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Abstract: Circular RNAs (circRNAs) are a class of noncoding RNAs with closed-loop of single-
stranded RNA structure. Although most of the circRNAs do not directly encode proteins, emerging
evidence suggests that circRNAs play a pivotal and complex role in multiple biological processes by
regulating gene expression. As one of the most popular circRNAs, circular homeodomain-interacting
protein kinase 3 (circHIPK3) has frequently gained the interest of researchers in recent years. Accu-
mulating studies have demonstrated the significant impacts on the occurrence and development of
multiple human diseases including cancers, cardiovascular diseases, diabetes mellitus, inflammatory
diseases, and others. The present review aims to provide a detailed description of the functions of
circHIPK3 and comprehensively overview the diagnostic and therapeutic value of circHIPK3 in these
certain diseases.
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1. Introduction

During the past few decades, an enormous number of studies have outlined the
complex regulatory networks of various RNAs in multiple human diseases [1]. Generally,
according to whether they encode proteins or not, RNAs are divided into two types—
protein-encoding messenger RNAs (mRNAs) and noncoding RNAs. Noncoding RNAs, as
the name indicates, cannot directly encode proteins, yet account for approximately 98%
of the total transcriptome and play a pivotal role in gene expression [2]. In recent years,
the understanding of noncoding RNAs has gradually deepened, with the development of
sequencing technologies and bioinformatics [3], notably insights into the mechanisms of
different noncoding RNAs in cell biology.

Circular RNAs (circRNAs), one of the hottest noncoding RNAs currently studied, exist in
the form of a continuous closed loop. Initially, they were mistaken as meaningless byproducts
of RNA splicing. Nonetheless, recent studies have shown that their significance is underes-
timated. First, advanced sequencing and bioinformatics tools have uncovered the fact that
circRNAs are endogenously abundant [4]. Distinguished with linear RNAs, circRNAs have
a more conservative and stable structure, with neither a 5′ cap nor a 3′ poly A tail, making
these molecules more tolerable to degradation by exonucleases [5]. Evidence indicates that
the majority of circRNAs are present in the cytoplasm of eukaryotic cells. Moreover, the
widespread but discrepant expression of circRNAs in various organs and cells suggests that
they may participate in multiple crucial physiological and pathological processes [6,7].

Actually, the regulatory functions of circRNAs in gene expression are diverse and
complicated. In most cases, circRNAs bind specific microRNAs (miRNA) and act as
competitive endogenous RNAs (ceRNAs) or so-called “miRNA sponges” [8]. In addition,
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circRNAs have the opposite abilities to act as miRNA reservoirs, stabling and activating
some other miRNAs. Furthermore, circRNAs are reported to bear relevance to gene
expression both upstream and downstream in three aspects. First, it has been reported
that circRNAs may correlate with RNA polymerases to regulate the transcription complex.
Second, another regulation pattern called “back-splicing” can be initiated by circRNAs to
inhibit linear splicing. Third, circRNAs can interact with RNA-binding proteins (RBPs) to
act as protein antagonists [9]. Counterintuitively, although it is conventionally believed
that circRNAs are not equipped with encoding capabilities, some studies have illustrated
that certain circRNAs might encode proteins if internal ribosome entry sites (IRESs) exist in
their structures [10].

Circular homeodomain-interacting protein kinase 3 (circHIPK3), which originates
from the second exon of the HIPK3 gene, is an eye-catching molecule among all the
circRNAs [11]. Plenty of studies have demonstrated the biogenesis of circHIPK3 and its
vital roles in the progression of multiple human diseases, including cancers, cardiovascular
diseases, inflammatory diseases, diabetes mellitus, etc. [12,13]. This review aims to provide
a more detailed description of the functions of circHIPK3 and a more comprehensive
overview of its diagnostic and therapeutic values in some of the aforementioned diseases.

2. Biogenesis of circHIPK3

The HIPK3 gene is an important member of the nuclear kinases HIPK family, in ad-
dition to HIPK1, HIPK2, and HIPK4 [14], located on chromosome 11p13 of humans. The
results of genomic sequencing reveal that circHIPK3 consists of exon 2 with 1099bq flanked
on both sides by two long introns with highly complementary Alu repeats, which are con-
sidered as the key elements in the process of intron-pairing driven circularization [11,15].
The circularization of circHIPK3 was reported to be dependent on the canonical spliceo-
some mechanisms in HeLa cells, and the flanking introns could mediate the efficiency of
circularization [16]. A study on Drosophila revealed that the biogenesis of some circR-
NAs, including circHIPK3, could be co-modulated by cis-acting elements and trans-acting
splicing factors such as heterogeneous nuclear ribonucleoproteins (hnRNPs) and SR pro-
teins [17]. Intriguingly, scientists illustrated that double-stranded RNA (dsRNA)-specific
adenosine deaminase (ADAR) enzymes also play an important role in circRNA forma-
tion [18]. The regulation of circRNA production is complicated. Although the regulatory
networks of the biogenesis of circRNAs have not been fully elucidated [19], it can be deter-
mined that circRNAs, including circHIPK3, are ubiquitous in a variety of tissues including
brain, heart, lung, etc. [20]. Figure 1 depicts the biogenesis of circHIPK3.

Figure 1. The biogenesis of circHIPK3.
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3. The Role of circHIPK3 in Human Cancers

Accumulating studies have substantiated that the dysregulation of circHIPK3 con-
tributes to multiple processes in the carcinogenesis and progression of various human
cancers [21]. Not only does this molecule play a pivotal role in the proliferation, migra-
tion, invasion, and drug resistance of tumor cells, but also it has the potential to act as a
biomarker in early diagnosis and prognosis [22], considering that in most cases, circHIPK3
is a tumor promoter by sponging miRNAs. Table 1 displays the expression status, the
regulatory targets, and the associated functions of circHIPK3 in human cancers.

Table 1. The role of circHIPK3 in human cancers.

