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Abstract: To quickly and accurately identify the pathological features of the tongue, we developed
an intelligent tongue diagnosis system that uses deep learning on a mobile terminal. We also propose
an efficient and accurate tongue image processing algorithm framework to infer the category of the
tongue. First, a software system integrating registration, login, account management, tongue image
recognition, and doctor–patient dialogue was developed based on the Android platform. Then, the
deep learning models, based on the official benchmark models, were trained by using the tongue
image datasets. The tongue diagnosis algorithm framework includes the YOLOv5s6, U-Net, and
MobileNetV3 networks, which are employed for tongue recognition, tongue region segmentation,
and tongue feature classification (tooth marks, spots, and fissures), respectively. The experimental
results demonstrate that the performance of the tongue diagnosis model was satisfying, and the
accuracy of the final classification of tooth marks, spots, and fissures was 93.33%, 89.60%, and 97.67%,
respectively. The construction of this system has a certain reference value for the objectification and
intelligence of tongue diagnosis.

Keywords: mobile terminal; tongue; intelligence; inference; deep learning

1. Introduction

Tongue diagnosis is an important part of inspection in Traditional Chinese Medicine
(TCM) that was recognized by the World Health Organization (WHO) in 2018 [1]. The
appearance of the tongue conveys an array of valuable information for medical diagnosis in
Western and Oriental medicine. Abnormalities in tongue color and texture are commonly
examined by medical professionals for either health status checks or disease diagnosis. In
Western medicine, a tongue fissure is a typical texture malformation found to be closely
associated with Melkersson Rosenthal syndrome [2], Down’s syndrome [3], diabetes [4],
and some other kinds of diseases. In Oriental medicine, TCM practitioners can discern the
deficiency and excess of viscera, pathological states, and the region of disease by observing
tongue features such as the color, fur, tooth marks, fissures, degree of moisture, and spots.
Visual inspection of the tongue can offer an immediate, simple, cheap, and convenient
solution for medical analysis [5].

However, this is limited by the fact that the clinical competence of a tongue diagnosis
depends heavily on the experience and ability of the TCM practitioner. The diagnostic
results based on the subjective analysis of the examiners may be unreliable and inconsistent.
Therefore, it is important to have an objective and quantitative diagnostic process for
tongue diagnosis. To address this issue, the integration of computer science and tongue
diagnosis is becoming a key research direction in the field of intelligent tongue diagnosis.

Recently, with the rapid development of image processing, tongue diagnosis has made
great progress in terms of tongue image processing and feature analysis. Among the deep
learning image processing techniques used [6–8], the convolutional neural network can
learn how to detect the tongue body from pictures, segment the tongue region, which may
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reduce the influence of elements in the external environment such as the teeth and cheeks
in subsequent steps, and can also learn how to extract the characteristics of the tongue so
as to assist doctors with tongue diagnosis.

In the past few years, some tongue classification studies and computer-aided tongue
diagnosis systems [9–11] have employed deep learning technology to quantify the color
channels and texture features of the tongue body or fur to diagnose different diseases. The
authors of ref. [9] presented an automatic disease detection system based on a multi-view
instance (face, tongue, and sublingual vein) captured from an individual. The authors
of [10] used computer tongue image analysis technology to construct different nonalcoholic
fatty liver disease (NAFLD) diagnostic models to find the best diagnostic model suitable
for large-scale NAFLD screening. The authors of [11] proposed a method using the surface
and color features of tongue based on convolutional deep neural networks to increase the
diagnosis precision of gastric cancer, as well as a support vector machine. These systems
have mainly been developed based on computers or other embedded devices, so their real-
time performance and portability are insufficient, which limits the application of intelligent
tongue diagnosis systems to some extent.

In addition, some tongue processing algorithm studies have only focused on detec-
tion [12], segmentation [13,14], or classification [15,16]. The authors of [12] used a one-stage
detector SSD with MobileNetV2 to detect tongue regions. The authors of [13,14] pro-
posed a new end-to-end tongue localization and segmentation method and a fast tongue
segmentation system based on U-Net. The authors of [15] explored the convolutional
neural network method in order to classify tongue color from tongue images, and in [16],
a multiple-instance method was presented for the recognition of tooth-marked tongues.
Though these studies have made some progress, they are all independent, and there is no
tongue system on the Android platform that integrates all three modules simultaneously.

