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Abstract: Purpose: We evaluate the ability of Artificial Intelligence with automatic classification
methods applied to semi-quantitative data from brain 18F-FDG PET/CT to improve the differential
diagnosis between Alzheimer Disease (AD) and Mild Cognitive Impairment (MCI). Procedures: We
retrospectively analyzed a total of 150 consecutive patients who underwent diagnostic evaluation for
suspected AD (n = 67) or MCI (n = 83). All patients received brain 18F-FDG PET/CT according to
the international guidelines, and images were analyzed both Qualitatively (QL) and Quantitatively
(QN), the latter by a fully automated post-processing software that produced a z score metabolic
map of 25 anatomically different cortical regions. A subset of n = 122 cases with a confirmed
diagnosis of AD (n = 53) or MDI (n = 69) by 18–24-month clinical follow-up was finally included in
the study. Univariate analysis and three automated classification models (classification tree –ClT-,
ridge classifier –RC- and linear Support Vector Machine –lSVM-) were considered to estimate the
ability of the z scores to discriminate between AD and MCI cases in. Results: The univariate analysis
returned 14 areas where the z scores were significantly different between AD and MCI groups, and
the classification accuracy ranged between 74.59% and 76.23%, with ClT and RC providing the best
results. The best classification strategy consisted of one single split with a cut-off value of ≈ −2.0
on the z score from temporal lateral left area: cases below this threshold were classified as AD
and those above the threshold as MCI. Conclusions: Our findings confirm the usefulness of brain
18F-FDG PET/CT QL and QN analyses in differentiating AD from MCI. Moreover, the combined
use of automated classifications models can improve the diagnostic process since its use allows
identification of a specific hypometabolic area involved in AD cases in respect to MCI. This data
improves the traditional 18F-FDG PET/CT image interpretation and the diagnostic assessment of
cognitive disorders.

Keywords: Alzheimer disease; mild cognitive impairment; brain 18F-FDG PET/CT; artificial intelligence;
automatic classification

1. Introduction

Alzheimer disease (AD), the most frequent form of neurodegenerative dementia [1,2],
has an increasing incidence due to the progressive aging of the population [3]. The disease
evolution of AD is a progressive continuum starting from the subclinical phase of Mild
Cognitive Impairment (MCI), which is characterized by the absence of objective evidence of
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damage to functional autonomy [4,5]. This condition is considered high risk for AD [6]: ap-
proximately 10% of MCI cases per year progress to AD or other forms of dementia; however,
a fraction of MCI patients will not develop clinical dementia, even after 10 years [5,7,8].

It is, therefore, crucial to identify those MCI cases that are more likely to progress to AD
or other forms of dementia. This would allow direct patients toward adequate clinical trials
or prevention strategies since no disease-modifying therapy is currently available [1,9].

There are different tools to evaluate the risk of conversion to AD; among them, the
assessment of cerebral metabolism by 18F-fluoro-deoxyglucose-PET/CT (18F-FDG PET/CT)
either alone or in conjunction with other procedures is one of the most accurate [10–15].
Moreover, this procedure can be strengthened by semi-quantitative evaluation [16,17],
which provides reproducible, standardized parameters.

In recent years, Artificial Intelligence (AI) methods—including machine learning, deep
learning and radiomics—have been successfully applied to neurological diseases, particu-
larly to contribute to the diagnosis of Parkinson’s disease and dementia [18–20]. Various
authors have advocated the use of automatic classification for discriminating between AD
and MCI [21] based on MR images [22–24] or 18F-FDG PET/CT images [21,25,26], also
combined with different types of biomarkers.

The aim of our study was to evaluate further the ability of AI applied to semi-
quantitative data from 18F-FDG PET/CT of the brain to improve the diagnosis of cognitive
disorders and, in particular, AD and MCI.

2. Materials and Methods
2.1. Study Population

We retrospectively investigated 150 consecutive patients evaluated for cognitive im-
pairment (64 males, 86 females; age = 70.59 ± 9.14 [40–85] year) who underwent 18F-FDG
brain PET for differential diagnosis of MCI and dementia between November 2017 and
January 2021. Of the 150 cases, 67 had suspected AD (29 males and 38 females) and
83 suspected MCI (35 males and 48 females).

