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Abstract: Background: Shear wave elastography ultrasound (SWE) is an emerging non-invasive
candidate for assessing kidney stiffness. However, its prognostic value regarding kidney injury is
unclear. Methods: A prospective cohort was created from kidney biopsy patients in our hospital from
May 2019 to June 2020. The primary outcome was the initiation of renal replacement therapy or death,
while the secondary outcome was eGFR < 60 mL/min/1.73 m2. Ultrasound, biochemical, and biopsy
examinations were performed on the same day. Radiomics signatures were extracted from the SWE
images. Results: In total, 187 patients were included and followed up for 24.57 ± 5.52 months. The
median SWE value of the left kidney cortex (L_C_median) is an independent risk factor for kidney
prognosis for stage 3 or over (HR 0.890 (0.796–0.994), p < 0.05). The inclusion of 9 out of 2511 extracted
radiomics signatures improved the prognostic performance of the Cox regression models containing
the SWE and the traditional index (chi-square test, p < 0.001). The traditional Cox regression model
had a c-index of 0.9051 (0.8460–0.9196), which was no worse than the machine learning models,
Support Vector Machine (SVM), SurvivalTree, Random survival forest (RSF), Coxboost, and Deepsurv.
Conclusions: SWE can predict kidney injury progression with an improved performance by radiomics
and Cox regression modeling.

Keywords: tissue elasticity imaging; kidney prognosis; regression analysis; machine learning

1. Introduction

Chronic kidney disease (CKD) has become a global health burden, with an incidence
of around 10% [1]. Progression to CKD at over stage 3 was estimated to cost USD 5367 to
USD 53,186 per patient per year, a 1.3 to 2.4 fold increase compared with CKD stages 1–2,
whereas the costs associated with end-stage renal disease were the highest, ranging from
USD 20,110 to USD 100,593 [2]. However, the rate of CKD progression differs individually.
Acute kidney injury is one of the major causes of and accelerating factors in CKD [3]. Thus,
the determination of early predictors of the progression of kidney injury is important.
However, current monitoring methods for the progression of kidney disease are not ideal.
These include biopsy (which is too invasive to repeat), eGFR (which is only elevated after
most kidney cells lose regenerative capacity and is insensitive to CKD progression), and
proteinuria (which is largely affected by etiology and insensitive and non-specific to CKD
progression) [3–5]. Studies on imaging techniques and urinary biomarkers are emerging as
part of the search for promising non-invasive monitoring methods.

Ultrasound remains the preferred non-invasive radiographic method for diagnosing
CKD due to its economic and portable properties [6]. Two-dimensional shear wave elastog-
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raphy (SWE) is an emerging technique of elastography ultrasound for evaluating kidney
stiffness [7,8]. Based on the physical theory that shear wave propagation velocity is higher
in stiffer tissues, the stiffness of kidneys can be estimated by the linear formula of Young’s
modulus using shear wave velocity obtained through SWE [9,10]. Due to the anisotropy
of the kidneys, the SWE parameters usually include Young’s modulus value in the cortex
and Young’s modulus in the medulla [11]. However, a contradictory relationship between
SWE and eGFR or histological fibrosis was found among different cohorts with different
confounding factors [12]. Furthermore, few studies have reported the predictive value of
SWE for the prognosis of CKD.

Recent advances in the radiomics analysis of ultrasound images of fibrosis [13,14]
and artificial intelligence in clinical diagnostic and prognostic models [15] may provide a
new approach to clarifying the relationship between SWE and CKD, as well as alternative
CKD progression predictors to kidney biopsy. PyRadiomics is an open-source platform
based on Python that has been widely used in radiology, including images of CT and MRI,
and shows no difference from ultrasomics in ultrasonography [16,17]. PyRadiomics can
extract high-throughput quantitative features from the region of interest (ROI) in medical
images, including ultrasound images [16–18]. The extracted signatures by PyRadiomics
include classes of first-order statistics (19 features), shape descriptors (including 2D and 3D,
not often used in ultrasound), and texture classes of gray level cooccurrence matrix (glcm,
24 features), gray level run length matrix (glrlm, 16 features), gray level size zone matrix
(glszm, 16 features), gray level dependence Matrix (gldm, 14 features), and neighboring
gray tone difference Matrix (ngtdm, 5 features), based on original images or preprocessed
images using built-in filters. Support vector machine (SVM), SurvivalTree, and Random
Survival Forest (RSF) are machine learning models developed for clinical survival analysis
based on binary classification [19–21]. Coxboost and DeepSurv are machine learning or
deep learning models developed based on the traditional Cox regression method [22,23].

Hence, we observed the predictive value of SWE for CKD progression in our kidney
biopsy cohort. We used the clinical index and pathological changes as references. We also
applied a PyRadiomics analysis of SWE ultrasound images, traditional Cox regression
models, and machine learning models in our study. We hypothesized that SWE would
predict CKD progression with or without the help of radiomics and machine learning.

2. Materials and Methods
2.1. Study Design and Population

The study featured a prospective cohort of kidney biopsy patients in our hospital from
May 2019 to June 2020. The inclusion criteria were patients aged 18–70 with unexplained
abnormal kidney function, proteinuria over 1 g/day, rapidly progressive glomerulonephri-
tis, or persistent hematuria with proteinuria. The exclusion criteria were patients who could
not cooperate with breath-holding for SWE, contraindication for kidney biopsy (solitary
or horseshoe kidney, bilateral kidney atrophy, bleeding tendency, severe hypertension,
or acute pyelonephritis), pregnancy, comorbidities of cysts, urological stones or tumors,
unilateral kidney atrophy, or pathological diagnosis of acute kidney injury. B-mode, SWE,
and collection of serum and urinary samples from patients were performed on the day of
the kidney biopsy. The included patients were then re-examined every three months for
the first year and every six months thereafter. The primary outcome was the initiation of
renal replacement therapy or death. The secondary outcome was CKD stage over 3. CKD
stage was evaluated based on eGFR (MDRD) as CKD 1, ≥90; CKD 2, 60–89; CKD 3, 30–59;
CKD 4, 15–29; and CKD 5, <15 at the time of inclusion and follow-up [24]. CKD progres-
sion was defined, according to the 2012 KDIGO Guideline [25], as a sustained decrease
(measured at least twice, with >3 months in between) of eGFR over 25% from baseline
accompanied by a drop in the CKD stage. The follow-up time was until 31 March 2022.
Details of the study flow are in Figure S1.
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2.2. Clinical, Pathological, and Ultrasound Index

Serum creatinine (Scr) and urinary creatinine (UCr) were measured by the sarcosine
oxidase method. Urinary albumin was measured by the immunoturbidimetric method.
The urinary albumin–creatinine ratio (ACR) was subsequently calculated. The eGFR was
calculated using the MDRD equation [26].