Based on the aforementioned observations, we propose and develop a tongue diag-
nosis system that includes registration, login, account management, tongue recognition,
and doctor–patient dialogue modules on the Android platform. The whole system uses a
smartphone as the platform for collecting tongue images and presenting the results. The
detection model is deployed on a smartphone to recognize the tongue when the user pre-
pares to take a picture of the tongue, and other models (segmentation and classification) are
used for tongue image processing. Finally, the system presents a tongue diagnosis report
regarding the tongue diagnosis results and treatment recommendations for users. With the
collected tongue image datasets, the conducted experiments demonstrate that our tongue
diagnosis system can achieved a convenient, intelligent, and objective tongue diagnosis,
and the idea presented here can act as a reference for the development of intelligent and
objective tongue diagnosis methods.

The remainder of this paper is organized as follows. In Section 2, we describe the
system, including its architecture, some basic models, the diagnosis process, physical
information collection, and “asking doctors” in detail. In Section 3, we discuss the methods
selected for detection, segmentation, and classification. In Section 4, the experiments are
presented, which include data splitting, the training set-up, and model evaluation. In
Section 5, the discussion and future work are presented.

2. System
2.1. Architecture

Our system is comprised of two main parts: the mobile terminal and the cloud server.
The user is instructed to take a photo with a mobile phone or select an existing tongue
image from the photo gallery and upload it to the cloud server. Then, the related models
and algorithms process the images and analyze the tongue features to generate treatment
recommendations. Finally, the results and recommendations are fed back in the form of a
diagnosis report. Figure 1 shows the architecture of the proposed tongue diagnosis system.
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Figure 1. The architecture of the proposed tongue diagnosis system.

The development environment used for this system is JDK1.8+Android studio+lntelliJ
IDEA, where the Android studio is the mobile system development platform and IntelliJ
IDEA is used to run the logic on the cloud server. The system uses Tomcat [17] as the
software server to act as the data transfer pipeline between the mobile terminal and the
cloud server.

2.2. Basic Modules

As a typical Android system, our system includes some basic modules: registration,
login, and account settings. The basic module usage is as follows. First, the user enters
his or her details, including an account name, password, gender, age, and email, to regis-
ter an account. Then, the information can be used to log in. Inside the system, there are
three fragments (the interfaces of the mobile app), including tongue diagnosis, a ques-
tionnaire and option to ask a doctor, and account settings, where the user can modify the
personal information registered.

2.3. Diagnosis Process

This part is the core of the system. It includes taking pictures, uploading and process-
ing tongue images, and generating the tongue diagnosis report. The user is instructed to
ensure he or she is under natural light or a standard D65 light source created to simulate
natural light to take pictures of the tongue. Then, the user can choose a tongue image from
the album to upload, click on the diagnosis button, and receive a tongue diagnosis report.
Figure 2a,b shows the tongue diagnosis interface and the tongue diagnosis report.
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(a) (b)

Figure 2. Interfaces of the tongue system. (a) The interface to upload tongue images. (b) The
dialog window.

2.4. More Physical Information and “Asking Doctors”

The system includes an online TCM constitution assessment system with a ques-
tionnaire form that was developed according to the standards of the Chinese Society of
Traditional Chinese Medicine. It is used to collect more physical information about the user
to supplement the tongue diagnosis. After the questionnaire, the user can select a doctor
to receive a more detailed consultation based on the results of the questionnaire and the
tongue diagnosis report. Figure 3 shows a window with doctor–patient dialogue.

Tongue diagnosis report 

Patient: Zibin Yang Accession Number: 00001 

Age: 25 Attending: Intelligent tongue diagnosis system 

Gender: Man Date of diagnosis: 18 Jul, 2022 

Diagnosis: 

Tongue category: fissured, untooth-marked, spotted: 

Clinical significance in TCM: 

- syndrome of heat in the blood system  

- deficiency of yin and blood 

- deficiency of qi and the blood 

Recommendations for the Treatment:  

a. pay attention not to overeating, try eating less cold food. 

b. eat more foods that have a spleen-strengthening effect, such as Euryale ferox, Chinese yams, 

carrots. 