All patients were evaluated for neurological familiar diseases and neurological- and
general-related diseases (hypertension and diabetes mellitus). Laboratory analyses ex-
cluded secondary cognitive disorders, and patients with other ascertained neurological
diseases were excluded.

Before performing 18F-FDG brain PET, all patients underwent neurological exami-
nation, neuropsychological tests (Mini Mental State Examination -MMSE-) and Magnetic
Resonance Imaging (MRI), the latter in order to evaluate the morphological brain assess-
ment, especially to detect the presence of atrophy and gliosis as potential signs of white
matter chronic cerebral vasculopathy. A final subset of n = 122 cases with confirmed AD
(n = 53) or MDI (n = 69) was eventually retained for the study. The standard of reference
for the diagnosis was a clinical follow-up of 18–24 months. Table 1 reports demographic,
clinical, MMSE and MRI data of the study population; Figure 1 shows the STARD diagram
for patient selection. Figure 2 summarizes the whole workflow of the study.

Table 1. Demographic, clinical, Mini Mental State Examination (MMSE) and Magnetic Resonance
Imaging (MRI) data of Alzheimer Disease (AD) and Mild Cognitive Impairment (MCI) patients.

AD
67 cases

MCI
83 cases

Age Range
55–83 year

Mean ±standard deviation
69.5 ± 8.64

Range
40–85 year

Mean ±standard deviation
71.4 ± 9.37

Sex 29 male 38 female 35 male 48 female

Family history for
dementia Positive 25/67 Negative

42/67
Positive
38/83

Negative
45/83
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Table 1. Cont.

AD
67 cases

MCI
83 cases

Correct Mini Mental
State Examination

(MMSE)

Range
9.9/30–26/30

Mean ±standard deviation
22 ± 4.8

Range
25.3/30–30/30

Mean ±standard deviation
25.3 ± 3.04

MRI

Slight to severe atrophy: 15/67 cases Slight to severe atrophy: 17/83 cases

Focal/diffuse gliosis: 15/67 cases Focal/diffuse gliosis: 16/83 cases

Diffuse cerebrovascular lesions and atrophy:
19/67 cases

Diffuse cerebrovascular lesions and atrophy:
20/83 cases

No significant alteration: 18/67 cases No significant alteration: 30/83 cases
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2.2. 18F-FDG Brain PET/CT
2.2.1. Acquisition Protocol

Before the procedure, written informed consent was obtained from all patients, and their
data were treated in accordance with the local privacy rules and regulations. In the informed
consent, the patients signed to accept that their data could be used for scientific purposes. The
present study was in accordance with the Helsinki Doctrine on Human Experimentation.
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18F-FDG brain PET/CT was performed according to international guidelines [27].
Patients were advised to fast for at least 4 to 6 h to ensure that 18F-FDG uptake would not
be influenced by increased serum glucose levels. The latter were checked before injection,
and the radiopharmaceutical administration was allowed only if/when the serum glucose
values were <160 mg/dl.

The patients were invited to rest comfortably in a quiet, dimly-lit room for at least
15 min before 18F-FDG administration and for at least 20 min during the subsequent phase
of tracer uptake. They were also instructed not to speak, read, listen to music/sounds or
perform any other similar activities during the procedure.

A dose of 3.7 MBq/kg of 18F-FDG was then injected intravenously using a previously
positioned cannula. Images were acquired 45 min after administration for 15 min at a single
bed position using a PET/CT GE Healthcare Discovery 710 tomograph. CT parameters
were 120 kVs, 45 effective mAs and one rotation. Slice thickness was 3 mm, and the
reconstruction interval was 1.5 mm.

2.2.2. Image Reconstruction and Processing

The iterative reconstruction technique was applied for image reconstruction in axial,
coronal and sagittal planes. Three nuclear medicine specialists (SN, AS and PB), all with
at least > 20 yr experience in PET neuroimaging, independently interpreted the images.
The three specialists were informed about the potentially pathological conditions of the
patients but blind to the neurological evaluations.

