198].
To support the validity of the suggested DL framework for PD diagnosis, recent stud-
ies [199–202] addressing this problem performed a connection of model predictions with
neuropathological results as well as a head-to-head evaluation of the system performance
with a team of neurologists. Due to data inconsistencies, it is important to do clinical valida-
tion to make sure that the imaging-specific features are appropriately compatible with the
intended clinical adoption. A CAD system must be modified for a new community through
clinical adoption [160], which requires certain members of the deployment population’s
intended target demographic.

6.2. Recommendations and Future Perspectives

We examined both the benefits and disadvantages of the selected articles. After taking
into account the recommendations for critical evaluations [203], we began searching for
relevant directions for further research. We divided our findings into groups that address
the same or related problems and defined them as follows:

• Make the most of all available data sources. It might be difficult to gather all available
modalities for each subject. For instance, a PET scan, a costly neuroimaging modality,
is not performed on some participants, although practically all of the subjects’ clinical
records list an MRI. This is true for publicly accessible data like ADNI. To fill up
the gaps in the data, we advise employing certain methods. For instance, utilizing
MRI data to complete missing PET data [204], creating CT scans from MRIs [205–207],
cycle-consistent generative adversarial networks (GAN) [208], and feature-consistent
GAN [207]. As an alternative, deep designs that include handling procedures for
missing data can be applied [209–213]. Additionally, data augmentation might be
useful in this context to increase the dataset and address unbalanced classes. Through
image modification operators including rotation [214], scaling and shifting [215],
changing intensity, contrast, and saturation [216], as well as noise injection and random
translation [217], data augmentation may be accomplished.

• The widespread usage of the CNN algorithm [218,219] on MRI image data is a signifi-
cant discovery. Comparing these models to other algorithms, they frequently produce
favorable outcomes. Researchers might wish to conduct further research and use more
CNN-based hybrid algorithms [220–222]. Additionally, we found that classifying
images has not frequently utilized the learning algorithm. This is an opportunity for
future researchers to utilize attention to raise the precision of deep learning models.

• At present, wearable sensors are only useful for using gait parameters to diagnose
PD. The wearable device that can detect PD must have the other modules included in
it. In addition to one symptom, researchers must concentrate on creating wearable
sensor systems that can diagnose additional symptoms also. For instance, a wrist-worn
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sensor might be created that can track data constantly over a long period of time and
recognize various PD symptoms.

• Currently, various ML models have been developed by researchers that can diag-
nose PD based on a patient’s specific symptoms. The researchers should focus on
establishing an ML model for diagnosing PD that takes all the symptoms as input.
A lightweight portable device can be used to diagnose the various symptoms of
PD by measuring several parameters such as accuracy, precision, sensitivity, recall,
etc. This device should be easily wearable and washable, and it should be able to
identify the different stages of the disease, along with analyzing the changes due to
medication treatment.

7. Conclusions

AI and ML are revolutionizing healthcare since technologies assist in the diagnosis
of any disease and have made it easier in recent years. This technique has the potential to
revolutionize healthcare with more accuracy in diagnosing a disease. A computerized sys-
tem aids doctors in making more precise diagnoses, forecasting patients’ future health, and
making better treatment recommendations. In this work, we conducted a comprehensive
review of 217 research papers that addressed the application of various machine learning
methods and deep neural network architectures to diagnose PD. We also thoroughly exam-
ined and analyzed the researcher’s architectural designs. This review is significant for the
advancements in neural networks and associated learning systems, which offer insightful
information and recommendations for future growth.