Figure 3. Tongue diagnosis report.
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3. Tongue Processing Framework

Our framework includes three lightweight network models: YOLOv5s6, U-Net [18],
and MobileNetV3Large [19]. YOLOv5s6 detects whether a picture contains the tongue.
U-Net segments the tongue region to eliminate the effect of the face and other background
areas. MobileNetV3Large is used to classify the tongue’s features.

3.1. Tongue Detection

There are three steps used in traditional image detection methods: region selec-
tion, feature extraction, and feature classification. These methods have poor precision
and generalization.

Modern object detection algorithms use a deep learning model to extract features,
which preserves image information well, and the accuracy and robustness are greatly
improved compared with traditional algorithms. They can generally be assigned as single-
stage detection or multi-stage detection methods. Single-stage methods are fast and have
good real-time performance, which is not needed to identify candidate regions. However,
the level of accuracy is low. Such methods include YOLO [20–23] and SSD [24–27]. Multi-
stage models can achieve high-accuracy levels, but they are slow. Multi-stage methods
work similarly to traditional algorithms. First, the candidate regions are obtained, and
then the classifiers are used for classification. Such models include R-CNN [28], Fast R-
CNN [29], Faster R-CNN [30], and Mask R-CNN [31]. Compared with SSD, YOLO has
obvious advantages in terms of its recognition speed and accuracy. This system uses the
latest sixth version of its fifth version of YOLO, YOLOv5s6, as the detection network, which
meets the requirements of the system in terms of accuracy and real-time performance.

Figure 4 shows the architecture of YOLOv5s6 and some special modules. The network
is composed of four main parts: the input, backbone, neck, and head. The input module
is used for resizing raw images. The backbone network includes CSP1_X (where X is the
number of the ResUnit), CBS (conv + BN + SiLU, as seen in Equation (1)), and the SPPF layer,
a variant of spatial pyramid pooling (SPP) [32]. The feature pyramid network [33] (FPN)
and path aggregation network [34] (PAN) are used in the neck model. Meanwhile, the neck
contains CSP2_X (where 2× X is the number of CBS) and some standard convolution layers.
The last model is the head, which is designed to carry out predictions. Three pipelines are
used to detect objects at different scales:

SiLU(x) = x × 1
1 + e−x (1)

First, the tongue image is resized to 640 × 640 pixels. Then, the backbone extracts the
tongue region features, and the neck is used for the sampling and fusion of feature maps by
the FPN [33] and PAN [34]. Finally, the detection result is presented by the head. The result
includes a 3D tensor encoding a bounding box, objectness, and category predictions [22].
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Figure 4. The architecture of YOLOv5s6.
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3.2. Tongue Region Segmentation

The traditional image segmentation algorithm is mainly based on the pixel value of
the image. The pixel values of the image in particular regions have a certain degree of
similarity and strong correlations, while the pixel values at the edges of different regions
are discontinuous. However, the principle of these algorithms is that they must be simple,
robust, and accurate, making it difficult to meet the practical application requirements.

Deep learning algorithms can extract middle- and high-semantic information from
images and obtain precise semantic segmentation results. The classic semantic segmentation
algorithms include the FCN [35], U-Net [18], and DeepLab [36–39]. U-Net is widely used
in the field of medical image segmentation. Compared with other networks, it is more
accurate, has fewer network parameters, and has better real-time performance, allowing it
to meet the needs of mobile segmentation tasks.

U-Net is a fully convolutional network consisting of two parts, as shown in Figure 5:
the encoder and the decoder. The image is first resized to 480 × 480 pixels, and then
the encoder extracts and compresses the features from the image using multiple convo-
lution layers and max pooling layers (downsampling). Finally, it obtains feature maps
30 × 30 × 1024 pixels in size. Then, the decoder combines the bilinear (upsampling) and
convolution layers to predict a binary image (the pixel value of the tongue region is 1, and
the value of the other pixels is 0) 480 × 480 in size. There are some pipelines to transmit
features and superimpose them on subsequent layers to enhance the information and
resolution of the neural networks between the encoder and decoder [40].