18F-FDG PET/CT images were analyzed both Qualitatively (QL) and Quantitatively
(QN). For QL analysis, images were differentiated in normal and pathological metabolism,
considering as normal homogenous and symmetric tracer uptake in cortical areas of both
hemispheres and as pathological cortical areas with reduced or asymmetric tracer uptake.

QN analysis was performed on a fully-automated post-processing software (Cortex
ID SUITE, GE Healthcare, Chicago, IL, United States). All scans, spatially realigned and
normalized, were sampled at 16,000 predefined cortical locations and projected on a three-
dimensional image. The data were further normalized to the pons and compared with a
normal, age-matched segmented database. Finally, a three-dimensional stereotactic surface
projection and a Z-score metabolic map were produced [28,29]. In particular, the software
computed the radiotracer uptake at 25 predefined regions of interest (ROI), compared
the values with those of normal subjects and returned the deviation in terms of Z-score.
The ROIs corresponded to the following anatomical cortical areas: prefrontal lateral left
(L) and right (R), prefrontal medial L and R, sensorimotor L and R, anterior cingulate L
and R, posterior cingulate L and R, precuneus L and R, parietal superior L and R, parietal
inferior L and R, occipital lateral L and R, primary visual L and R, temporal lateral L and
R, temporal mesial L and R, and whole cerebellum. Z-scores <= −2.0 were considered
significant, and for each patient, the maximum negative values achieved in each ROI were
also evaluated [19,20].

For univariate analysis and automated classification models, 122 of the 150 initial cases
with the diagnosis confirmed by 18–24 months of clinical follow-up (53 AD and 69 MCI)
were considered. The remaining 28 patients were excluded from the analysis since the
initial clinical suspected diagnosis was not confirmed.

We provide the complete anonymous dataset as Supplementary Material (dataset.xls).

2.3. Statistical Analysis

Univariate analysis was performed to determine, for each area, whether there were
statistically significant differences in the z scores between the AD and MCI groups. The
analysis was based on Welch’s test at a significance level α = 0.05; Bonferroni correction
was also applied to counteract the effects of multiple tests. Pairwise correlation between
the significant features was assessed via Pearson’s correlation coefficient.
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2.4. Classification

The automated classification was carried out to estimate the ability of the z scores
from the areas with significant differences to discriminate between AD and MCI cases.
Three classification models were considered for this task: classification tree (ClT), ridge
classifier (RC) and linear Support Vector Machine (lSVM). For each classifier, optimal
hyper-parameter values (see Table 2) were determined by grid-search and four-fold cross-
validation over 50 random splits; the final accuracy was estimated via leave-one-out
cross-validation.

Table 2. Hyper-parameter tuning. Key to symbols: SC = splitting criterion; MD = maximum depth of
the classification tree; C = regularization parameter; α = regularization strength.

Classification Model Grid Search Domain Optimal Hyper-Parameters

Classification tree SC = {“entropy”, “gini”}
MD = {1, 2, 4, 6, 8}

SC = “gini”
MD = 1

Linear SVM C = {0.01, 0.1, 1.0, 10.0} C = 1.0
Ridge classifier α = {0.01, 0.1, 1.0, 10.0} α = 1.0

2.5. Execution, Data and Code Availability

Data analysis and visualization were based on Python 3.8.4 and functions from the
matplotlib, numpy, Pandas, scikit-learn and seaborn packages. The experiments were
carried out on an ASUS ProArt Laptop PC with Intel CoreTM i7-9750H @ 2.60 GHz CPU,
36 Gb RAM and Windows 10 Pro 64-bit. The total execution time was ≈2 min.

3. Results

Univariate analysis (Table 3) returned 14 areas where the z scores were significantly
different between the AD and MCI groups. These were: prefrontal lateral (L and R),
prefrontal medial (L and R), posterior cingulate (L and R), precuneus (L and R), parietal
inferior (L and R), occipital lateral L temporal lateral (L and R) and temporal mesial L.
Figure 3 reports the box-plots, strip-plots and p-values for each area.

Table 3. Results of the univariate analysis. The values report the corresponding z score (mean ± std)
for each area. Key to abbreviations: AD = Alzheimer disease, MCI = Mild Cognitive Impairment.