Cancer
types Location Expression

Clinical
Samples

(n)

Cell Lines or
Models

Animal
Models

Signaling
Pathway

Relevant
Cell

Biology

Relevant
Clinical
Features

lc Cytoplasm

Upregulated

n = 15 A549 and
BEAS-2B -

miR-
124/(SphK1,

CDK4,
STAT3)

Proliferation,
migration

and
invasion

-

-
A549, H1299,

HCC-827, PC-9,
H1975 and H838

- miR-124-
3p/STAT3

Proliferation,
migration

and
invasion

-

n = 25

16HBE, SPC-A1,
A549,

NCI-H1299, and
NCI-H1650

- miR-
149/FOXM1

Proliferation
and

apoptosis
-

- H1299, A549,
and BEAS-2B - miR-

107/BDNF

Proliferation
and

migration
-

Downregulated n = 110 A549 - - Gefitinib
resistance

Tumor size,
TNM stage,
lymph node
metastasis

HCC Cytoplasm Upregulated

n = 50

Huh7,
MHCC-LM3,

HepG2,
SMMC-7721,
PLC, L02 and

HEK293T

Nude mice miR-
124/AQP3

Proliferation
and

migration

HBV-DNA
copy

number,
liver

cirrhosis,
tumor differ-

entiation
and TNM

stage

n = 30

HepG2,
SMMC-7721,

Bel-7402, Huh-7
and HL7702

BALB/c
male nude

mice

miR-124 or
miR-

506/PDK2

Proliferation
and

invasion
-

-
HepG2, Hep3B,
Huh-7, SKHep1

and THLE-3

BALB/C
nude mice

miR-338-
3p/ZEB2/EMT

Migration
and

invasion
Survival

n = 19
SMMC-7721,

Huh7, HepG2
and Hep3B

-

miR-124-3p
and

miR-4524-
5p/MRP4

Migration
and drug
resistance

-
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Table 1. Cont.

Cancer
types Location Expression

Clinical
Samples

(n)

Cell Lines or
Models

Animal
Models

Signaling
Pathway

Relevant
Cell

Biology

Relevant
Clinical
Features

ESCC Cytoplasm Upregulated

n = 42

kyse-150,
kyse-410,

KYSE-510,
ECA-109, EC-18,
TE-13 and NE1

BALB/c
female

nude mice

miR-599/c-
MYC

Proliferation
and

invasion
-

n = 32

KYSE-150,
KYSE-410,

ECA-109 and
KYSE180

BALB/c
nude mice

miR-
124/AKT3

Proliferation
and

migration
-

GC Cytoplasm

Upregulated

n = 63
XGC-1, XGC-2,
MGC-803 and

BGC-823
-

miR-29b
and

miR-124

Proliferation
and

invasion
-

n = 30

SGC-7901,
MKN45,

MGC-803, AGS,
BGC-823, GES-1
and SGC-7901

BALB/c
male nude

mice

miR-
107/BDNF

Proliferation
and

migration
-

n = 26 GES-1, HGC-27
and AGS

BALB/c
male nude

mice

miR-876-
5p/PIK3R1

Proliferation,
migration

and
invasion

-

n = 31 MGC803 and
BGC823 -

miR-653-5p
and

miR-338-
3p/NRP1/ERK/AKT

Promote
metastasis -

n = 10

BGC-823,
CRL-5822,

SGC-7901, AGS
and GES-1

- miR-
637/AKT1

Proliferation,
migration

and
invasion

-

n = 53 BGC, MGC, SGC,
MKN and GES - Wnt/β-

catenin

Proliferation
and

migration
Prognosis

Downregulated n = 30 - - - - Clinical
stage, age

CRC Cytoplasm Upregulated

n = 178
FHC, HCT116,
HT29, SW480,
SW620,DLD1

BALB/c
male nude

mice
miR-7

Proliferation,
migration,
invasion

and
apoptosis

Pathological
T category,

lymph node
metastasis,

distant
metastasis,
TNM stage

and
prognosis

n = 50
HT29, LOVO,

SW480, PKO and
NCM460

- miR-1207-
5p/FMNL2

Proliferation,
migration

and
invasion

Prognosis

n = 49

HT29, HCT116,
HEK293T,

5FU-resistant
and

OXA-resistant
cells

BALB/c
male nude

mice

miR-
637/STAT3

Drug
resistance -
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Table 1. Cont.

Cancer
types Location Expression

Clinical
Samples

(n)

Cell Lines or
Models

Animal
Models

Signaling
Pathway

Relevant
Cell

Biology

Relevant
Clinical
Features

PCa

Cytoplasm Upregulated

n = 26
RWPE-1, 22RV1,

PC-3, DU145,
and LNCaP

BALB/c
male nude

mice

miR-193a-
3p/MCL1

Proliferation
and

invasion

Prognosis and
tumor stage

n = 60
RWPE-1, 22RV1,

PC-3, DU145,
and LNCaP

- miR-338-
3p/ADAM17

Proliferation
and

invasion
-

n = 45
RWPE-1, 22RV1,

PC-3, DU146,
and LNCaP

-

miR-338-
3p/Cdc2

and
Cdc25B

Proliferation
and G2/M
transition

Gleason score

n = 14

PC-3, VCaP,
DU145, LNCaP,

22RV1 and
PWPE-1

BALB/c
male nude

mice

miR-
448/MTDH

Proliferation,
migration

and
invasion

-

Exosome Upregulated n = 35
(blood)

RWPE-1, 22RV1
and DU145

BALB/c
male nude

mice

miR-
212/BMI-1

Proliferation,
migration,
invasion

and
apoptosis

-

RCC Cytoplasm

Upregulated

n = 48
HK-2, Caki-1,

ACHN, 786-O,
769-P and A498

BALB/c
female

nude mice

miR-485-
3p/EMT

Proliferation,
migration,
invasion

and
apoptosis

-

n = 50
A498, 786-O,

769-P and
HRPTEpiC

- miR-
5083p/CXCL13

Proliferation,
migration

and
invasion

-

- RPTECs - miR -381-
3p/MRP4

Drug
resistance -

Downregulatedn = 40
Caki-1, 786O,
ACHN, A498

and HK-2

Nude
mice miR-637

Migration
and

invasion
-

Bladder
cancer

Cytoplasm Downregulated

n = 44
T24, UMUC3,

SV-HUC-1,
HUVEC

BALB/c
female

nude mice

miR-
558/HPSE

Proliferation,
migration,
invasion,

and angio-
genesis

Lymph node
metastasis

n = 68
CCC-HB-2,

SV-HUC-1, T24,
J82 and UMUC3

- - -
Gemcitabine

resistance,
prognosis

n = 457
RT4, HT1376,
T24, FL3 and

HCV29
- - - Aggressiveness
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Table 1. Cont.