Up sampling 

Max Pool 

Copy

Encoder DncoderEncoder Dncoder
Up sampling 

Max Pool 

Copy

Encoder Dncoder
Up sampling 

Max Pool 

Copy

Encoder Dncoder

Figure 5. The architecture of U-Net.

3.3. Tongue Feature Classification

Tongue feature classification can be regarded as a typical image classification task.
There are many classification networks that perform well in the field of deep learning, such
as the VGG [41], ResNet [42–45], and MobileNet [19,46,47].

MobileNets are a family of mobile-first computer vision models developed by Google.
MobileNets are all based on depthwise separable convolution, which factorizes a standard
convolution into a depthwise convolution and a 1 × 1 convolution called a pointwise
convolution. The depthwise convolution uses a filter for each channel of the former layer’s
input, and the pointwise convolution applies a 1 × 1 convolution to combine the outputs
of the feature maps.

There are three versions of the MobileNet model: MobileNetV1, V2, and V3. Mo-
bileNetV1 [46] uses width and resolution multipliers to provide a balance between accu-
racy, computational latency, and model size. MobileNetV2 [47] applies linear bottlenecks
with inverted residuals and is designed to have better memory-efficient inference. Mo-
bileNetV3 [19], the model used in our study, provides improved performance compared
with the other models and includes the Squeeze and Excitation (SE) attention module in
the bottleneck (bneck), the activation function (H–swish instead of Relu), and a redesigned
expensive layer. These features allow it to achieve a faster inference speed and higher
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accuracy than the previous versions. Figure 6 shows the bneck structure of MobileNetV3.
Table 1 shows the precise layout of MobileNetV3Large.

Table 1. Specifications for MobileNetV3Large.

Input Operator Exp Size #out SE NL s

2242 × 3 conv2d - 16 - HS 2
1122 × 16 bneck, 3 × 3 16 16 - RE 1
1122 × 16 bneck, 3 × 3 64 24 - RE 2
562 × 24 bneck, 3 × 3 72 24 - RE 1
562 × 24 bneck, 3 × 3 72 40 1 RE 2
282 × 40 bneck, 3 × 3 120 40 1 RE 1
282 × 40 bneck, 3 × 3 120 40 1 RE 1
282 × 40 bneck, 3 × 3 240 80 - RE 2
142 × 80 bneck, 3 × 3 200 80 - RE 1
142 × 80 bneck, 3 × 3 200 80 - RE 1
142 × 80 bneck, 3 × 3 184 80 - RE 1
142 × 80 bneck, 3 × 3 184 112 1 RE 1

142 × 112 bneck, 3 × 3 480 112 1 RE 1
142 × 112 bneck, 3 × 3 672 160 1 RE 2
72 × 160 bneck, 3 × 3 672 160 1 RE 1
72 × 160 bneck, 3 × 3 960 160 1 RE 1
72 × 160 conv2d, 1 × 1 960 960 - HS 1
72 × 960 avg pool, 7 × 7 - - - - 1
12 × 960 conv2d, 1 × 1 - 1280 - HS 1

12 × 1280 conv2d, 1 × 1 - k - - 1

PooL

FC,

Relu

FC,

Hard-σ 
 

1×1,

NL

3×3,

Dwise,

NL
1×1

+ 

PooL

FC,

Relu

FC,

Hard-σ 
 

1×1,

NL

3×3,

Dwise,

NL
1×1

+ 

Figure 6. The bneck structure of MobileNetV3.

The process of inference is as follows. First, the model resizes the tongue image to
224 × 224 pixels and then extracts the feature with a standard convolution and 15 bnecks.
Finally, the average pooling layer and three standard convolution layers are used for further
inference to obtain the label of the image.