Area
Diagnosis

p-Value Significant
AD MCI

Prefrontal Lateral R −2.21 ± 1.23 −1.33 ± 1.54 <0.001 Yes
Prefrontal Lateral L −2.24 ± 1.18 −1.24 ± 1.38 <0.001 Yes
Prefrontal Medial R −1.73 ± 1.12 −0.94 ± 1.30 <0.001 Yes
Prefrontal Medial L −1.64 ± 0.96 −0.92 ± 1.31 <0.001 Yes

Sensorimotor R −0.93 ± 1.52 −0.53 ± 1.51 0.157 No
Sensorimotor L −0.89 ± 1.37 −0.49 ± 1.48 0.129 No

Anterior Cingulate R −1.30 ± 0.87 −0.74 ± 1.17 0.003 No
Anterior Cingulate L −1.27 ± 0.82 −0.72 ± 1.22 0.003 No
Posterior Cingulate R −2.29 ± 1.08 −1.31 ± 1.41 <0.001 Yes
Posterior Cingulate L −2.28 ± 1.10 −1.21 ± 1.42 <0.001 Yes

Precuneus R −2.48 ± 1.56 −1.44 ± 1.55 <0.001 Yes
Precuneus L −2.27 ± 1.43 −1.35 ± 1.47 <0.001 Yes

Parietal Superior R −2.15 ± 1.35 −1.38 ± 1.54 0.004 No
Parietal Superior L −1.76 ± 1.37 −1.11 ± 1.60 0.018 No
Parietal Inferior R −2.84 ± 1.32 −1.56 ± 1.56 <0.001 Yes
Parietal Inferior L −2.76 ± 1.30 −1.46 ± 1.51 <0.001 Yes
Occipital Lateral R −1.47 ± 1.50 −0.65 ± 1.48 0.004 No
Occipital Lateral L −1.70 ± 1.39 −0.75 ± 1.54 <0.001 Yes
Primary Visual R −0.69 ± 1.27 −0.41 ± 1.27 0.225 No
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Table 3. Cont.

Area
Diagnosis

p-Value Significant
AD MCI

Primary Visual L −0.68 ± 1.19 −0.32 ± 1.36 0.128 No
Temporal Lateral R −2.73 ± 1.22 −1.41 ± 1.55 <0.001 Yes
Temporal Lateral L −2.74 ± 1.10 −1.31 ± 1.46 <0.001 Yes
Temporal Mesial R −2.13 ± 1.43 −1.36 ± 1.89 0.012 No
Temporal Mesial L −2.56 ± 1.56 −1.46 ± 1.90 <0.001 Yes
Cerebellum Whole −0.49 ± 1.30 −0.37 ± 1.26 0.613 No
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The correlation analysis (Figure 4) identified 19 pairs of areas with very strong pos-
itive correlation (Pearson’s r ≥ 0.8) [30], 44 with moderately strong positive correlation
(0.6 ≤ r < 0.8) and 28 with fair positive correlation (0.3 ≤ r < 0.6). There were no pairs of
areas with poor (0.0 ≤ r < 0.3) or negative correlation. The pairs with the strongest corre-
lation (r > 0.85) were: posterior cingulate L and R, parietal inferior R and temporal lateral
R, parietal inferior L and temporal lateral L, precuneus L and parietal inferior L, prefrontal
lateral L and R, parietal inferior L and R, precuneus R and parietal inferior R, prefrontal
lateral L and parietal inferior L, precuneus L and R, and prefrontal medial L and R.

Diagnostics 2022, 12, 2425 7 of 12 
 

 

The correlation analysis (Figure 4) identified 19 pairs of areas with very strong 
positive correlation (Pearson’s r ≥ 0.8) [30], 44 with moderately strong positive correlation 
(0.6 ≤ r < 0.8) and 28 with fair positive correlation (0.3 ≤ r < 0.6). There were no pairs of 
areas with poor (0.0 ≤ r < 0.3) or negative correlation. The pairs with the strongest 
correlation (r > 0.85) were: posterior cingulate L and R, parietal inferior R and temporal 
lateral R, parietal inferior L and temporal lateral L, precuneus L and parietal inferior L, 
prefrontal lateral L and R, parietal inferior L and R, precuneus R and parietal inferior R, 
prefrontal lateral L and parietal inferior L, precuneus L and R, and prefrontal medial L 
and R. 