Cancer
types Location Expression

Clinical
Samples

(n)

Cell Lines or
Models

Animal
Models

Signaling
Pathway

Relevant
Cell

Biology

Relevant
Clinical
Features

Breast
cancer

Cytoplasm

Upregulated

n = 48

MCF-10A, MCF7,
SK-BR-3, BT549,

BT20,
MDA-MB-231

- miR-326

Proliferation,
migration

and
invasion

-

n = 48

MCF-10A, MCF7,
SK-BR-3, BT549,
BT20, MDA-MB

-231,
MDA-MB-453

BALB/c
male nude

mice
miR-326

Proliferation,
migration

and
invasion

-

n = 37

MDA-MB-231,
MCF-7, MDA-
MB-231/PTX

and MCF-7/PTX

BALB/c
nude mice

miR-
1286/HK2

Proliferation
and

paclitaxel
resistance

-

n = 50

MCF-10A,
MCF-7,

MDA-MB-231,
MDA-MB-468

and
MDA-MB-453

Nude mice miR-
193a/HMGB1/PI3K/AKT

Proliferation
and

invasion
-

Exosome

-

MCF-7/Pr,
MCF-7/Tr,

SKBR3/Pr and
SKBR3/Tr

BALB/c
female

nude mice
-

Trastuzumab
chemoresis-

tance
-

-

MCF-7,
MDA-MB-231,
MDA-MB-453,

SK-BR-3, BT-474,
HUVEC

BALB/c
nude mice

miR-124-
3p/MTDH Angiogenesis -

OC Cytoplasm Upregulated

n = 69
HOEC, A2780,

HO-8910, SKOV3
and CAOV3

- - - Prognosis

n = 21 A2780 and
SKOV3 - -

Proliferation,
migration,
invasion

and
apoptosis

-

CC Cytoplasm Upregulated

n = 70 SiHa and HeLa - miR-485-
3p/FGF2

Proliferation,
migration

and
invasion

-

n = 45

HeLa, CaSki,
SiHa, C-33A,

C-4I, SW756 and
End1/E6E7

-
miR-338-
3p/HIF-
1α/EMT

Proliferation,
migration,
invasion

and
apoptosis

-

Osteo-
sarcoma

Cytoplasm

Upregulated

n = 10 U2OS and
SW1353 - miR-

637/STAT3

Migration
and

invasion
-

n = 12
hFOB 1.19, HOS,

MG-63, U2OS
and SJSA

- miR-
637/HDAC4

Proliferation,
migration

and
invasion

-

Downregulated n = 82
SaoS2, HOS,

KH-OS, MG63,
143B and U2-OS

- -

Proliferation,
migration

and
invasion

-
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Table 1. Cont.

Cancer
types Location Expression

Clinical
Samples

(n)

Cell Lines or
Models

Animal
Models

Signaling
Pathway

Relevant
Cell

Biology

Relevant
Clinical
Features

Glioma

Cytoplasm

Upregulated

n = 48 NHAs, U87 and
U251

BALB/c
female

nude mice

miR-
654/IGF2BP3

Proliferation,
migration

and
invasion

Prognosis

-
HEB, U87, U251,

LN229 and
LN308

- miR-124-
3p/STAT3

Proliferation,
invasion,
cell cycle

and
apoptosis

-

Unknown SW1783, and
U373 - miR-

124/CCND2

Proliferation
and

invasion
-

n = 80 A172 and U251 - miR-524-
5p/KIF2A

Proliferation,
migration,
invasion

and
apoptosis,
temozolo-

mide
resistance

-

Exosone

n = 56
(tumor

and
blood)

NHA, A172,
U251, A172/TR
and U251/TR

Nude mice miR-
421/ZIC5

Proliferation,
migration,
invasion

and
apoptosis,
temozolo-

mide
resistance

-

OSCC Cytoplasm Upregulated

n = 30
HNOK, H357,
SCC-15, SCC-4

and SCC-9

BALB/c
female

nude mice

miR-381-
3p/YAP1

Proliferation,
migration,
invasion

and
apoptosis

-

n = 40

NOK, OSCC-15,
Tca8113, SCC-9,

SCC-25, and
HSC-2

C57BL/6
nude mice

miR-
637/NUPR1/
PI3K/AKT

Proliferation,
invasion

and
apoptosis

Tumor size
and

histopatho-
logical
grade

CML Cytoplasm Upregulated n = 100

1D3, K562,
KCL22, AR230-r,
LAMA84-s and

Kasumi-4

- - - Prognosis

ALL Cytoplasm Upregulated - Mononuclear
cells - - - -

NPC Cytoplasm Upregulated n = 63

NP69, SUNE1,
CNE1, CNE2,
SUNE2, and

6-10B

BALB/c
female

nude mice

miR-
4288/ELF3

Proliferation
and

invasion
-

Pancreatic
cancer Cytoplasm Upregulated n = 28 PANC-1 and SW

1990
BALB/c

nude mice
miR-330-

5p/RASSF1

Proliferation,
migration,
invasion,
apoptosis
and gemc-

itabine
resistance

-
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Table 1. Cont.

Cancer
types Location Expression

Clinical
Samples

(n)

Cell Lines or
Models

Animal
Models

Signaling
Pathway

Relevant
Cell

Biology

Relevant
Clinical
Features

Thyroid
cancer Cytoplasm Upregulated n = 10

K1, CAL-62,
TPC1, Nthy-ori

3-1
- miR- 338-

3p/RAB23

Proliferation,
migration

and
invasion

-

GBC Cytoplasm Upregulated n = 13
Mz-ChA-1,

QBC939 and
GBC-SD

- miR-
124/ROCK1/CDK6

Proliferation
and

apoptosis
-

Melanoma Cytoplasm Upregulated n = 23 HEMa-LP,
CHL-1 and A375 - miR-215-

5p/YY1

Proliferation
and

apoptosis
-

Glioblastoma Extracellular
vesicle Upregulated -. - - - - -

Abbreviations: LC, lung cancer; SphK1, sphingosine kinase 1; CDK4, cyclin-dependent kinase 4; STAT3, signal
transducer and activator of transcription 3; FOXM1, forkhead box M1; BDNF, brain-derived neurotrophic factor;
HCC, hepatocellular carcinoma; AQP3, aquaporin 3; PDK2, pyruvate dehydrogenase kinase 2; MRP4, multidrug
resistance protein 4; ZEB2, zinc finger E-box binding homeobox 2; EMT, epithelial-mesenchymal transition;
ESCC, esophageal squamous cell carcinoma; AKT3, serine/threonine kinase 3; GC, gastric cancer; PIK3R1,
phosphoinositide-3-kinase regulatory subunit 1; NRP1, neuropilin 1; ERK, extracellular signal-regulated kinase;
AKT, protein kinase B; AKT1, serine/threonine kinase 1; CRC, colorectal cancer; FMNL2, formin-like 2; PCa,
prostate cancer; MCL1, myeloid cell leukemia 1; ADAM17, a disintegrin and metalloproteinases 17; MTDH,
metadherin; BMI-1, B-cell specific MMLV insertion site-1; RCC, renal cell carcinoma; CXCL13, chemokine ligand
13; HPSE, heparanase; HMGB1, high mobility group box-1; PI3K, phosphoinositide-3-kinase; HK2, hexokinase
2; OC, ovarian cancer; CC, cervical cancer; FGF2, fibroblast growth factor 2; HIF-1α, hypoxia-inducible factor-
1alpha; HDAC4, histone deacetylase 4; IGF2BP3, insulin-like growth factor 2 mRNA-binding protein 3; CCND2,
cyclin D2; ZIC5, zinc finger of the cerebellum 5; KIF2A, kinesin family member 2A; OSCC, oral squamous cell
carcinoma; YAP1, Yes-associated protein1; NUPR1, nuclear protein 1; CML, chronic myeloid leukemia; ALL, acute
lymphoblastic leukemia; NPC, nasopharyngeal cancer; ELF3, E74 like ETS transcription factor 3; RASSF1, RAS-
Association domain family 1; RAB23, Ras-like in rat brain 23; GBC, gallbladder cancer; ROCK1, rho-associated
protein kinase 1; CDK6, cyclin-dependent kinase 6; YY1, Yin Yang 1.