Author Contributions: Conceptualization, A.R. and A.D.; methodology, R.S.; software, M.K.P.; vali-
dation, A.R., A.D. and R.S.; formal analysis, A.R.; investigation, A.D.; resources, A.R.; data curation,
A.D.; writing—original draft preparation, A.R.; writing—review and editing, A.R.; visualization,
A.D.; supervision, R.S.; project administration, N.P. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:
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AI Artificial Intelligence
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DaTSCAN Dopamine Transporter Scan
DBF Discrimination-Based Function
DBSCAN Density-Based Spatial
DL Deep Learning
DWT Discrete Wavelet Transform
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GAN Generative Adversarial Networks
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GDS Geriatric Depression Scale
HC Healthy Controls
IEEE Institute of Electrical and Electronics Engineers
KNN K-Nearest Neighbor
LDA Linear Discriminant Analysis
LIME Local Interpretable Model-Agnostic Explainer
LSTM Long Short-Term Memory
LSVRC Large Scale Visual Recognition Competition
MAO-B Monoamine oxidase B
MDPI Multidisciplinary Digital Publishing Institute
MFCC Mel-Frequency Cepstral Coefficients
ML Machine Learning
MLP Multilayer Perceptron
MoCA Montreal Cognitive Assessment
MMSE Mini-Mental Score examination
MSA-P Multiple System Atrophy with Predominant Parkinsonian Features
MVDA Multi-Variate Vocal Data Analysis
NB Naive Bayes
NC Normal Control
ND Normal Development
NLP Natural Language Processing
OCT Optical Coherence Tomography
PCA Principal Component Analysis
PD Parkinson’s Disease
PDSS Panic Disorder Severity Scale
PET Positron Emission Tomography
PHT Pathological Hand Tremor
PIGD Postural Instability Gait Disorder
PLOS Public Library of Science
PPMI Parkinson’s Progression Markers Initiative
PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses
PSP Progressive Supranuclear Palsy
RBD Random Eye Movement Sleep Behavior Disorder
RL Reinforcement Learning
SCOPA-AUT Scales for Outcomes in Parkinson’s Disease-Autonomic
SDC Shifted Delta Cepstral
SFFCC Single Frequency Filtering Cepstral Coefficients
SL Supervised Learning
sMRI Structural Magnetic Resonance Imaging
SPECT Single-Photon Emission Computerized Tomography
STAI State-Trait Anxiety Inventory for Adults
SVM Support Vector Machine
SZ Schizophrenia
UL Unsupervised Learning
UPDRS Unified Parkinson’s Disease Rating Scale
WHO World Health Organization
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191. Tăuţan, A.M.; Ionescu, B.; Santarnecchi, E. Artificial intelligence in neurodegenerative diseases: A review of available tools with a
focus on machine learning techniques. Artif. Intell. Med. 2021, 117, 102081. [CrossRef] [PubMed]

192. Yao, A.D.; Cheng, D.L.; Pan, I.; Kitamura, F. Deep learning in neuroradiology: A systematic review of current algorithms and
approaches for the new wave of imaging technology. Radiol. Artif. Intell. 2020, 2, e190026. [CrossRef] [PubMed]

193. Hall, E.L.; Robson, S.E.; Morris, P.G.; Brookes, M.J. The relationship between MEG and fMRI. Neuroimage 2014, 102, 80–91.
[CrossRef]

194. Moridian, P.; Ghassemi, N.; Jafari, M.; Salloum-Asfar, S.; Sadeghi, D.; Khodatars, M.; Acharya, U.R. Automatic Autism Spectrum
Disorder Detection Using Artificial Intelligence Methods with MRI Neuroimaging: A Review. arXiv 2022, arXiv:2206.11233.
[CrossRef]

195. Zou, L.; Zheng, J.; Miao, C.; Mckeown, M.J.; Wang, Z.J. 3D CNN based automatic diagnosis of attention deficit hyperactivity
disorder using functional and structural MRI. IEEE Access 2017, 5, 23626–23636. [CrossRef]

196. Amini, M.; Pedram, M.M.; Moradi, A.; Jamshidi, M.; Ouchani, M. Single and combined neuroimaging techniques for Alzheimer’s
disease detection. Comput. Intell. Neurosci. 2021, 2021, 9523039. [CrossRef] [PubMed]

197. Shoeibi, A.; Ghassemi, N.; Khodatars, M.; Moridian, P.; Khosravi, A.; Zare, A.; Acharya, U.R. Automatic Diagnosis of Schizophre-
nia and Attention Deficit Hyperactivity Disorder in rs-fMRI Modality using Convolutional Autoencoder Model and Interval
Type-2 Fuzzy Regression. arXiv 2022, arXiv:2205.15858.

198. Kelly, C.J.; Karthikesalingam, A.; Suleyman, M.; Corrado, G.; King, D. Key challenges for delivering clinical impact with artificial
intelligence. BMC Med. 2019, 17, 195. [CrossRef] [PubMed]

199. Sivaranjini, S.; Sujatha, C.M. Deep learning based diagnosis of Parkinson’s disease using convolutional neural network. Multimed.
Tools Appl. 2020, 79, 15467–15479. [CrossRef]

200. Yagis, E.; De Herrera, A.G.S.; Citi, L. Generalization performance of deep learning models in neurodegenerative disease
classification. In Proceedings of the 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), San Diego,
CA, USA, 18–21 November 2019; pp. 1692–1698.

201. Lee, S.; Hussein, R.; McKeown, M.J. A deep convolutional-recurrent neural network architecture for Parkinson’s disease EEG
classification. In Proceedings of the 2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Ottawa, ON,
Canada, 11–14 November 2019; pp. 1–4.

202. Noor MB, T.; Zenia, N.Z.; Kaiser, M.S.; Mahmud, M.; Mamun, S.A. Detecting neurodegenerative disease from MRI: A brief review
on a deep learning perspective. In International Conference on Brain Informatics; Springer: Cham, Switzerland, 2019; pp. 115–125.