3.4. Evaluation Metrics

In deep learning, a confusion matrix [48] is a 2× 2 (the number of target classes) matrix
used for evaluating the performance of a machine learning model, where the rows represent
the prediction outcomes and the columns represent the actual values. The meanings of the
four basic terminologies (TP, FP, FN, and TN) are as follows:

• TP: true positive, where the actual value is positive and the predicted value is also
positive;

• FP: False positive, where the actual value is negative and prediction is also negative;
• FN: false negative, where the actual value is negative but the prediction is positive;
• TN: true negative, where the actual value is positive but the prediction is negative.
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Tongue Detection
The metrics used to evaluate tongue detection are the precision (Equation (2)), re-

call (Equation (3)), mean average precision (mAP) (Equation (6)), and the variants of the
mAP. The mAP is the mean value for the average precision of each class, which is defined as
the area under the precision–recall (Equation (5)) curve obtained by the sampling precision
and recall, while k presents the number of tongue feature categories:

• Precision: This metric indicates the performance with respect to the false positives
(i.e., how many the model identified);

• Recall: This metric indicates a classifier’s performance with respect to the false nega-
tives (i.e., how many the model missed);

• IoU: The IoU (Equation (4)) is a standard for defining the detection accuracy of the
target objects. The IoU evaluates the performance of the model by calculating the
overlap ratio between the predicted bounding box and the true bounding box. Soverlap
is the area of intersection of the predicted bounding box and the true bounding box.
Sunion is the area of the union of the two bounding boxes. The IoU threshold is a
judgment criterion. If the IoU of the object is bigger than the threshold, then the object
is thought of as a TP; otherwise, it is an FP.

• mAP@0.5: The parameter of 0.5 means that the threshold of the IoU is set to 0.5.
Accordingly, the corresponding APs of all pictures of each category are computed and
averaged.

• mAP@0.5:0.95: The parameters of 0.5:0.95 mean that the threshold of the IoU is
increased from 0.5 to 0.95 with an increment of 0.05, and then each mAP is calculated
by Equation (6). Finally, mAP@0.5:0.95 is the average of all mAPs:

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

IoU =
Soverlap

Sunion
(4)

AP =
∫ 1

0
P(R)dR (5)

mAP =
∑k

i=1 APi

k
(6)

Tongue Region Segmentation
The metrics commonly used to evaluate tongue segmentation models are the mean pixel

accuracy (MPA) (Equation (7)) and mean intersection over union (MIoU) (Equation (8)). The
formulas used for tongue segmentation can be defined as follows, where k is the number of
pixel categories:

• MPA: the average classification accuracy for each pixel category;
• MIoU: the mean value of the intersection over union, which is a very straightforward

metric that is extremely effective for semantic segmentation:

MPA =
1

k + 1

k

∑
i=0

TP + TN
TP + FN + FP + TN

(7)

MIoU =
1

k + 1

k

∑
i=0

TP
FN + FP + TP

(8)

Tongue Feature Classification
Accuracy (Equation (9)), specificity (Equation (10)), F1-score (Equation (11)), preci-

sion (Equation (2)), and recall (Equation (3)) are often used as evaluation metrics for the
classification of tongue features, where k is the number of tongue feature categories:
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• Accuracy: a good measure when the target variable classes in the data are nearly balanced;
• Specificity: a measure that tells us the proportion of negative values that were pre-

dicted by the model as TN, which is the exact opposite of the recall;
• F1-Score: an efficient measure that combines precision and recall into a single metric

and can give a larger weight to categories of lower numbers so it can be more objective
for unbalanced datasets:

Accuracy =
1

k + 1

k

∑
i=0

TP + TN
TP + FN + FP + TN

(9)

Speci f icity =
TN

TN + FP
(10)

F1-score =
2 × Precision × Recall

Precision + Recall
(11)

4. Model Training
4.1. Data Acquisition

To train efficient and robust tongue diagnosis models, two datasets were used for
training and testing in the experiments. The first dataset was acquired by volunteers, mainly
consisting of college students, using a Canon Eos 700d camera in an enclosed environment
(standard D65 light source built inside the device). During collection, the volunteers were
instructed to naturally stretch out their tongues and ensure that their tongues were about
30–40 cm from the camera. Figure 7 shows the tongue image capture device. A total of
462 RGB 3-channel images were collected with a pixel size of 1728 × 2592. Then, the dataset
was labeled by five expert TCM practitioners from the China Academy of Chinese Medical
Sciences. If more than half of the experts thought a label was right, then the label was treated
as the actual ground truth. Ten subdatasets were created based on their characteristics,
including five tongue fur and body features, as shown in Table 2. However, due to the
serious lack of clinical samples for some tongue features, they could not be fully used
to train the tongue diagnosis model. Finally, only the samples with relatively balanced
fissures and spots were selected for the training datasets. Dataset 2 is available on the
Kaggle website. It contains 564 tooth-marked tongues and 704 unmarked tongue images.
Figures 8 and 9 shows some samples of datasets 1 and 2.