3.1. Lung Cancer (LC)

As one of the most life-threatening human malignancies, lung cancer has been a
global challenge during the past years [23]. Several published reports have provided us
some novel clues of the occurrence and progression of LC mediated by overexpressed
circHIPK3. Yu and colleagues elucidated that enriching circHIPK3 facilitated the expression
of sphingosine kinase 1 (SphK1), cyclin-dependent kinase 4 (CDK4), and signal transducer
and activator of transcription 3 (STAT3) through impeding miR-124 in lung cancer cells,
and accelerating LC cell growth [24]. Chen et al. also illustrated another signaling path-
way mediated by circHIPK3/miR-124-3p. STAT3 was reported to be the downstream
target of miR-124-3p in this case [25]. Lu and others explored another miRNA which was
involved in the carcinogenesis and progression of nonsmall-cell lung cancer (NSCLC) me-
diated by circHIPK3. Their research revealed that circHIPK3 negatively regulated miR-149,
promoting forkhead box M1 (FOXM1) expression. Eventually, cell proliferation was trig-
gered when apoptosis was blocked [26]. MiR-107 was introduced by Hong and colleagues
indicating that circHIPK3 downregulated miR-107, reversing its inhibitive effect on brain-
derived neurotrophic factor (BDNF), which facilitated NSCLC progression [27]. However,
Zhao et al. observed a lower expression level of circHIPK3 in LC specimens compared with
surrounding nontumor tissues. Moreover, patients with lower circHIPK3 were more likely
to have larger tumor size, more advanced TNM stage, and more lymph node infiltration.
Further experiments on gefitinb-resistant cell line revealed that low circHIPK3 contributed
to gefitinib resistance [28].

3.2. Hepatocellular Carcinoma (HCC)

HCC is a common malignancy with high recurrence and mortality rate around the
world [23]. An augmented level of circHIPK3 in HCC was validated in several studies.
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Chen and colleagues observed that the increased level of circHIPK3 was positively associ-
ated with Aquaporin 3 (AQP3) expression in HCC specimens. Mechanistically, miR-124
was considered as an intermediate link between circHIPK3 and AQP3. Intriguingly, the
aberrant expression of circHIPK3 was closely correlated with several clinical parameters
such as tumor stage, the amount of HBV–DNA copy and the existence of liver cirrhosis
in patients with HCC [29]. MiR-124 was also confirmed as the target of circHIPK3 in
other studies. Yu et al. observed that the upregulation of circHIPK3 was associated with
depletion of miR-124 and miR-506. Pyruvate dehydrogenase kinase 2 (PDK2) was reported
to be the downstream target of miR-124 or miR-506. The circHIPK3-miR-124/miR506-
PDK2 signaling gave rise to carcinogenesis and progression of HCC cells [30]. Hu and
others demonstrated the expression of miR-124-3p and miR-4524-5p was inhibited by
circHIPK3, promoting multidrug-resistant protein 4 (MRP4) expression. Although their
findings suggested MRP4 was not directly involved in occurrence and progression of
HCC, MRP4 itself was proved to be aberrantly overexpressed in multiple cancers [31].
Another miRNA involved in the association between circHIP3 and HCC was miR-338-3p
introduced by Li et al. Similarly, circHIPK3 served as the sponge of miR-338-3p, hindering
zinc finger E-box binding homeobox 2 (ZEB2) expression. This signaling eventually led to
epithelial–mesenchymal transition (EMT) and HCC metastasis [32].

3.3. Esophageal Squamous Cell Carcinoma (ESCC)

ESCC is a malignancy of the digestive system which severely affects quality of life [23].
Yao et al. reported that an elevated level of circHIKP3 in ESCC cells remarkably absorbed
miR-599 expression and significantly stimulated c-MYC expression, leading to cell growth
and metastasis [33]. Yao and colleagues validated that miR-124 functioned as the sponged
miRNA in this case and serine/threonine kinase 3 (AKT3) was enhanced under the modu-
lation of circHIPK3, which further triggered ESCC cell growth and metastasis [34].

3.4. Gastric Cancer (GC)

The incidence of GC has been gradually escalating during the past decades [23].
Most of the emerging studies demonstrated an overexpression of circHIPK3 in GC cells.
Cheng et al. discovered that circHIPK3 was even higher in metastatic GC cells. They
further unveiled the underlying mechanisms that circHIPK3 suppressed the expression
of miR-29b and miR-124, enhancing GC cell replication. Furthermore, this signaling
pathway was considered to be a prognostic factor of GC [35]. Wei et al. elucidated the
connections between circHIPK3 (level, stage, grade) and the prognosis of GC. Knocking
down circHIPK3 significantly extenuated GC progression by upregulating miR-107 and
then depleted brain-derived neurotrophic factor (BDNF) [36]. Another miRNA introduced
by Li and others was miR-876-5p. Their research showed that circHIPK3 sponged miR-
876-5p, reversing its inhibitive effects on phosphoinositide-3-kinase regulatory subunit
1 (PIK3R1), an oncogene proved to exist in multiple tumors, including GC [37]. A study
conducted by Jin et al. illustrated that circHIPK3 contributed to metastatic disease of GC
by downregulating miR-653-5p and miR-338-3p. Neuropilin 1 (NRP1) was determined
as the inhibited target downstream of these two molecules and its depletion stimulated
extracellular signal-regulated kinase (ERK) and protein kinase B (AKT) pathways [38].
Yang et al. observed another regulatory pathway in which circHIPK3 suppressed miR-637,
rescuing the function of serine/threonine kinase 1 (AKT1) sabotaged by miR-637 and then
enhancing GC cell progressive activities [39]. Liu and colleagues observed that silencing
circHIPK3 decreased GC cell proliferation and migration. The Wnt/β-catenin pathway was
considered as the intermediate factor of this process [40]. However, Ghasemi and colleagues
arrived at a contrary conclusion, that a dramatically decreased level of circHIPK3 in GC was
proved to be associated with patient age and clinical stage [41]. The conflicting conclusions
drawn by different scientists made the role of circHIPK3 in GC more complicated.
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3.5. Colorectal Cancer (CRC)