B-mode and SWE ultrasound examinations were conducted by one ultrasound ra-
diologist who had received specialized training in kidney ultrasound and SWE for more
than five years. The radiologist was blind to patients’ clinical information. B-mode was
performed before SWE as a reference for kidney imaging [27]. SWE was then carried
out with patients in a right lateral decubitus position by Supersonic Imagine Aixplorer
(convex transducer SC6-1, frequency 1–6 mhz). All patients were required to perform deep
inspiration and breath-holding during the examination to ensure stable image generation
and acquisition. The penetration depth of the radiofrequency data was 12 cm without the
effect of BMI (Figure S2). In total, four images were acquired at the inferior pole of the
left kidney of each patient. Regions of interest (ROI) were manually drawn at the kidney
cortex, medulla, and sinus with fixed diameters of 6, 6, and 4 mm, respectively. Mean and
Median SWE values of the kidney cortex, medulla, and sinus were calculated.

A kidney biopsy was performed under the guidance of B-mode ultrasound at the
inferior pole of the left kidney. Biopsy specimens were formalin-fixed before routine
hematoxylin and eosin, periodic acid–Schiff, periodic Schiff–methenamine silver, and
immunofluorescence staining, or fixed with 4% PFA and 2.5% glutaraldehyde before obser-
vation under electron microscopy. Pathological changes were divided into 13 categories,
scored, and diagnosed by two renal pathologists with over 20 years of experience. Grades of
chronic changes were then determined according to total renal chronicity score as minimal,
0–1; mild, 2–4; moderate, 5–7; and severe, ≥8, by referring [28,29].

2.3. Radiomics Signature Extraction from Ultrasound

Considering the heterogeneity of kidney histological changes during CKD and the
purpose of adding values to SWE, ROIs for radiomics analysis were manually drawn
using 3DSlicer based on the ROIs of the SWE ultrasound images (Figure 1). Radiomics
signatures of each ROI were then extracted by PyRadiomics (v3.0.1) [16,17]. Eight hundred
and thirty-seven radiomics signatures were acquired from each ROI, including first-order
statistics (18 signatures), gray level cooccurrence matrix (glcm, 24 signatures), gray level
dependence matrix (gldm, 14 signatures), gray level run length matrix (glrlm, 16 signatures),
gray level size zone matrix (glszm, 16 signatures), and neighboring gray-tone difference
matrix (ngtdm, 5 signatures) calculated in original or wavelet-transformed (HHH, HHL,
HLH, HLL, LHH, LHL, LLH, LLL) images. Median values of the radiomics signatures at
the kidney cortex, medulla, and sinus from the 4 SWE images were used for final analysis.

2.4. Cox Regression, Machine Learning, and Deep Learning Modeling

Lasso regression and Cox regression were conducted using glmnt (v4.1–3) and survival
(v3.2–10) in R (v4.0.5) and SPSS (v26). Features with likelihood test p < 0.1 in univariate
Cox regression entered further multivariate Cox regression using the stepwise-backward
method. The hypothesis of proportional hazard was verified by the chi-square test before
Cox regression modeling. The likelihood test was also used in the comparison of Cox
regression models. Nomogram was built based on the results of multivariate Cox regression.
Machine learning models SVM, RSF, SurvivalTree, Coxboost, and deep learning model
DeepSurv were built using the same features as the Cox regression model by the scikit-
survival package (v0.17.1) of Python (v3.7.0). The dataset was split randomly at an 8:2
ratio, 80% for training and 20% for testing to prevent overfitting of the machine learning or
deep learning models. Hyperparameters were optimized through grid search and 10-fold
cross-validation. Models were evaluated by the concordance index (C-index). C-index >0.9
means a model with high accuracy; 0.7–0.9 means medium accuracy; 0.5–0.7 means poor
accuracy. Ninety-five percent confidence intervals were calculated by Bootstrap 1000 times.



Diagnostics 2022, 12, 2678 4 of 17Diagnostics 2022, 12, x FOR PEER REVIEW 4 of 17 
 

 

 
Figure 1. Two-dimensional shear wave elastography ultrasound images in a longitudinal plane. 
(a,b) Two-dimensional shear wave elastography ultrasound (2D-SWE) images and radiomics 
analysis of regions of interest (ROIs) in a 63-year-old female patient at CKD stage 3, who recovered 
to CKD stage 2 at the last follow-up. The SWE value from the single examination of the left kidney 
cortex was 9.5 kPa, shown in the right box; (c,d) 2D-SWE images and radiomics analysis of ROIs in 
a 28-year-old female patient at CKD stage 3, who progressed to CKD stage 5 at the last follow-up; 
(+), (Í), (å) represents left kidney cortex, sinus, and medulla, respectively; green, yellow, and red 
masks in (b,d) represent the ROI of left kidney cortex, sinus, and medulla, respectively, drawn for 
radiomics analysis according to the ROIs of 2D-SWE. 
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Figure 1. Two-dimensional shear wave elastography ultrasound images in a longitudinal plane.
(a,b) Two-dimensional shear wave elastography ultrasound (2D-SWE) images and radiomics analysis
of regions of interest (ROIs) in a 63-year-old female patient at CKD stage 3, who recovered to CKD
stage 2 at the last follow-up. The SWE value from the single examination of the left kidney cortex
was 9.5 kPa, shown in the right box; (c,d) 2D-SWE images and radiomics analysis of ROIs in a
28-year-old female patient at CKD stage 3, who progressed to CKD stage 5 at the last follow-up; (+),
(Í), (å) represents left kidney cortex, sinus, and medulla, respectively; green, yellow, and red masks in
(b,d) represent the ROI of left kidney cortex, sinus, and medulla, respectively, drawn for radiomics
analysis according to the ROIs of 2D-SWE.