203. Paré, G.; Trudel, M.C.; Jaana, M.; Kitsiou, S. Synthesizing information systems knowledge: A typology of literature reviews. Inf.
Manag. 2015, 52, 183–199. [CrossRef]

204. Li, R.; Zhang, W.; Suk, H.I.; Wang, L.; Li, J.; Shen, D.; Ji, S. Deep learning based imaging data completion for improved brain
disease diagnosis. In International Conference on Medical Image Computing and Computer-Assisted Intervention; Springer: Cham,
Switzerland, 2014; pp. 305–312.

205. Nie, D.; Trullo, R.; Lian, J.; Petitjean, C.; Ruan, S.; Wang, Q.; Shen, D. Medical image synthesis with context-aware generative
adversarial networks. In International Conference on Medical Image Computing and Computer-Assisted Intervention; Springer: Cham,
Switzerland, 2017; pp. 417–425.

206. Nie, D.; Trullo, R.; Lian, J.; Wang, L.; Petitjean, C.; Ruan, S.; Shen, D. Medical image synthesis with deep convolutional adversarial
networks. IEEE Trans. Biomed. Eng. 2018, 65, 2720–2730. [CrossRef]

http://doi.org/10.1001/archneur.62.4.601
http://doi.org/10.1016/j.patcog.2020.107332
http://doi.org/10.1177/21925682211000321
http://doi.org/10.1016/j.nicl.2017.03.002
http://www.ncbi.nlm.nih.gov/pubmed/28367403
http://doi.org/10.1016/j.compbiomed.2022.105554
http://www.ncbi.nlm.nih.gov/pubmed/35569333
http://doi.org/10.1016/j.clinph.2016.02.017
http://www.ncbi.nlm.nih.gov/pubmed/27072094
http://doi.org/10.1016/j.inffus.2020.07.006
http://www.ncbi.nlm.nih.gov/pubmed/32834795
http://doi.org/10.3389/fnins.2019.00874
http://www.ncbi.nlm.nih.gov/pubmed/31507358
http://doi.org/10.1016/j.artmed.2021.102081
http://www.ncbi.nlm.nih.gov/pubmed/34127244
http://doi.org/10.1148/ryai.2020190026
http://www.ncbi.nlm.nih.gov/pubmed/33937816
http://doi.org/10.1016/j.neuroimage.2013.11.005
http://doi.org/10.3389/fnmol.2022.999605
http://doi.org/10.1109/ACCESS.2017.2762703
http://doi.org/10.1155/2021/9523039
http://www.ncbi.nlm.nih.gov/pubmed/34335726
http://doi.org/10.1186/s12916-019-1426-2
http://www.ncbi.nlm.nih.gov/pubmed/31665002
http://doi.org/10.1007/s11042-019-7469-8
http://doi.org/10.1016/j.im.2014.08.008
http://doi.org/10.1109/TBME.2018.2814538


Diagnostics 2022, 12, 2708 32 of 32

207. Cai, L.; Wang, Z.; Gao, H.; Shen, D.; Ji, S. Deep adversarial learning for multi-modality missing data completion. In Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018;
pp. 1158–1166.

208. Pan, Y.; Liu, M.; Lian, C.; Zhou, T.; Xia, Y.; Shen, D. Synthesizing missing PET from MRI with cycle-consistent generative
adversarial networks for Alzheimer’s disease diagnosis. In International Conference on Medical Image Computing and Computer-
Assisted Intervention; Springer: Cham, Switzerland, 2018; pp. 455–463.

209. Zhi, Y.; Wang, M.; Yuan, Y.S.; Shen, Y.T.; Ma, K.W.; Gan, C.T.; Si, Q.Q.; Wang, L.N.; Cao, S.W.; Zhang, K.Z. The increased gray
matter volumes of precentralgyri in Parkinson’s disease patients with diphasic dyskinesia. Aging (Albany NY) 2019, 11, 9661.
[CrossRef]

210. Li, P.; Xu, P.; Liu, J. Biomarkers and Pathogenesis of Alpha-Synuclein in Parkinson’s Disease. Aging Neurosci. 2021, 13, 776873.
[CrossRef]

211. Yuan, Y.S.; Ji, M.; Gan, C.T.; Sun, H.M.; Wang, L.N.; Zhang, K.Z. Impaired Interhemispheric Synchrony in Parkinson’s Disease
with Fatigue. J. Personal. Med. 2022, 12, 884. [CrossRef]

212. Daveau, R.S.; Law, I.; Henriksen, O.M.; Hasselbalch, S.G.; Andersen, U.B.; Anderberg, L.; Højgaard, L.; Andersen, F.L.; Ladefoged,
C.N. Deep learning based low-activity PET reconstruction of [11C] PiB and [18F] FE-PE2I in neurodegenerative disorders.
Neuroimage 2022, 259, 119412. [CrossRef]