 
Figure 4. Correlation heat-map. Values report Pearson’s correlation coefficient (r) between the z 
scores from each pair of areas. 

As can be seen from Table 4, the classification accuracy ranged between 74.59% 
(91/122) and 76.23% (93/122), with ClT and RC providing the best results. As for the 
classification tree, it is worth noting that the best classification strategy consisted of one 
single split with a cut-off value of ≈ −2.0 on the z score from temporal lateral left area: cases 
below this threshold were classified as AD and those above the threshold as MCI (Figure 
5). 

Table 4. Classification performance. Accuracy was estimated via leave-one-out cross-validation. 

Classification Model Accuracy 
Classification tree 76.23% (93/122) 

Linear SVM 76.23% (93/122) 
Ridge classifier 74.59% (91/122) 

Figure 4. Correlation heat-map. Values report Pearson’s correlation coefficient (r) between the z
scores from each pair of areas.

As can be seen from Table 4, the classification accuracy ranged between 74.59% (91/122)
and 76.23% (93/122), with ClT and RC providing the best results. As for the classification
tree, it is worth noting that the best classification strategy consisted of one single split with
a cut-off value of ≈ −2.0 on the z score from temporal lateral left area: cases below this
threshold were classified as AD and those above the threshold as MCI (Figure 5).

Table 4. Classification performance. Accuracy was estimated via leave-one-out cross-validation.

Classification Model Accuracy

Classification tree 76.23% (93/122)
Linear SVM 76.23% (93/122)

Ridge classifier 74.59% (91/122)
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from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu),
a positive amyloid PET scan was not associated with clinical progression in the majority
(≥60%) of subjects, although it represented a significant risk factor, while a negative 18F-FDG
PET/CT scan at baseline strongly predicted clinical stability with high negative predictive
values (>0.80) for both groups of subjects. The authors concluded that 18F-FDG PET/CT
brain metabolism or other neurodegeneration measures should be coupled with amyloid-
PET to identify clinically stable individuals in order to exclude them from clinical trials.

Ottoy and co-workers [14] showed that patients with MCI progressed to AD at an
annual rate of 31%, and this could be best predicted by combining neuropsychological
testing with MRI-based Hippocampal Volume and 18F-FDG PET/CT (specificity = 96%,
sensitivity = 92%).

Chatelat et al. [39] reported that 18F-FDG PET/CT could predict the clinical outcome
in patients with MCI who already have an amyloid-PET scan. In their work, a normal
18F-FDG-PET scan was associated with long-term clinical stability–even in amyloid-positive
cases; by contrast, a pathological 18F-FDG-PET scan was indicative of an increased risk of
progressive cognitive decline even in amyloid-negative cases.

Tondo et al. [40] observed 142 subjects with amnestic MCI for 4–19 years and deter-
mined that hypometabolism patterns on baseline 18F-FDG PET/CT could predict long-term
outcomes in terms of stability or progression to AD. Specifically, they reported that limbic-
predominant hypometabolism pattern was associated with clinical stability, thus making
progression to AD very unlikely.

Arbizu et al. [32] investigated the additional value of 18F-FDG PET/CT beyond clinical
neuropsychological examination to support the diagnosis of prodromal Alzheimer’s Dis-
ease (AD), frontotemporal lobar degeneration (FTLD) and prodromal dementia with Lewy
bodies (DLB) in mild cognitive impairment (MCI) subjects. A panel of seven experts (four
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from the European Association of Nuclear Medicine and 3 from the European Academy)
provided recommendations about the incremental value of 18F-FDG PET/CT to evaluate
the etiology of MCI (AD, FTLD or DLB). The study identified 55 relevant papers, which
were obtained through a population, intervention, comparison and outcome (PICO) search
string. The meta-analysis indicated that 18F-FDG PET/CT patterns enabled the correct
identification of MCI etiology due to AD with accuracy between 58% and 100% and area-
under-curve between 0.66 and 0.97; however, no specific data were found in regard to MCI
due to FTLD or DLB.