2.5. Statistical Analysis

Statistical analysis was performed by SPSS (v26) and R (v4.1.0). Normality distribution
was tested by the Kolmogorov–Smirnov method before the Students’ t-test for normally
distributed and Mann–Whitney U test for non-normally distributed data. The chi-square
test was used for the comparison of categorical variables. A paired t-test was applied for
within-group comparisons. Log-rank test was applied for comparison between Kaplan–
Meier curves. p < 0.05 was considered statistically significant.

3. Results
3.1. Baseline of the Study Population

In total, 187 patients were recruited. The average time of follow-up was 24.57 ± 5.52 months.
At the time of inclusion, 59 out of 187 (31.55%) were at CKD stage 1, 61 (32.62%) at CKD2,
46 (24.60%) at CKD 3, 16 (8.56%) at CKD 4, and 5 (2.67%) at CKD 5. For the pathologi-
cal diagnoses, 69 out of 187 (36.90%) were diagnosed with IgA nephropathy, 35 (18.72%)
with membranous nephropathy, 20 (10.70%) with diabetic nephropathy, 16 (8.56%) with a
minimal-change disease, 7 (3.74%) with a tubulointerstitial disease, 7 (3.74%) with hyperten-
sive renal disease, 17 (9.09%) with focal segmental glomerulosclerosis, and 29 (15.51%) with
other diseases (6 with lupus nephritis, 4 with obesity-associated nephropathy, 2 with throm-
botic microangiopathy, 2 with renal amyloidosis, 2 with proliferative glomerulonephritis,
3 with benign renal small-artery sclerosis, 2 with podocytosis, 2 with ANCA-associated
vasculitis renal damage, 1 with renal ischemic changes due to severe vascular lesions, 1
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with sclerosing nephritis, 1 with hepatitis-B-associated nephritis, 1 with Henoch–Schönlein
purpura nephritis, 1 with light-chain proximal tubulopathy, and 1 with IgG4-associated
nephropathy). Some of the patients had combined pathological diagnoses, resulting in a
sum of pathological diagnoses of over 187.

During the follow-up, three patients died. One of these deaths was due to multi-organ
failure (at CKD stage 3 at the time of inclusion), while the causes of the other two were
unknown (at CKD stage 2 at the time of inclusion). Six patients initiated renal replacement
therapy, of whom two were at CKD stage 5 at the time of inclusion, two were at CKD 4,
and two were at CKD 3. Of the remaining patients who did not die or initiate renal
replacement therapy, 18 out of 187 (9.63%) had a sustained decrease (measured at least
twice, >3 months in between) of eGFR over 25% from baseline, accompanied by a drop in
CKD stage. Furthermore, 48 out of 187 (25.67%) had a sustained increase (measured at least
twice, >3 months in between) in eGFR over 25% from baseline, which could be considered
as a regression of CKD [30]. The total incidence of CKD progression was 25 out of 187
(13.37%). At the time of the last follow-up, 75 out of 187 (40.11%) patients were at CKD
stage 1, 55 (29.41%) were at CKD 2, 29 (15.51%) were at CKD 3, 11 (5.88%) were at CKD 4,
and 17 (9.09%) were at CKD 5. The incidence of patients’ prognosis over CKD stage 3 or
over is 57 out of 187 (30.48%). The baseline characters are in Table 1. The patients’ Scr and
eGFR before and after are depicted in Figure S3.

Table 1. Baseline characteristics of the study cohort.

Total (n = 187) CKD fo_1~2 (n = 130) CKD fo_3~5 (n = 57) p Value

Age(year) 45.00 (32.00–59.00) 40.00 (30.00–40.00) 52.00 (38.50–52.00) <0.001
Sex (male%) 105 (56.1%) 67 (63.80%) 38 (36.20%) 0.055
BMI (kg/m2) 24.30 (21.96–27.16) 24.19 (21.98–24.19) 24.80 (21.80–24.80) 0.426
SBP (mmHg) 141.00 (121.00–165.00) 135.50 (119.00–135.50) 157.00 (128.00–157.00) 0.003
DBP (mmHg) 77.50 (70.00–85.75) 77.50 (67.75–77.50) 77.00 (72.00–77.00) 0.362
eGFR (MDRD)

(mL/min/1.73 m2) 73.35 (51.96–101.88) 86.55 (69.04–86.55) 39.01 (24.94–39.01) <0.001

Scr (µmol/L) 92.00 (68.00–131.00) 81.00 (62.00–81.00) 165.00 (117.50–165.00) <0.001
BUN (mmol/L) 5.50 (4.23–7.38) 4.70 (3.90–4.70) 7.90 (5.80–7.90) <0.001
UA (µmol/L) 363.50 (299.50–412.50) 351.50 (281.25–351.50) 389.00 (343.00–389.00) 0.001

Alb (g/L) 35.60 (29.95–41.05) 36.45 (29.11–36.45) 35.00 (30.25–35.00) 0.612
24hUpro (mg) 1454.40 (624.60–3397.15) 1119.15 (583.40–1119.15) 2493.00 (1186.80–2493.00) <0.001
ACR (mg/g) 565.95 (253.03–1788.85) 421.85 (193.65–421.85) 1084.40 (441.00–1084.40) <0.001