CRC is another most common gastrointestinal cancer which hugely affects quality of
life [23]. A study organized by Zeng et al. clarified that an augmented level of circHIPK3 in
CRC cells blocked miR-7 expression and then contributed not only to the activation of cell
proliferation and metastasis, but also inhibits cell apoptosis [42]. Yan et al. also discovered
an increase in circHIPK3 level in CRC cells. Another miRNA was introduced by them,
miR-1207-5p, which was negatively regulated by circHIPK3 and whose inhibitive effects
on formin-like 2 (FMNL2) were relieved. This signaling pathway consequently resulted
in CRC cell replication and metastasis [43]. Zhang et al. explored the oxaliplatin-resistant
mechanisms of CRC and demonstrated that circHIPK3 acted as the sponge of miR-637 to
enhance STAT3 expression, triggering Bcl-2/beclin1 afterward, and as a result detecting
decreased autophagy. Additionally, they observed connections between an elevated level
of circHIPK3 and clinical indicators of poor prognosis [44].

3.6. Prostate Cancer (PCa)

The incidence of PCa ranks first in men [23], in which an unregulated level of
circHIPK3 was validated in several studies. In the research of Chen et al., circHIPK3
was identified as a crucial factor of prognosis. Via sponging miR-193a-3p, circHIPK3
promoted myeloid cell leukemia 1 (MCL1) expression, and activated PCa cell growth
and tumor progression [45]. Cai and colleagues demonstrated that the enrichment of
circHIPK3 stimulated the proliferation and invasion of PCa cells by impeding miR-338-3p
and strengthening a disintegrin and metalloproteinases 17 (ADAM17) expression [46].
Another study by Liu et al. identified other downstream molecules of miR-338-3p as Cdc2
and Cdc25B and this signaling pathway modulated by circHIPK3 led to acceleration of
G2/M transition and the proliferation of PCa cells [47]. Liu and others uncovered another
pathway mediated by circHIPK3 in which circHIPK3 downregulated miR-448 to activate
metadherin (MTDH), thus accelerating PCa cell proliferation and metastasis [48]. Tang et al.
identified an overexpression of exosomal circHIPK3 in PCa, which suppressed exosomal
miR-212 and relieved its negative modulation on B-cell-specific MMLV insertion site-1
(BMI-1), consequently activating cell growth and metastasis [49].

3.7. Renal Cell Carcinoma (RCC)

RCC is one of the urinary cancers with high prevalence [23]. Lai and colleagues
detected that an elevated expression of circHIPK3 in RCC cells blocked the function per-
formed by miR-485-3p on several molecules related to EMT and cell death. For example, the
overexpression of clever caspase-3, Bax, and E-Cadherin was hampered and the decrease
in Vimentin, N-Cadherin, and Bcl-2 was reversed [50]. Han et al. verified that by hindering
expression of miR-508-3p, the increased level of circHIPK3 boosted RCC cell viability. The
downstream target of miR-5083p was determined as chemokine ligand 13 (CXCL13), whose
activation was also validated to be associated with several cancers [51]. Omata and others
discovered an upstream regulator of circHIPK3 as adenosine deaminase acting on RNA 1
(ADAR1), which could inhibit circHIPK3 and then activate miR -381-3p, so as to block the
translation process of MRP4 protein, a factor which was clarified to be related with drug
resistance [52]. On the contrary, Li et al. elaborated that circHIPK3 was sharply diminished
in RCC cells, and that lifting circHIPK3 expression repressed the invasiveness of RCC cells
by hampering miR-637 [53].

3.8. Bladder Cancer

Bladder cancer is another frequently diagnosed cancer of the urinary system [23].
Compared with other malignancies, circHIPK3 tended to be downregulated in bladder
cancer cells. Li et al. showed that circHIPK3 expression was negatively associated with
clinical stage, invasiveness, and lymph node infiltration in bladder cancer patients. Mecha-
nistically, circHIPK3 sponged miR-558 to hinder heparanase (HPSE) expression, reducing
the development of bladder cancer cells [54]. Xie and colleagues clarified the prognos-
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tic value of circHIPK3 in bladder cancer and illustrated that an elevated expression of
circHIPK3 enhanced the response to gemcitabine chemotherapy [55]. Remarkably, the
analysis conducted by Okholm et al. demonstrated that circHIPK3 was rigidly related with
aggressiveness in nonmuscle-invasive bladder cancer, further highlighting the prognostic
role of circHIPK3 in bladder cancer [56].

3.9. Breast Cancer

Breast cancer has created onerous economic and social burden owing to its high
prevalence in females [23]. Qi and colleagues along with Luo et al. detected an aberrantly
elevated expression of circHIPK3 in breast cancer. The downstream target of circHIPK3 was
considered to be miR-326, and the depletion of miR-326 mediated by circHIPK3 resulted in
cell replication, migration, and invasion of breast cancer [57,58]. Shi et al. demonstrated
that an upregulated circHIPK3 targeted miR-124-3p to boost MTDH expression, facilitating
angiogenic activities of breast cancer cells [59]. Chen et al. identified miR-193a as another
target of circHIPK3. Further, the signaling pathway went downstream to high mobility
group box-1 (HMGB1)/phosphoinositide-3-kinase (PI3K)/AKT and the proliferative and
metastatic abilities of breast cancer cells were enhanced as a consequence [60]. Zhang et al.
offered deep insight into the mechanisms of trastuzumab resistance in breast cancer and
discovered that exosomal circHIPK3 was capable of lowering the sensitivity of breast
cancer cells to trastuzumab [61]. A study managed by Ni and colleagues revealed another
phenomenon of chemoresistance in which circHIKP3 overexpression suppressed miR-
1286 to enhance hexokinase 2 (HK2) expression and decreased the response to paclitaxel
treatment in breast cancer cells [62].