However, the clinical use of 18F-FDG PET/CT reached the consensus recommendations
in MCI subjects for the high negative predictive value and the existence of different disease-
specific patterns of hypometabolism. Worthy of mention is that 123I-ioflupane and 123I-
MIBG can be useful in the case of prodromal DLB [41].

In this scenario, our findings confirm the ability of 18F-FDG PET/CT to differentiate
AD from MCI. Specifically, the univariate analysis (Table 1, Figure 3) indicates that AD
and MCI cases had significantly different readings in many strategic areas, in particular,
precuneus, posterior cingulate and parietal and temporal regions.

We also demonstrated the ability of automated classifiers (ClT, lSVM and RC) to
discriminate between AD and MCI based on the z scores of the significant areas. Our
classification accuracy ranged between 74.59% (91/122) and 76.23% (93/122), with ClT and
RC providing the best results. As for the classification tree, it is worth noting that the best
classification strategy consisted of one single split with a cut-off value of ≈ −2.0 on the z
score from temporal lateral left area: cases below this threshold were classified as AD and
those above the threshold as MCI (Figure 5). This suggests that radiopharmaceutical uptake
in the temporal lateral left area is the “marker” region able to discriminate AD and MCI
in our series of the patient. This is consistent with the hierarchical pathologic progression
of neurofibrillary tangles that spread from the middle temporal to the lateral temporal
areas. Indeed, tau pathology initially affects transentorhinal, followed by entorhinal, after
fusiform and lingual and later reach lateral temporal association areas [42–44].

Finally, we wish to underline the usefulness of semi-quantitative analysis to assist
visual reading, as it has been widely evidenced by international literature [15,37]. We
used Cortex ID suite, a fully automated post-processing software for quantifying 18F-FDG
PET/CT and beta-amyloid brain scans that used three-dimensional stereotactic surface
projections (3D-SSP) for statistical image analysis [45,46]. Future works may focus on the
combination of semi-quantitative analysis with direct extraction of traditional and/or deep
learning imaging features from the brain scans, as discussed in [47–49].

In conclusion, our study indicates that the combination of semi-quantitative analysis
and automatic classification can improve the diagnostic process through the identification
of the metabolically impaired areas specific to the different disorders. The development
of computer-aided diagnosis (CAD) systems is also receiving attention not only as a
means to support the diagnostic process by the calculation of cut-off values but also to
assess correlations between clinical data and pathologies. This improves traditional image
interpretation and diagnostic assessment in many neurodegenerative diseases [49–51]. The
role played by artificial intelligence techniques, i.e., Machine Learning, Radiomics and
Deep Learning is pivotal to building diagnostic models for personalized care. This is of
particular importance in neurodegenerative diseases such as AD and MCI, as they fall in a
sort of “grey area” where a clear diagnosis is often difficult. Our paper confirms the clinical
value of 18F-FDG brain PET/CT as an essential diagnostic first step to contribute to the
differential diagnosis of dementia disorders also in the amyloid PET and biological markers
(i.e., amyloid and tau protein) era since, as it is well known, accurate and early diagnosis
of Alzheimer disease in respect of Mild Cognitive Impairment is crucial for improving
the condition of patients. The combined use of semi-quantitative analysis of 18F-FDG
PET and automatic classification seems to be a supportive tool for clinical diagnosis in
order to consider effective preventive early measures to delay the appearance of the full-



Diagnostics 2022, 12, 2425 10 of 12

blown disease or to suggest further investigations such as amyloid PET or more advanced
treatments and therapeutic approaches [52,53].

Limitations and Future Work

A number of limitations apply to this paper, among which are the retrospective nature
of the study and the relatively contained sample size. Furthermore, it is to be noted that
our method relies on semi/quantitative data, the calculation of which is delegated to an
external software package (Cortex ID). Extraction of custom imaging features directly from
the PET/CT scans via hand-crafted methods and/or Deep Learning (as discussed in [54,55])
is an interesting subject for future studies.
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