Pathological Changes Total (n = 187) CKD fo_1~2 (n = 130) CKD fo_3~5 (n = 57) p Value

G_G_Sclerosis (%) 20.00% (5.88–43.75%) 12.77% (0.00–28.57%) 46.67% (25.83–62.02%) <0.001
G_FS_Sclerosis (%) 0.00% (0.00–7.69%) 0.00% (0.00–6.47%) 3.23% (0.00–11.81%) 0.042

G_Crescents (%) 0.00% (0.00–3.33%) 0.00% (0.0–3.54%) 0.00% (0.00–4.41%) 0.959
G_Fibrinoid necrosis (%) 0.00% (0.00–0.00%) 0.00% (0.00%–0.00%) 0.00% (0.00–0.00%) 0.290

Mesengial matrix hyperplasia <0.001
0 17 (9.10%) 10 (58.80%) 7 (41.20%)
1 140 (74.90%) 105 (75.00%) 35 (25.00%)
2 20 (10.70%) 14 (70.00%) 6 (30.00%)
3 10 (5.30%) 1 (10.00%) 9 (90.00%)

Mesangial hypercellularity 0.096
0 30 (16.00%) 19 (63.30%) 11 (36.70%)
1 134 (71.70%) 99 (73.90%) 35 (26.10%)
2 22 (11.80%) 12 (54.50%) 10 (45.50%)
3 1 (0.50%) 0 (0.00%) 1 (100.00%)
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Table 1. Cont.

Pathological Changes Total (n = 187) CKD fo_1~2 (n = 130) CKD fo_3~5 (n = 57) p Value

Intra–capillary proliferation 0.069
0 144 (77.00%) 102 (70.80%) 42 (29.20%)
1 2 (1.10%) 1 (50.00%) 1 (50.00%)
2 41 (21.90%) 27 (65.90%) 14 (34.10%)
3 0 (0.00%) 0 (0.00%) 0 (0.00%)

Capillary wall hyalinosis 0.738
0 114 (61.00%) 82 (71.90%) 32 (28.10%)
1 49 (26.20%) 31 (63.30%) 18 (36.70%)
2 21 (11.20%) 15 (71.40%) 6 (28.60%)
3 3 (1.60%) 2 (66.70%) 1 (33.30%)

Tubular atrophy <0.001
0 14 (7.50%) 12 (85.70%) 2 (14.30%)
1 88 (47.10%) 78 (88.60%) 10 (11.40%)
2 63 (33.70%) 37 (58.70%) 26 (41.30%)
3 22 (11.80%) 3 (13.60%) 19 (86.40%)

Interstitial inflammation <0.001
0 14 (7.50%) 13 (92.90%) 1 (7.10%)
1 91 (48.70%) 82 (90.10%) 9 (9.90%)
2 60 (32.10%) 33 (55.00%) 27 (45.00%)
3 22 (11.80%) 2 (9.10%) 20 (90.90%)

Interstitial fibrosis <0.001
0 13 (7.00%) 12 (92.30%) 1 (7.70%)
1 92 (49.20%) 81 (88.00%) 11 (12.00%)
2 61 (32.60%) 34 (55.70%) 27 (44.30%)
3 21 (11.20%) 3 (14.30%) 18 (85.70%)

Artery/arteriole intima thickening 0.114
0 79 (42.20%) 59 (74.70%) 20 (25.30%)
1 39 (20.90%) 30 (76.90%) 9 (23.10%)
2 59 (31.60%) 34 (57.60%) 25 (42.40%)
3 10 (5.30%) 7 (70.00%) 3 (30.00%)

Artery/arteriole hyalinosis <0.001
0 105 (56.10%) 81 (77.10%) 24 (22.90%)
1 47 (25.10%) 35 (74.50%) 12 (25.50%)
2 21 (11.20%) 10 (47.60%) 11 (52.40%)
3 14 (7.50%) 4 (28.60%) 10 (71.40%)

Grade of chronic changes <0.001
Minimal (0–1) 10 (5.30%) 10 (100.00%) 0 (0.00%)

Mild (2–4) 66 (35.30%) 59 (89.40%) 7 (10.60%)
Moderate (5–7) 61 (32.60%) 47 (77.00%) 14 (23.00%)

Severe (≥8) 50 (26.70%) 14 (28.00%) 36 (72.00%)

Ultrasound Total (n = 187) CKD fo_1~2 (n = 130) CKD fo_3~5 (n = 57) p Value

L_C_mean (kPa) 10.60 (9.50–12.50) 10.35 (9.30–11.95) 10.80 (9.65–13.30) 0.126
L_C_median (kPa) 10.60 (9.20–12.60) 10.50 (9.18–12.10) 10.80 (9.30–13.40) 0.174
L_M_mean (kPa) 6.50 (5.50–8.20) 6.45 (5.28–8.13) 6.80 (5.70–8.70) 0.128

L_M_median (kPa) 6.50 (5.30–8.40) 6.35 (5.20–8.40) 6.90 (5.80–8.75) 0.124
L_S_mean (kPa) 13.40 (12.10–14.80) 13.10 (11.90–14.58) 13.80 (11.85–15.25) 0.305

L_S_median (kPa) 13.40 (11.90–14.90) 13.10 (11.70–14.60) 13.90 (11.80–15.35) 0.235
Length (mm) 106.00 (99.00–112.00) 106.00 (101.00–112.25) 103.00 (95.50–110.00) 0.037
Width (mm) 45.00 (42.00–49.00) 45.00 (42.00–48.00) 45.00 (40.50–49.00) 0.904

Thickness (mm) 43.40 (39.00–46.50) 44.00 (40.30–47.00) 42.00 (38.50–45.50) 0.093
Kidney volume (cm3) 201.35 (173.04–238.66) 205.95 (179.58–239.10) 188.93 (158.01–237.50) 0.159