3.10. Ovarian Cancer (OC)

OC is not uncommon in the female genital system [23]. Liu et al. uncovered that
circHIPK3 expression was hugely increased in OC tissues and cell lines, which was con-
sidered to correlate with unfavorable outcomes of OC [63] as well. However, Teng and
colleagues detected a reduction in circHIPK3 level in OC cells. CircHIPK3 depletion was
validated to stimulate cell growth, invasion, and migration, on the one hand, and, on the
other, prevent cell death. A number of miRNAs, such as miR-10a, miR-106a, and miR-148b,
were assumed to be modulated in this process, but exactly which miRNAs were inhibited
remained elusive [64].

3.11. Cervical Cancer (CC)

Cervical cancer, one of the most common genital cancers in postmenopausal women,
usually causes poor outcomes [23]. Wu and colleagues observed a dramatically upregulated
status of circHIPK3 in CC cells. The miRNA sponged by circHIPK3 was reported to be miR-
485-3p, and its depletion accelerated fibroblast growth factor 2 (FGF2) expression, strength-
ening the tumorigenic and progressive abilities of CC cells [65]. Qian et al. validated
miR-338-3p as another molecule inhibited by circHIPK3. Accordingly, hypoxia-inducible
factor-1alpha (HIF-1α) activated and triggered EMT to stimulate CC cell proliferation,
migration, and invasion [66].

3.12. Osteosarcoma

Osteosarcoma is a type of severe disease frequently diagnosed in youngsters [23].
Huang and colleagues demonstrated an augmented expression of circHIPK3 in osteosar-
coma cells, which downregulated miR-637, relieved its negative regulation on STAT3, and
caused osteosarcoma cell metastasis [67]. Similarly, Wen et al. introduced another signaling
pathway in which circHIPK3 mediated osteosarcoma progression by decreasing miR-637
to facilitate histone deacetylase 4 (HDAC4) expression [68]. However, Ma et al. observed
a strikingly decreased level of circHIPK3 in osteosarcoma cells and specimens, which
correlated with an advanced stage, distant metastasis, and unfavorable prognosis. While a
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higher circHIPK3 expression dramatically declined aggressiveness of tumor cells [69], the
contradictory conclusions obtained by these studies requires further exploration.

3.13. Glioma

With unfavorable prognosis, glioma is one of the most malignant tumors in the
central nervous system [23]. Emerging published reports clarified an increased level
of circHIPK3 in glioma cells. Jin et al. validated that circHIPK3 promoted insulin-like
growth factor 2 mRNA-binding protein 3 (IGF2BP3) expression by blocking miR-654,
which expanded the proliferative and metastatic capabilities of glioma cells [70]. Hu and
colleagues demonstrated that a high expression level of circHIPK3 significantly suppressed
miR-124-3p to rescue its negative effects on STAT3. This pathway had a promotive influence
on tumorigenesis and progression of glioma cells [71]. Another target of circHIPK3/miR-
124 interaction determined by Liu et al. was cyclin D2 (CCND2), which again spurred
the development of glioma [72]. CircHIPK3 was also considered to be inextricably bound
with temozolomide treatment of glioma, and two signaling pathways were introduced by
scientists. One study of Han et al. verified that exosomal circHIPK3 reduced the sensitivity
to temozolomide treatment via absorbing the effect of miR-421 and triggering zinc finger of
the cerebellum 5 (ZIC5) expression [73]. The other study conducted by Yin and colleagues
identified miR-524-5p as the direct target of circHIPK3 and kinesin family member 2A
(KIF2A) the downstream molecule [74].

3.14. Oral Squamous Cell Carcinoma (OSCC)

OSCC is a particularly severe malignant tumor with poor outcomes that occurs in the
regions of head and neck [23]. Bi et al. uncovered the enhanced expression of circHIPK3
in OSCC and clarified its further target molecule as miR-381-3p. Yes-associated protein1
(YAP1) was determined to be the downstream factor whose upregulation stimulated the
carcinogenesis and progression of OSCC cells [75]. Similarly, the findings of Jiang et al.
suggested that miR-637 was negatively modulated by augmented circHIPK3, triggering
nuclear protein 1 (NUPR1) and PI3K/AKT pathway to activate OSCC cell growth and
metastasis [76].

3.15. Leukemia

The incidence of leukemia has been increasing during the past years [23]. Feng et al.
found that circHIPK3 was enormously overexpressed in the blood cells and serum of
chronic myeloid leukemia (CML), suggesting a worse outcome [77]. Similarly, Gaffo and
colleagues detected an abnormally increased expression of circHIPK3 in acute lymphoblas-
tic leukemia (ALL) cells, which provided novel findings in this issue [78].

3.16. Other Cancers

Apart from those mentioned, there have been connections between circHIPK3 and
other cancers including nasopharyngeal cancer (NPC), pancreatic cancer, thyroid cancer,
gallbladder cancer (GBC), melanoma, and glioblastoma. Ke et al. revealed an augmented
expression of circHIPK3 in NPC and a dramatically declined miR4288 expression. Mech-
anistically, circHIPK3 blocked miR4288 in order to boost the expression of E74-like ETS
transcription factor 3 (ELF3), and promote NPC cell growth [79]. In terms of pancreatic
cancer, Liu and colleagues demonstrated that the overexpression of circHIPK3 remarkably
downregulated miR-330-5p-activated RAS-association domain family 1 (RASSF1) expres-
sion, stimulating the carcinogenesis and progression and becoming immune to gemcitabine
therapy of pancreatic cancer cells [80]. Shu et al. showed an aberrantly increased circHIPK3
level in thyroid cancer cells and identified miR- 338-3p as the downstream sponged factor.
Ras-like in rat brain 23 (RAB23) was enhanced under the modulation of circHIPK3, which
contributed to tumorigenesis and progression of thyroid cancer cells [81]. Regarding GBC,
circHIPK3 expression was found significantly higher in GBC cells by Kai and colleagues.
MiR-124 was considered to be sharply suppressed by circHIPK3, escalating the expression
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of rho-associated protein kinase 1 (ROCK1) and cyclin-dependent kinase 6 (CDK6), which
caused the accelerated growth of GBC cells [82]. Zhu et al. observed that circHIPK3 was
remarkably overexpressed in melanoma cells and the downstream target molecule was
confirmed to be miR-215-5p, the depletion of which significantly triggered Yin Yang 1 (YY1)
expression and thereby expedited cell growth and mitigated cell death of melanoma [83].
Stella and colleagues discovered correlations between the reduction in circHIPK3 in serum
extracellular vesicle and the prognosis of glioblastoma and suggested that circHIPK3 could
possibly serve as a promising biomarker [84].