213. Noor MB, T.; Zenia, N.Z.; Kaiser, M.S.; Mamun, S.A.; Mahmud, M. Application of deep learning in detecting neurological disorders
from magnetic resonance images: A survey on the detection of Alzheimer’s disease, Parkinson’s disease and schizophrenia. Brain
inform. 2020, 7, 11. [CrossRef] [PubMed]

214. Kang, S.K.; Seo, S.; Shin, S.A.; Byun, M.S.; Lee, D.Y.; Kim, Y.K.; Lee, J.S. Adaptive template generation for amyloid PET using a
deep learning approach. Hum. Brain Mapp. 2018, 39, 3769–3778. [CrossRef] [PubMed]

215. Liu, M.; Cheng, D.; Wang, K.; Wang, Y. Multi-modality cascaded convolutional neural networks for Alzheimer’s disease diagnosis.
Neuroinformatics 2018, 16, 295–308. [CrossRef] [PubMed]

216. Oh, K.; Chung, Y.C.; Kim, K.W.; Kim, W.S.; Oh, I.S. Classification and visualization of Alzheimer’s disease using volumetric
convolutional neural network and transfer learning. Sci. Rep. 2019, 9, 18150. [CrossRef]

217. Wang, S.H.; Phillips, P.; Sui, Y.; Liu, B.; Yang, M.; Cheng, H. Classification of Alzheimer’s disease based on eight-layer convolu-
tional neural network with leaky rectified linear unit and max pooling. J. Med. Syst. 2018, 42, 85. [CrossRef]

218. Shang, R.; Wang, J.; Jiao, L.; Yang, X.; Li, Y. Spatial feature-based convolutional neural network for PolSAR image classification.
Appl. Soft Comput. 2022, 123, 108922. [CrossRef]

219. Ye, A.; Zhou, X.; Miao, F. Innovative Hyperspectral Image Classification Approach Using Optimized CNN and ELM. Electronics
2022, 11, 775. [CrossRef]

220. Mohapatra, M.; Parida, A.K.; Mallick, P.K.; Zymbler, M.; Kumar, S. Botanical Leaf Disease Detection and Classification Using
Convolutional Neural Network: A Hybrid Metaheuristic Enabled Approach. Computers 2022, 11, 82. [CrossRef]

221. Hei, Y.; Liu, C.; Li, W.; Ma, L.; Lan, M. CNN Based Hybrid Precoding for MmWave MIMO Systems with Adaptive Switching
Module and Phase Modulation Array. IEEE Trans. Wirel. Commun. 2022. [CrossRef]

222. Aslan, M.F.; Unlersen, M.F.; Sabanci, K.; Durdu, A. CNN-based transfer learning–BiLSTM network: A novel approach for
COVID-19 infection detection. Appl. Soft Comput. 2021, 98, 106912. [CrossRef]

http://doi.org/10.18632/aging.102412
http://doi.org/10.3389/fnagi.2021.776873
http://doi.org/10.3390/jpm12060884
http://doi.org/10.1016/j.neuroimage.2022.119412
http://doi.org/10.1186/s40708-020-00112-2
http://www.ncbi.nlm.nih.gov/pubmed/33034769
http://doi.org/10.1002/hbm.24210
http://www.ncbi.nlm.nih.gov/pubmed/29752765
http://doi.org/10.1007/s12021-018-9370-4
http://www.ncbi.nlm.nih.gov/pubmed/29572601
http://doi.org/10.1038/s41598-019-54548-6
http://doi.org/10.1007/s10916-018-0932-7
http://doi.org/10.1016/j.asoc.2022.108922
http://doi.org/10.3390/electronics11050775
http://doi.org/10.3390/computers11050082
http://doi.org/10.1109/TWC.2022.3184326
http://doi.org/10.1016/j.asoc.2020.106912

	Introduction 
	Artificial Intelligence and Machine Learning-Based Detection of Parkinson’s Disease 
	Research Problem and Motivation of Current Systematic Review 
	Contribution 
	Structure of Proposed Work 

	Methods 
	Literature Search Strategy 
	Research Field: Journals 

	Overview of Artificial Intelligence, Machine Learning, and Deep Learning 
	Parkinson’s Disease: An Overview 
	State of the Art 
	Literature Review Based on Speech, Gait, and Handwriting Patterns to Diagnose PD 
	Literature Review on Neuroimagingto Diagnose PD 

	Discussion: Challenges and Recommendations 
	Current Limitations and Challenges 
	Recommendations and Future Perspectives 

	Conclusions 
	References