CKD fo_1~2, patients at CKD stage 1~2 at the last follow-up time. CKD fo_3~5, patients at CKD stage 3~5 at the
last follow-up time; G_G_Sclerosis, Glomerular_Global Sclerosis; G_FS_Sclerosis, Glomerular_Focal Segmental
Sclerosis; G_Crescents, Glomerular_Crescents; G_Fibrinoid necrosis, Glomerular_Fibrinoid necrosis; L_C_mean,
mean SWE value of left renal cortex; L_C_median, median SWE value of left renal cortex; L_M_mean, mean SWE
value of left renal medulla; L_M_median, median SWE value of left renal medulla; L_S_mean, mean SWE value
of left renal sinus; L_S_median, median SWE value of left renal sinus; Length, Width, Thickness, and Kidney
volume, are length, width, thickness, and product of length and width and thickness of left kidney, respectively.
All parameters were collected at the time of biopsy.
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3.2. Feature Selections for CKD Prognosis by Lasso Regression

In total, 973 features, including clinical index, pathological changes, ultrasound pa-
rameters, and radiomics signature, were entered into the lasso regression analysis. The
26 significant features selected were Scr, eGFR, 24-h urinary protein at baseline, glomerular
global sclerosis rate, glomerular focal segmental sclerosis rate, interstitial inflammation,
and 20 radiomics signatures. Details of the features and their coefficients are shown in
Figure 2.

Figure 2. Lasso regression of feature selection from the clinical index, pathological changes, ultra-
sound parameters, and radiomics signatures for CKD prognosis. (a) Lasso coefficients of all features.
Log lambda (λ) represents the regularization penalty parameter; (b) cross-validation to select the op-
timal parameter λ. The optimal number of features was 26; the minimum value is represented by red
dotted vertical lines. The two dotted gray lines represent the standard deviation. (c) The 26 selected
features and their coefficients. Scr, serum creatinine at baseline; eGFR, eGFR at baseline; 24hUpro,
twenty-four-hour total urinary protein; G_G_Sclerosis, Glomerular_Global Sclerosis; G_FS_Sclerosis,
Glomerular_Focal Segmental Sclerosis; II, interstitial inflammation.
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3.3. Cox regression for CKD Prognosis

Univariate and multivariate Cox regression analyses were performed next, using
both statistical and clinically significant parameters from the results of the differential
comparison (Table 1) and lasso regression (Figure 2). The parameters of sinus wavelet
HLH first-order maximum, sinus wavelet HLH first-order range, and medulla wavelet
HLH, first-order 10th percentile from ultrasound radiomics, were excluded because their
values were all less than 0.0001, and therefore meaningless for clinical use. As shown in
Table 2, eGFR, Scr, ACR at baseline, median SWE value of left renal cortex (L_C_median),
length of left kidney, and nine radiomics signatures were statistically significant for the
secondary outcome. The hypothesis of proportional hazard for the Cox regression is proven
in Table S1.

Table 2. Univariate and multivariate Cox regression for CKD prognosis.

Parameters
Univariate Multivariate

HR (95%CI) p Value HR (95%CI) p Value

Clinical Index

Age (year) 0.953 (0.904–1.003) 0.066
SBP (mmHg) 1.002 (0.995–1.009) 0.613

eGFR (mL/min/1.73 m2) 0.865 (0.806–0.93) <0.001 0.927 (0.9–0.955) <0.001
Scr (µmol/L) 0.978 (0.965–0.992) 0.002 0.994 (0.989–0.999) 0.013

BUN (mmol/L) 1.195 (0.957–1.492) 0.116
UA (µmol/L) 0.997 (0.987–1.006) 0.504
24hUpro (mg) 0.999998 (0.999767–1.000229) 0.985

ACR (mg/g) 1.001 (1.001–1.002) <0.001 1.000489
(1.000247–1.001) <0.001

Pathological
Changes

G_GS (%) 7.53 (0.311–182.252) 0.214
G_FS (%) 5.63 (0.152–209.022) 0.349
M_M (1) 39.261 (1.175–1311.474) 0.040
M_M (2) 0.669 (0.009–52.184) 0.857
M_M (3) 6.067 (0.268–137.282) 0.257

TA (1) 0.002 (0.000009–0.649) 0.035 0.316 (0.038–2.602) 0.284
TA (2) 6.465 (0.018–2293.191) 0.533 3.584 (0.435–29.553) 0.236
TA (3) 1.524 (0.000111–20913.596) 0.931 6.173 (0.553–68.902) 0.139
II (1) 0.348 (2.614 × 10–27–4.638 × 1025) 0.973
II (2) 15,636.424 (1.029 × 10–22–2.374 × 1030) 0.754
II (3) 5.148 (2.995 × 10–26–8.847 × 1026) 0.958
IF (1) 5677.54 (3.1539 × 10–23–1.022 × 1030) 0.779
IF (2) 0.29 (1.641 × 10–27–5.126 × 1025) 0.968
IF (3) 55,447.23 (2.382 × 10–22–1.290 × 1031) 0.724

A_C (1) 0.092 (0.010–0.806) 0.031 0.273 (0.109–0.682) 0.005
A_C (2) 0.122 (0.016–0.922) 0.041 0.385 (0.122–1.217) 0.104
A_C (3) 7.482 (0.883–63.383) 0.065 1.317 (0.464–3.741) 0.605

Grade of chronic changes (1) 17,027.838 (9.106 × 10–35–3.184 × 1042) 0.828
Grade of chronic changes (2) 152.155 (8.861 × 10–37–2.613 × 1040) 0.911
Grade of chronic changes (3) 6.777 (3.582 × 10–38–1.282 × 1039) 0.966

Ultrasound
Parameters

L_C_mean (kPa) 0.281 (0.073–1.08) 0.065
L_C_median (kPa) 3.236 (0.945–11.076) 0.061 0.890 (0.796–0.994) 0.039
L_M_mean (kPa) 1.457 (0.329–6.452) 0.620

L_M_median (kPa) 0.569 (0.143–2.263) 0.423
L_S_mean (kPa) 3.024 (0.875–10.449) 0.080 1.154 (0.971–1.371) 0.104