Table 2. The tongue fur and body features.

Tongue Feature

Fur Thin and thick Moist and dry Curdy and greasy Peeled True and false
Body Puffy and thin Old and tender Tooth-marked Fissured Spotted

Figure 7. The device used for acquiring tongue images.
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Figure 8. Some samples of dataset 1.

Figure 9. Some samples of dataset 2.

4.2. Data Preparation

The tongue image was initially cropped to 1728 × 1100 pixels in size (the bottom was
retained) before the experiments, because the tongue image captured by the device was
too large and contained a lot of useless information. In addition, the labels for detection
and segmentation were elaborated by TCM practitioners with the aid of labelme [49] and
labelimg [50]. The training set and testing set were produced by randomly splitting each
dataset into proportions of 80% and 20%, respectively. Meanwhile, some data augmentation
tricks were used to expand the training set and alleviate the overfitting of the model:
(1) random vertical or horizontal flipping and (2) random rotation by 90◦, 180◦, and 270◦.
Table 3 shows the number of each task image used for training and testing.

Table 3. The number of training and testing data for each task.

Task Number Train Test

Tongue image detection 462 370 92
Tongue body segment 462 370 92
Fissured/not fissured 170/292 236/234 34/58

Tooth-marked/not marked 546/704 437/564 109/140
Spotted/not spotted 210/252 168/202 42/34

4.3. Experiments and Training Set-up

Our experiments were performed on a server (Intel(R) Xeon(R) Gold 5218 CPU, 128 GB
RAM, NVIDIA GTX 2080Ti graphic card) running the operating system Ubuntu Linux
21.04. All models were created in the Python programming language (python3.7.10) using
Pytorch 1.11.0 and CUDA 11.4 for model compilation and training.

During training, a transfer learning trick based on the official Pytorch pretraining
model was used as a benchmark. The networks using mini-batch SGD were trained with
a learning rate set to 0.05, a momentum of 0.9, and a weight decay of 0.0001. The other
precise parameters used can be found in Table 4. In addition, we used Cosine (Equation (12))
as the policy for the learning rate in all tasks and cross-entropy as the loss function for
segmentation and classification. Its equation is as follows:

Cosine = min_lr + (initial_lr − min_lr) ∗ ((1 + cos(
curr_epoch

epoch
∗ pi))/2) (12)

Cosine represents the newly obtained learning rate, initial_lr and min_lr are the ranges
for the learning rate, where min_lr represents the minimum learning rate and initial_lr
represents the initial learning rate, curr_epoch represents the current training epoch, and
epoch is the the total number of training epochs [51].
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Table 4. The precise configuration of the experiments.

Task Model Epoch Batch Size

Tongue detection YOLOv5s6 40 16
Tongue region segment U-Net 100 16
Fissured or not fissured MobileNetV3 200 64

Tooth-marked or not marked MobileNetV3 200 64
Spotted or not spotted MobileNetV3 200 64

The loss function of YOLOv5s6 is in [52] and consists of three parts: the confidence loss
lobject, the classification loss lclass, and the position loss of the target box and the prediction
box lbox. The calculation equation is as follows:

loss = lobj + lclass + lbox (13)

The confidence loss lobj is used only to calculate the positive sample loss, but the
classification loss lclass calculates the loss of all samples. They all deploy binary cross-
entropy loss (BCELoss) [53] as a loss function.