4. The Role of circHIPK3 in Cardiovascular Disease

Cardiovascular disease, a global health burden, is a class of disease that seriously
affects quality of life and survival [85]. A genomic analysis verified the profile of circRNAs
in the human heart and showed that the expression of circHIPK3 ranked third in healthy
hearts [86]. A few studies explored the possible functions of circHIPK3 in the biology of
cardiomyocytes after myocardial infarction (MI). Si et al. revealed circHIPK3 was strikingly
expressed in fetal mice and silencing circHIPK3 significantly impeded proliferation of
cardiomyocytes. Additionally, circHIPK3 was validated to accelerate angiogenic activities
by enhancing the abilities to proliferate and form tubular structure of vessel endothelial
cells. Furthermore, circHIPK3 might alleviate cardiac fibrosis by stabilizing and activating
Notch1 intracellular domain (N1ICD), and then stimulate functions of endothelia cells
by sponging miR-33a to facilitate connective tissue growth factor (CTGF) expression [87].
Wang and colleagues demonstrated that exosomal circHIPK3 of hypoxic cardiomyocytes
dramatically expedited the proliferative and migrative abilities of cardiac endothelial cells,
which was considered to be possibly conducive to minimizing the infarction region. Mech-
anistically, circHIPK3 depleted miR-29a and thereby promoted VEGFA expression [88].
However, Wu et al. obtained an opposite conclusion that knocking down circHIPK3 in MI
cell models remarkably suppressed miR-93-5p expression to deactivate Rac1/PI3K/AKT
signaling pathway, shrinking infarction area and protecting cardiomyocytes [89]. Con-
cerning cardiac fibrosis, Liu et al. observed the level of circHIPK3 in cardiac fibroblasts
was conspicuously raised under low oxygen circumstances. Overexpressed circHIPK3
strengthened TGF-β2 signaling pathway by hampering miR-152-3p so as to accelerate the
process of fibrosis [90]. Liu et al. along with Ni and colleagues also demonstrated that
silencing circHIPK3 contributed to retard cardio fibrosis triggered by angiotensin II [91,92].
Ni and colleagues further discovered the miRNA sponged by circHIPK3 as miR-29b-3p in
their study [92]. CircHIPK3 was validated to be associated with ischemia-reperfusion (IR)
injury of cardiomyocytes as well. Bai et al. found that by negatively regulating miR-124-3p,
circHIPK3 overexpression decreased proliferation and stimulated death of cardiomyocytes
in IR models [93]. Cheng and colleagues observed that under high-glucose conditions,
circHIPK3 was downregulated by overexpressed miR-29a, and this interaction went down-
stream to AKT3/PIK3R3 pathway, enhancing the anti-apoptosis of cardiomyocytes and
preventing cardiomyocytes from IR injury [94]. Some other studies focused on the role of
circHIPK3 in hypoxia-reoxygenation (HR) injury of cardiomyocytes. Qiu et al. clarified
that augmented circHIPK3 notably triggered autophagy and cell death of cardiomyocytes
suffering HR injury. They also identified miR-20b-5p/autophagy-related 7 (ATG7) pathway
modulated by circHIPK3 involved in IR injury of cardiomyocytes [95]. Exosomal circHIPK3
was considered by Wang et al. to have the potential to diminish oxidative injury of cardiac
microvascular endothelial cells by abolishing miR-29a and thereby promoting expression
of insulin-like growth factor-1 (IGF-1) [96]. Additionally, some studies reported new find-
ings of circHIPK3 in pathophysiology of other cardiovascular diseases. For example, Wei
et al. validated that circHIPK3 declined in atherosclerosis models and its overexpression
showed pro-autophagy effects through sponging miR-190b, thereby relieving ATG7 [97].
Similarly, Zhang et al. enhanced the expression of circHIPK3 in atherosclerosis models
and observed miR-106a-5p was negatively modulated when mitofusin 2 (MFN2) was
stimulated. Intriguingly, calcium content was dramatically diminished in vascular smooth
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muscle cells (VSMC) [98]. Kang et al. knocked down circHIPK3 in VSMC and proliferative
activities were consequently extenuated. Mechanistically, circHIPK3 hampered miR-637
expression and silenced CDK6 expression in VSMC [99]. Fan and colleagues illustrated that
silencing circHIPK3 was able to mitigate myocarditis in mice and cell models caused by
lipopolysaccharide [100]. Deng et al. verified that circHIPK3 could possibly be detrimental
to patients with heart failure because it enhanced the function of adrenaline in the long
term [101]. Xu et al. demonstrated that knocking down circHIPK3 in cardiac hypertrophy
models preconditioned by transverse aortic constriction (TAC) and angiotensin II could
improve the heart functions because it blocked miR-185-3p [102].

5. The Role of circHIPK3 in Diabetes Mellitus (DM) and Its Complications

DM is a major worldwide health issue caused by multiple elements such as genes,
environment, and epigenetic factors [103]. Rezaeinejad et al. discovered that circHIPK3
level was highly elevated in Type 2 DM and circHIPK3 was associated with HbA1c, fast-
ing blood glucose, etc. [104]. Liu and colleagues detected an overexpressed circHIPK3
in the kidney specimens of diabetic nephropathy mice and cell models. Mechanistically,
circHIPK3 impeded miR-185 function and facilitated expression of cyclin D1, proliferating
cell nuclear antigen (PCNA), TGF-β1, collagen I, and fibronectin, and compounded diabetic
nephropathy [105]. Wang et al. silenced aberrantly overexpressed circHIPK3 in diabetic
cardiomyopathy models and found that the fibrosis of cardiomyocytes sharply decreased.
Further, they identified miR-29b-3p as the target of circHIPK3 and Col1a1 as well as Col3a1,
the downstream molecules [106]. CircHIPK3 was also reported by Cai et al. to be involved
in hyperglycemia and insulin insensitivity via hampering miR-192-5p and stimulating
transcription factor forkhead box O1 (FOXO1) [107]. Wang and colleagues clarified that
overexpressed circHIPK3 silenced miR-124, escalating the degree of neuropathic pain
induced by DM in mice [108]. Shan et al. verified that highly expressed circHIPK3 in
retinal vascular silenced miR-30a-3p and strengthened the functions of vascular endothelial
growth factor-C, Frizzled-4 (FZD4), and WNT2, aggravating the damage to vascular en-
dothelial cells [109]. Wang et al. found an aberrantly elevated exosomal circHIPK3 in aortic
endothelial cells of mice, strongly downregulating miR-106a-5p and stimulating expression
of forkhead box O1 (Foxo1), which as a consequence expedited proliferation of vascular
smooth muscle cells under high-glucose circumstances [110]. On the other hand, despite
the harmful overexpression of circHIPK3 as mentioned above, several studies found the
opposite answers. For instance, Cao et al. described a diminished level of circHIPK3 in
the endothelial cells of the umbilical vein and primary aortic in human DM. CircHIPK3
depletion exacerbated the injury of endothelial cells by targeting miR-124 [111]. Zhuang
et al. observed that the enhancement of circHIPK3 expression was capable of extenuating
DM-induced renal tubular epithelial cell injury by decreasing miR-326 or miR-487a-3p to
boost Sirtuin 1 (SIRT1) function [112]. Jiang et al. revealed that upregulation of circHIPK3
exerted its anti-apoptotic functions on cardiomyocytes by negatively mediating PTEN in
diabetic cardiomyopathy [113].