L_S_median (kPa) 0.444 (0.159–1.243) 0.122
Length (mm) 1.267 (1.117–1.437) <0.001 1.077 (1.034–1.122) <0.001

Kidney_volume (cm2) 0.995 (0.977–1.014) 0.625

Ultrasound
Radiomics

cortex_wavelet_LLH_
firstorder_Skewness 0.000363 (0.000002–0.056) 0.002 0.032 (0.003–0.311) 0.003

cortex_wavelet_HLH_gldm_
SmallDependenceHigh-

GrayLevelEmphasis
2.005 × 1066 (1.482 × 1029–2.714 × 10103) <0.001 7.876 × 1023 (1.672 ×

1011–3.709 × 1036)
<0.001

cortex_wavelet_HHL_glszm_
SizeZoneNonUniformity 0.704 (0.536–0.925) 0.012 0.789 (0.691–0.902) 0.001

cortex_wavelet_HHL_glszm_
SizeZoneNonUniformityNor-

malized
1811.003 (0.000122–2.698 × 1010) 0.373

sinus_wavelet_LHH_glrlm_
HighGrayLevelRunEmphasis 916,226,561.138 (300.893–2.790 × 1015) 0.007 206,763.534

(38.345–1.115 × 1010) 0.005
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Table 2. Cont.

Parameters
Univariate Multivariate

HR (95%CI) p Value HR (95%CI) p Value

sinus_wavelet_LHH_glrlm_
LowGrayLevelRunEmphasis a

sinus_wavelet_HLL_glcm_MCC 129.179 (0.002–7,675,218.559) 0.386
sinus_wavelet_HLH_gldm_
SmallDependenceEmphasis 5.848 × 10–45 (7.627 × 10–77–4.483 × 10–13) 0.007 7.163 × 10–25 (4.143

× 10–44–0.000012)
0.014

sinus_wavelet_HHH_
glcm_ClusterProminence 1.774 × 1046 (9.389 × 1011–3.350 × 1080) 0.008

9.179 × 1021

(55,633,770.994–
1.514 × 1036)

0.002

sinus_wavelet_LLL_gldm_
DependenceVariance 0.773 (0.184–3.243) 0.725

sinus_wavelet_LLL_gldm_
LargeDependenceHigh-

GrayLevelEmphasis
0.985 (0.972–0.998) 0.023 0.993 (0.987–0.999) 0.022

medulla_wavelet_LHL_
firstorder_Kurtosis 1.800 (0.793–4.086) 0.160

medulla_wavelet_LHL_
ngtdm_Strength 1.685 (0.491–5.789) 0.407

medulla_wavelet_LHH_
glcm_Imc2 5580.503 (0–3.695 × 1011) 0.348

medulla_wavelet_LHH_
glcm_SumSquares 0 (0–5.364 × 10–220) <0.001

5.146 × 10–119 (2.670
× 10–202–9.917

× 10–36)
0.005

medulla_wavelet_LHH_glszm_
LargeAreaHighGrayLevelEm-

phasis
1.002 (0.999769–1.004) 0.082

medulla_wavelet_HHL_gldm_
DependenceEntropy 0.001 (0.000003–0.615) 0.034 0.024 (0.001–0.691) 0.030

Multivariate Cox regression analysis by the method of stepwise-backward used all parameters with likelihood-
ratio test p < 0.1 in univariate analysis. a, The degree of freedom is reduced because of constant or linearly
dependent covariates. Pathological changes were categorical covariates; the first category was set for reference.
G_GS, Glomerular_Global Sclerosis. G_FS, Glomerular_Focal Segmental Sclerosis. Mesangial matrix hyperplasia
(1), Mesangial matrix hyperplasia grade 1 vs. 0. Mesangial matrix hyperplasia (2), Mesangial matrix hyperplasia
grade 2 vs. 0. Mesangial matrix hyperplasia (3), Mesangial matrix hyperplasia grade 3 vs. 0. Other pathological
changes were similar: TA, tubular atrophy; II, interstitial inflammation; IF, interstitial fibrosis; A_C, artery/arteriole
hyalinosis; L_C_mean, mean SWE value of left renal cortex; L_C_median, median SWE value of left renal cortex;
L_M_mean, mean SWE value of left renal medulla; L_M_median, median SWE value of left renal medulla;
L_S_mean, mean SWE value of left renal sinus; L_S_median, median SWE value of left renal sinus; Length, length
of the left kidney; kidney volume, the product of length, width, and thickness of left kidney. HR, hazard ratio; CI,
confidence interval.

Continuous features with p < 0.1 in the univariate Cox regression analysis were further
calculated as cutoff values for the secondary outcome based on Kaplan–Meier method
(Figure S4). The cutoff values for eGFR, Scr, ACR, length of left kidney, L_C_median,
mean SWE value of left renal sinus (L_S_mean), and the nine radiomics signatures were
51.23 mL/min/1.73 m2, 102 µmol/L, 1000 mg/g, 98 mm, 13 kPa, 15.5 kPa, 0.37, 0.16, 9.43,
2.68, 0.08, 0.46, 258.03, 0.25, and 3.66, respectively. They were then divided into a high
group or low group and drawn into Kaplan–Meier curves with categorical features of
tubular atrophy and artery/arteriole hyalinosis (Figure 3). Except for L_S_mean, all the
subgroups of features were shown to be statistically different for the secondary outcome.
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Figure 3. Kaplan–Meier curve for CKD prognosis. The features were divided into a high group or a
low group based on their cutoff value. (a–q), the Kaplan–Meier curve for CKD prognosis by different
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parameters as shown in the Strata column in each subfigure. The cutoff values for eGFR (a), Scr (b),
ACR (c), length of left kidney (f), median SWE value of left renal cortex (g), mean SWE value of
left renal sinus (h), cortex wavelet LLH first order Skewness (i), cortex wavelet HLH gldm Small-
DependenceHighGrayLevelEmphasis (j), cortex wavelet HHL glszm SizeZoneNonUniformity (k),
sinus wavelet LHH glrlm HighGrayLevelRunEmphasis (l), sinus wavelet HLH gldm SmallDe-
pendenceEmphasis (m), sinus wavelet HHH glcm ClusterProminence (n), sinus wavelet LLL gldm
LargeDependenceHighGrayLevelEmphasis (o), medulla wavelet LHH glcm SumSquares (p), medulla
wavelet HHL gldm DependenceEntropy (q) were 51.23 mL/min/1.73 m2, 102 µmol/L, 1000 mg/g,
98 mm, 13 kPa, 15.5 kPa, 0.37, 0.16, 9.43, 2.68, 0.08, 0.46, 258.03, 0.25, and 3.66, respectively.