The CIoU [54] is used as the regression loss function of the tongue detection task. It
can be expressed as

lbox = lCIoU = 1 − IoU +
ρ2(b, bgt)

c2 + αυ (14)

where b and bgt represent the central points of the predicted box and target box, ρ is the
Euclidean distance between b and bgt, and c is the diagonal length of the smallest enclosing
box covering the boxes. In Equations (15) and (16), υ judges the consistency of the aspect
ratio, and α is a positive tradeoff parameter. The formulae for these are as follows:

υ =
4

π2 (arctan
ωgt

hgt − arctan
ω

h
)2 (15)

α =
υ

(1 − IoU) + υ
(16)

4.4. Results

We can see that mAP@0.5 and mAP@0.5:0.95 of YOLOv5s6 could achieve values of
99.50% and 97.15%, respectively, after several epochs, and the precision and recall values
reached 99.99%, as shown in Figure 10. This demonstrates the superior performance of
YOLOv5s6 for the tongue dataset.

Figure 11 shows the U-Net training curve, where the MIoU and MPA values are up
to 97.86% and 99.10%, respectively. This result means there was almost no difference
between the true and predicted tongue areas, and the effectiveness can also be proven in
the subsequent chapters.

The accuracy curves of different tongue datasets are shown in Figure 12. The accuracy
change curves for the fissured and spotted datasets were unstable in the early epoch, while
on the contrary, the change curve of the tooth-marked datasets only had small fluctuations.
This could be because there were less data for the fissured and spotted samples than
for the samples with tooth marks. Overall, although the training curves of the three
datasets were somewhat different, they all gradually converged and achieved satisfactory
results. Table 5 expresses the highest values for accuracy and other indicators for the
same epoch. Compared with the samples with tooth marks and spots, the accuracy of the
fissured samples was better (97.67%), which indicates that MobileNetV3Large is useful for
extracting fissured features. Although the results for the tooth marks and spots were worse
than those of the fissured samples, they still basically met our demands (tooth-marked:
93.33%; spotted: 89.60%).
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(a) (b)

(c) (d)

Figure 10. The metrics of the yolov5 change curve. (a) The curve of the change in mAP@0.5. (b) The
curve of the change in mAP@0.5:0.95. (c) The recall change curve. (d) The precision change curve.

(a) (b)

Figure 11. The metrics of the U-Net change curve. (a) The curve of the change in MIoU. (b) The curve
of the change in MPA.

Figure 12. The accuracy change curve for MobileNetV3Large for different features.
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Table 5. The best results of different datasets.

Feature Tooth-Marked Spotted Fissured

Accuracy 93.33% 89.60% 97.67%
F1-score 92.61% 82.93% 96.55%
Recall 92.16% 78.46% 96.55%

Precision 93.07% 87.93% 96.55%
Specificity 94.31% 94.89% 98.25%

4.5. Model Evaluation

To verify the feasibility of the models (YOLOv5s6, U-Net, and MobileNetV3Large), the
three models were tested using some tongue images from the test datasets in different ways.

First, 10 images were used to estimate the detection model, and the results are shown
in Figure 13. The bounding boxes predicted by YOLOV5s6 surrounded the tongue body
perfectly with a high probability (>93%), thereby proving the effectiveness of YOLOv5s6.

Figure 13. The detection results for the four tongue images from YOLOv5s6.

Secondly, Figure 14 shows three rows of images. The first, second, and third rows
represent the raw, manually annotated, and model-annotated images, respectively. We
used different colored lines to distinguish between them because the difference between the
predicted and true values cannot be seen with the human eye, which verifies the admirable
performance of the segmentation model.

Figure 14. The segmented results for the four tongue images produced by U-Net. The white and
green lines indicate the segments labeled by TCM practitioners and the trained model.

Third, we used gradient-weighted class activation mapping (Grad-CAM) [55] to create
heat maps of the models. Grad-CAM is a popular technique for visualizing convolutional
neural network models. Figure 15a–c shows the heat maps of the spotted, fissured, and
tooth-marked tongues, respectively. The model was able to extract the fissure features better
than the spots and tooth marks. In the heat maps, the region of the fissures is completely
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red, but there are some blue or colorless parts in the regions with spots and tooth marks,
which means that MobileNetV3Large cannot extract these two features either. Of course,
the “lesser” performance here was compared to the fissures. For the mobile terminals, their
accuracy was also acceptable. After all, the classification accuracy was basically around
90%. This phenomenon is reflected in Table 5.