6. The Role of circHIPK3 in Inflammatory Diseases

The pathophysiological mechanisms of different inflammatory diseases vary consider-
ably. CircHIPK3 was confirmed to play a pivotal role in the occurrence of inflammation in
a few human diseases. Wu et al. discovered that circHIPK3 level was remarkably lifted in
cartilage specimens of human osteoarthritis, negatively targeting miR-124 and stimulating
SRY-box transcription factor 8 (SOX8) expression. Consequently, the proliferation of chon-
drocytes was notably promoted in osteoarthritis [114]. Li et al. observed a similar signaling
pathway but reached a different conclusion. Mechanistically, circHIPK3 originating from
extracellular vesicles alleviated chondrocyte damage by blocking miR-124-3p to enrich the
expression of myosin heavy-chain 9 (MYH9) [115]. In gouty arthritis, Lian and colleagues
elucidated that circHIPK3 was enriched in mononuclear cells of synovial fluid, which strik-
ingly repressed miR-561 and miR-192, and thereby facilitated pro-inflammatory functions
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of toll-like receptor 4 (TLR4) and NLR family pyrin domain containing 3 (NLRP3) [116].
Zhu et al. demonstrated that circHIPK3 expression obviously escalated along with lncGAS5
in allergic rhinitis mice models. Through silencing miR-495, the two molecules sparked
Th2 differentiation and resulted in deterioration of allergic rhinitis [117]. In spinal cord
injury (SCI), Yin et al. found that circHIPK3 was sharply diminished in SCI cell models and
circHIPK3 overexpression attenuated inflammation and neuron death by downregulating
miR-382-5p and then strengthened dual specificity phosphatase 1 (DUSP1) expression [118].

7. The Role of circHIPK3 in Other Human Diseases
7.1. Asthma

Airway remodeling plays an essential role in the occurrence and development of
asthma [119]. Lin et al. detected an augmented expression of circHIPK3 in airway smooth
muscle cells (ASMCs). In this condition, miR-326 was proved to be inhibited by circHIPK3
and its downstream factor stromal interaction molecule 1 (STIM1) was activated. As a
consequence, proliferation and migration of ASMCs was accelerated, whereas apoptosis
was retarded under this modulation [120]. Jiang and colleagues revealed another signaling
pathway induced by circHIPK3 in which miR-375, as the target factor, was silenced by
circHIPK3 and then the expression of matrix metallopeptidase 16 (MMP-16) was upregu-
lated, resulting in escalation of proliferation and migration in ASMCs [121].

7.2. Osteoporosis

Osteoporosis is an age-related disease which seriously affects daily movement of the
elderly [122]. Liang et al. showed that circHIPK3 decreased in osteoporosis models, and
that enhancing expression of circHIPK3 significantly abolished miR-124 and prevented
human osteoblasts from apoptosis caused by hydrogen peroxide [123]. Similarly, Zhu and
colleagues reported that circHIPK3 overexpression had protective effects on osteoblasts
injured by dexamethasone, in which miR-124 also participated [124].

7.3. Cataract

Cataract is a common disease of ophthalmology that has become a global burden
in the past decades [125]. Cui et al. along with Liu et al. validated that circHIPK3 level
declined in human lens epithelium cells (HLECs) and overexpressed circHIPK3 preserved
the viability of HLECs. Mechanistically, the former verified that circHIPK3 overexpression
absorbed miR-221-3p and stimulated PI3K/AKT pathway, whilst the latter demonstrated
that elevated circHIPK3 diminished miR-193a and expedited alpha A crystallin (CRYAA)
expression [126,127].

8. Conclusions

In parallel with the rapid advancement of RNA-sequencing and bioinformatics tools,
scientists have gained deeper understanding of the specific roles that circRNAs play in
human diseases. During the past decade, this has been particularly demonstrated in the
gradually clarified biogenesis and expression of circRNAs in various organs and tissues,
and the huge amount of circRNAs identified. Still, their regulatory network is rather
complicated.

circHIPK3, a member of the circRNA family, has grabbed increasing attention from
scientists. Accumulating studies are now trying to set forth the pathophysiological effects of
circHIPK3 in a wide range of human diseases, including multiple malignancies, cardiovas-
cular diseases, DM, inflammatory diseases, and others. Emerging evidence demonstrates
that circHIPK3, the same as other circRNAs, mainly acts as the so-called “miRNA sponge”,
and that the circHIPK3/miRNA/protein regulatory network is the basic modulation mode
of circHIPK3. Figure 2 highlights the miRNAs that can be sponged by circHIPK3.
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Figure 2. CircHIPK3 and the miRNAs that it sponges.

After comprehensively reviewing published reports, we summarized and integrated
the role of circHIPK3 in human diseases. In the new concept of early diagnosis and
early treatment of human cancers, the exploration of novel tumor biomarkers is of great
importance. CircHIPK3 would be an ideal choice because it is abnormally expressed in an
enormous range of different tumor cells. In other human diseases, as mentioned above,
circHIPK3 can serve as the biomarker used for early warning of pathophysiological changes
and prediction of prognosis. With the development of RNA detection technologies, we
are optimistic that the detection of circHIPK3 will be applied in clinical practice. More
importantly, the vast majority of preclinical experiments demonstrate the landscape of
circHIPK3/miRNA/protein regulatory networks in a variety of human diseases. It has
been verified that circHIPK3 plays a significant role in cell biology, not only in tumors but
also in other diseases. Therefore, we reasonably predict that drugs targeting circHIPK3 may
have a promising clinical application prospect and will further promote the individualized
and precise treatment of human diseases in the future.

At the same time we noticed that some issues in this area still need further exploration.
For instance, more efforts ought to be devoted to improving and enriching the regulatory
mechanisms of circHIPK3, because contradictory conclusions have been reached by several
similar studies regarding the expression and functions of circHIPK3 in diseases such as GC,
osteosarcoma, and MI.

In conclusion, circHIPK3, despite its pending issues, has the potential to become a
diagnostic biomarker and therapeutic target in clinical practice in the days to come.
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