To better explain the clinical meaning of the Cox regression model, we built four
further Cox regression models using the statistically significant features in a multivariate
Cox regression analysis. Model-All used all the features. Model-Clin + Patho used the
clinical features of eGFR, Scr, ACR at baseline, pathological features of tubular atrophy,
artery/arteriole hyalinosis, and length of left kidney, which are commonly used in clinical
practice. Model-Clin + SWE used the clinical features, length of left kidney, and the SWE
parameters of L_C_median and L_S_mean. Model-Clin + SWE + Radiomics added the
nine radiomics signatures. There is no problem with multicollinearity in our multivariable
model according to the multicollinearity diagnosis (single variance inflation factor < 10
and average variance inflation factor < 6 [31,32] in Table S2. Likelihood chi-square test,
C-index, and time-dependent ROC all illustrated that Model-All performed the best, with
an average area under curves (AUCs) of time-dependent ROC over 0.9 (Tables 3, S3 and S4;
Figure 4). Model-Clin + SWE + Radiomics improved the prediction ability of Model-Clin +
SWE and Model-Clin + Patho.

Table 3. Comparison of Cox regression models.

Cox Regression Model L.R.Chisq p-Value

Model-Clin + Patho vs. Model-Clin + SWE 7.2347 0.1240
Model-Clin + Patho vs. Model-Clin + SWE + Radiomics 27.0800 0.0001

Model-Clin + Patho vs. Model-All 63.9548 <0.0001
Model-Clin + SWE + Radiomics vs. Model-All 36.8748 <0.0001

L.R.Chisq, likelihood chi-square test; Clin, clinical features of eGFR at baseline, Scr at baseline, ACR at baseline;
Patho, pathological features of tubular atrophy, artery/arteriole hyalinosis; SWE, elastography parameters of me-
dian SWE value of left renal cortex, mean SWE value of left renal sinus; Radiomics, radiomics signatures of cortex
wavelet LLH first order Skewness, cortex wavelet HLH gldm SmallDependenceHighGrayLevelEmphasis, cortex
wavelet HHL glszm SizeZoneNonUniformity, sinus wavelet LHH glrlm HighGrayLevelRunEmphasis, sinus
wavelet HLH gldm SmallDependenceEmphasis, sinus wavelet HHH glcm ClusterProminence, sinus wavelet LLL
gldm LargeDependenceHighGrayLevelEmphasis, medulla wavelet LHH glcm SumSquares, and medulla wavelet
HHL gldm DependenceEntropy; Model1-All, Cox regression model of all features; Model2-Clin + Patho, Cox re-
gression model of clinical and pathological features and length of left kidney; Model3-Clin + SWE, Cox regression
model of clinical features, length of left kidney, elastography parameters; Model4-Clin + SWE + Radiomics, Cox
regression model of clinical features, length of left kidney, elastography parameters, and radiomics signatures.

3.4. Nomogram for CKD Prognosis

As shown in Figure 5, a prognostic nomogram was built based on the Cox regression
model using all the statistically significant features from multivariate Cox regression analy-
sis. The calibration curve for the 1-year, 2-year, and 2.5-year survival of those with CKD
stage over 3 demonstrated the good performance of the prognostic nomogram (Figure 5c–e).
The decision curve for the net benefit demonstrated that the nomogram was more reliable
at predicting survival after two years (Figure 5f,g).
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Figure 4. Time-dependent ROC of survival prediction models based on Cox regression. (a), the com-
parison of time-dependent ROC among all four models. (b), the comparison of time-dependent ROC
between Model2–Clin+Path and Model3–Clin+SWE. (c), the comparison of time-dependent ROC be-
tween Model2–Clin+Path and Model4–Clin+SWE+Radiomics. (d), the comparison of time-dependent
ROC between Model2–Clin+Path and Model1–All. Clin, clinical features of eGFR at baseline, Scr at
baseline, and ACR at baseline; Patho, pathological features of tubular atrophy and artery/arteriole
hyalinosis; SWE, elastography parameters of median SWE value of left renal cortex and mean SWE
value of left renal sinus; Radiomics, radiomics signatures of cortex wavelet LLH first order Skewness,
cortex wavelet HLH gldm SmallDependenceHighGrayLevelEmphasis, cortex wavelet HHL glszm
SizeZoneNonUniformity, sinus wavelet LHH glrlm HighGrayLevelRunEmphasis, sinus wavelet
HLH gldm SmallDependenceEmphasis, sinus wavelet HHH glcm ClusterProminence, sinus wavelet
LLL gldm LargeDependenceHighGrayLevelEmphasis, medulla wavelet LHH glcm SumSquares,
and medulla wavelet HHL gldm DependenceEntropy; Model1-All, Cox regression model of all
features; Model2-Clin + Patho, Cox regression model of clinical and pathological features and length
of left kidney; Model3-Clin + SWE, Cox regression model of clinical features, length of left kidney,
elastography parameters; Model4-Clin + SWE + Radiomics, Cox regression model of clinical features,
length of left kidney, elastography parameters, and radiomics signatures. The dashed lines represent
a 95% confidence interval.