The results presented above demonstrate that the models we used had good detection,
segmentation, and classification performance.

(a)

(b)

(c)

Figure 15. Heat maps of different features: (a) spotted tongue, (b) fissured tongue, and (c) tooth-
marked tongue.

5. Discussion

Tongue diagnosis is an important part of TCM inspection and is also the core compo-
nent of TCM objectification. In recent years, there have been several studies on computer-
aided tongue diagnosis systems, but most have been based on computers, which is incon-
venient. Moreover, these systems usually focus on a certain part of the tongue, rather than
conducting a complete intelligent tongue diagnosis process.

In this study, we combined deep learning and computer system technology to develop
an intelligent tongue diagnosis system. Though the core of the system is tongue diagnosis,
it has some other interesting parts: physical information collection and “asking doctors”,
providing convenience to users to some extent. The framework of tongue diagnosis includes
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tongue detection (YOLOv5s6), tongue body segmentation (U-Net), and the classification
(MobileNetV3Large) of tongue image features. The datasets used for training and testing
included tongue images collected from 462 college students and a public dataset including
546 tooth-marked and 704 unmarked tongue images.

In our experiments, mAP@0.5:0.95 of YOLOv5s6 achieved a score of 97.15%, and
in the model test, the tongue image detection box not only perfectly circled the tongue
body but was also shown to have a high prediction probability of more than 93%, which
proves that the network has satisfying effectiveness in detecting tongue images. The MIoU,
U-Net’s evaluation metric, achieved a value of 97.86%, being almost 100%. Its effect can be
demonstrated easily through the segmentation results and was almost exactly the same as
that of the raw tongue images (there were only some subtle differences at the edges).

In the last step, MobileNetV3 was shown to have good accuracy for the tooth-marked
tongue (93.33%), the spotted tongue (89.60%), and the fissured tongue (97.67%) images. The
accuracy of the fissured tongue samples is higher than that of the other two types, and this
phenomenon can be clearly seen from the heat maps created by Grad-CAM. This may be
because there is an obvious difference between fissured tongues and non-fissured tongues
in the tongue images, so this feature is easily extracted by the model. However, there is no
obvious difference between the tooth-marked and spotted tongues or the unmarked and
non-spotted tongues. In many cases, there is a small number of tooth-marked or spotted
features in unmarked or non-spotted tongues. These two types of characteristics are more
determined by the severity of the feature rather than the presence or absence of tooth marks
or fissures in TCM.

Generally, the models achieved good performance in terms of tongue detection, tongue
segmentation, and tongue feature classification.

6. Conclusions and Future Works

By combining the advanced deep learning algorithms and computer system technol-
ogy in the field of image processing, we proposed an intelligent tongue diagnosis system
based on the mobile terminal.

In this system, the tongue should be captured by the patient with a mobile phone, and
the tongue image is initially detected and located through the object detection algorithm
(YOLOv5s6). Then, the tongue image category is identified by the segmentation and
classification algorithm (U-Net and MobileNetV3Large). Finally, a tongue diagnosis report
is generated and fed back to the patient to achieve the effect of disease diagnosis. The
experimental results and model evaluations prove that the performance, in terms of tongue
detection, tongue segmentation, and tongue feature classification, gained satisfying results,
and it has great value for intelligent and objective tongue diagnosis.

Although the system has made some progress, further work is still required. (1) The
volunteers involved in this study were mainly college students, while “peel”, “curdy and
greasy”, and “puffy and thin” tongue features usually appear among older adults and
patients. Therefore, more comprehensive data should be collected from more diverse
groups, such as patients, older adults, and people from different regions of China. (2) There
is no authoritative quantitative standard for tongue color or fur color, and the system will
quantify and classify these features to achieve a more comprehensive tongue diagnosis
system in the future. (3) The sublingual veins stem from the base of the tongue and connect
directly with the viscera, especially the heart and liver, which is also a factor that should be
considered in tongue diagnosis, and this will be considered to combine tongue features
in the future. (4) The diagnosis models can be further optimized by combining them
with an excellent optimization algorithm, such as the firefly algorithm [56] and genetic
algorithm [57].
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