3.5. Predicting Models for CKD Prognosis Using Machine Learning and Deep Learning

As shown in Figure 6, the RSF and Coxboost prediction models performed best
in the random-split test dataset (baseline character in Table S5) among all the machine
learning and deep learning models, with C-indices of 0.8095 (0.7938–0.8303), and 0.8139
(0.8037–0.8307). However, compared to the Cox regression model using the same fea-
tures (Model-All), the machine learning and deep learning models dropped in predictive
performance at 30 months.
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Figure 5. Nomogram for CKD prognosis. (a) Prognostic nomogram. (b) Dynamic nomogram
demonstrating the prediction of overall survival probability by each feature. The risk points (0–100)
of each feature can be determined by drawing a vertical line to the line of “Points” on the top from the
value of each feature (red dots). A total point was obtained by adding up the risk points of all features.
The overall survival probability can be found by drawing a vertical line from the corresponding total
point in the line of “Total Points” (the red arrow line). (c–e) Calibration curve for predicting survival
at 1-year, 2-year, and 2.5-year intervals. The red line represents the performance of the nomogram,
which is better if it is closer to the diagonal line, where nomogram-predicted probability equals
actual survival proportion. B represents times of Bootstrap validation. (f,g) The decision curve for
the nomogram. The pink line annotated as “None” represents the assumption that no patients have
progressed to CKD stage 3 or over. The dotted line annotated as “All-xx” represents the assumption
that all patients have progressed to CKD stage 3 or over. The further the model line from the “None”
or “All” lines, the greater net benefit to the model gets. “Model-1” and “All-12” in (f) are at the time
of 12 months, “Model-2” and “All-24” are at the time of 24 months, and “Model-3” and “All-30” are
at the time of 30 months. The values “24.05”, “25.37”, and “27.15” in (g) are the quartiles of total
follow-up time. “Model” in (f,g) all represent the Cox regression model used to build the nomogram.
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Figure 6. Comparison of survival prediction models for CKD prognosis using Cox regression,
machine learning, and deep learning. (a) C-index of machine learning models by SVM, SurvivalTree,
RSF, Coxboost, and deep learning model of DeepSurv; (b) time-dependent ROCs of all prediction
models. SVM, support vector machine; RSF, random survival forest; 95%CI, 95% confidence interval.

4. Discussion

In this cohort study, we found that L_C_median is an independent risk factor for CKD
progression to CKD stage 3 or over by multivariate Cox regression with a hazard ratio of
0.890 (0.796–0.994) (p < 0.05, Table 2). This finding might support the early prediction of
CKD progression in clinical settings, especially in healthcare centers with the inability to
perform kidney biopsies. Patients with a high risk of disease progression according to the
nomogram can be treated more aggressively.

Although few studies have reported the predictive value of SWE for the prognosis of
CKD in adult native kidneys, our finding still complies with Liu et al.’s finding of higher
SWE values for the left and right renal cortex in children’s CKD progression using the same
machine [33]. Kennedy et al. also found that the renal cortex stiffness of allograft, reflected
by point-shear elastography ultrasound, increased at baseline in those who developed
into graft loss later [34]. This finding may be one of the reasons why high intra-subject
variability was found by Radulescu et al. among CKD patients [35]. As shown in Figure
S3d, some patients had worsening eGFR while others at the same CKD stage had stable or
recovering eGFR. This was consistent with the insensitivity of eGFR in subclinical injury or
initially adaptive repair [3].

Additionally, using SWE, we found that the patients who progressed to or stayed at
CKD stage 3–5 did not statistically differ in all SWE parameters from the patients who
stayed in or regressed to CKD stages 1–2 at the inclusion time (Table 1). The reasons for this
might be confounding factors. Studies have also shown that tissue viscosity might increase
shear wave velocity [36,37]. Furthermore, tissue viscosity has been reported as a marker
for hepatic necroinflammation [38]. This may also account for the non-linear relationship
between SWE value and eGFR or fibrosis [12]. Furthermore, the SWE value in the medulla
was more unstable than the value in the cortex because the organized microstructures of
the loop of Henle and the vasa recta in the kidney medulla made the shear wave velocity
vary according to the direction of measurement [39]. In line with the literature, we found
that the SWE (Young’s modulus) value in the cortex is more predictive than that in the
medulla or sinus.

In addition, we also found nine radiomics signatures that were independent risk
factors for CKD progression (p < 0.05). Furthermore, the Cox regression model containing
them performed better than the Model-Clin + Patho and Model-Clin + SWE (Figure 4;
Tables 3, S3 and S4). These represent the added value of radiomics in SWE. All of the
significant radiomics signatures were from wavelet-transformed images, which offer proven
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reproducibility [16]. We manually delineated the ROIs for radiomics analysis based on the
ROIs of the SWE ultrasound images instead of segmenting the whole renal cortex or sinus,
or medulla. Because focal or segmental fibrosis might occur during CKD [40], comparing
the features of SWE, the use of radiomics obtained from a very similar part to biopsy is more
appropriate. To minimize the effect of the ROI position on the reproducibility of radiomics
signatures, we used the median value from four images per patient, similar to the SWE
parameters. Machine learning offers advantages in the handling of large-scale and complex
clinical data. However, risk bias is receiving attention due to the selection of modeling
features and overfitting [15]. Therefore, we built the machine learning models based
on the same features as the traditional Cox regression model and minimized overfitting
by random-split, 10-fold validation, and Bootstrap. We found that the Cox regression
model was no worse than the machine learning models, as was reported previously [41].
The reason for this might be the overfitting of machine learning models in hidden layers
or nodes.

The limitations of this study are of its short follow-up time and use of a single center,
which may have caused selection bias. External validation and a 5-year or 10-year follow-up
will be needed in our feature studies.

5. Conclusions

In conclusion, the median SWE value of the left kidney cortex can independently
predict a 2.5-year CKD prognosis of CKD stage 3 or over. Radiomics can improve the
predictive performance of SWE for CKD progression. Traditional Cox regression modeling
is no worse than machine learning.
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