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Abstract: Background: To investigate radiomics ability in predicting hepatocellular carcinoma histo-
logical degree of differentiation by using volumetric MR imaging parameters. Methods: Volumetric
venous enhancement and apparent diffusion coefficient were calculated on baseline MRI of 171 le-
sions. Ninety-five radiomics features were extracted, then random forest classification identified
the performance of the texture features in classifying tumor degree of differentiation based on their
histopathological features. The Gini index was used for split criterion, and the random forest was
optimized to have a minimum of nine participants per leaf node. Predictor importance was estimated
based on the minimal depth of the maximal subtree. Results: Out of 95 radiomics features, four top
performers were apparent diffusion coefficient (ADC) features. The mean ADC and venous enhance-
ment map alone had an overall error rate of 39.8%. The error decreased to 32.8% with the addition of
the radiomics features in the multi-class model. The area under the receiver-operator curve (AUC)
improved from 75.2% to 83.2% with the addition of the radiomics features for distinguishing well-
from moderately/poorly differentiated HCCs in the multi-class model. Conclusions: The addition of
radiomics-based texture analysis improved classification over that of ADC or venous enhancement
values alone. Radiomics help us move closer to non-invasive histologic tumor grading of HCC.

Keywords: carcinoma; hepatocellular; machine learning; neoplasm grading; diffusion magnetic
resonance imaging; contrast media

1. Introduction

Hepatocellular carcinoma (HCC) is among the most common causes of cancer in the
world, and with an increase in its incidence, it now became the second most common cause
of cancer-related mortality worldwide [1]. Despite the new surgical and chemotherapeutic
techniques in treating HCC tumors, treatment outcome is still suboptimal. Several studies
have shown that HCC tumors’ histological grade is one of the critical factors in determining
treatment outcome and patients’ overall survival [2]. For this reason, determining the
degree of differentiation in HCC tumors at presentation can help practitioners to make an
optimal treatment strategy and predict the outcomes more accurately [3]. The characteristic
features of HCC on contrast-enhanced MRI are the gold standard in HCC diagnosis [4].
Lesions are typically hypervascular in the hepatic arterial phase, with washout and rim
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enhancement in the venous/delayed phases [4]. Liver-specific contrast agents like gadoxe-
tate disodium (Gd-EOB-DTPA) can be added to conventional MR imaging, which helps to
better visualize liver vasculature and assess data regarding hepatocytes function. These
features of Gd-EOB-DTPA have resulted in improved accuracy in HCC diagnosis, as com-
pared to other MRI techniques and dynamic contrast-enhanced computed tomography [5].
Additionally, new advancements in imaging technology have provided opportunities to
investigate the microenvironment of tumors. Methods like dynamic contrast-enhanced
(DCE) MRI and diffusion-weighted imaging (DWI) facilitated the accurate examination of
tumors’ metabolism and proliferation [6]. DWI can provide information regarding tissue
cellularity, necrosis, and cell membrane integrity [7]. On the other hand, Gadoxetic acid is
a liver-specific contrast agent that has been regularly used in liver MRI scans and emerged
as an important tool for HCC diagnosis [8]. Published data regarding the role of DWI
and DCE-MRI in prediction of tumor grade and/or microvascular environment in HCC
were inconsistent. In addition, while mean apparent diffusion coefficient (ADC) values are
typically used, others have suggested the use of minimum ADC or true diffusion as possible
measures. Similarly, in the use of DCE-MRI, both quantitative and semi-quantitative param-
eters have been explored [9–12]. New developments in the field of artificial intelligence (AI)
and machine learning have made it possible to use analytical algorithms to extract a large
number of features from imaging data [13]. The use of radiomics may help build more accu-
rate and reproducible results and additionally has the potential to provide new information
regarding tumors’ texture and other characteristics [14]. Radiomics has been performed in a
variety of imaging sequences for tumor differentiation and grading, including T1-weighted
images, T2-weighted images, ADC maps, DCE maps, and T1 maps [15–18]. In this study,
we aimed to use radiomics on imaging data from volumetric ADC and volumetric venous
enhancement maps to predict the histopathologic degree of differentiation in HCC tumors.

2. Materials and Methods
2.1. Study Population

This was a monocentric, retrospective study compliant with Health Insurance Porta-
bility and Accountability Act (HIPAA) policies. Informed patient consent was waived by
our Institutional Review Board (IRB). Inclusion criteria are shown in Figure 1. A total of
129 HCC patients with baseline MRI and pathologic report were identified between January
2003 and June 2017. All lesions were hypervascular on hepatic arterial phase imaging, with
washout on portal venous/delayed phases and rim enhancement.
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2.2. Histopathology

All sample tissues were obtained following transplantation, resection, or biopsy of
the liver and stained with Hematoxylin-eosin. A pathology resident evaluated all tissue
samples, and the findings were confirmed by an attending pathologist. Both pathologists
were blinded to the MRI findings. Tumor differentiation was defined as well, moderately,
or poorly differentiated based on Edmondson–Steiner’s system [19] and using the most
dominant grading among the specimens.

2.3. MRI Technique and Tumor Segmentation

Our standard protocol was used to perform MR imaging, as shown in Table 1.

Table 1. MR scanning protocol parameters.

Parameters T1WI T2WI DWI DKI T2*WI

Sequence FSE FSE SS-EPI SS-EPI Multiecho GRE

Orientation Oblique axial Oblique axial,
sagittal and coronal Oblique axial Oblique axial Oblique axial

Repetition time (msec) 500 5629 4000 3000 100

Echo time (msec) 75 85 75 75
2.7, 6.8, 10.9, 15.1, 19.2,

23.3, 27.4, 31.5, 35.6, 39.7,
43.8, 48.0, 52.1

FOV (mm2) 380 × 380 200 × 200 400 × 400 360 × 252 240 × 192
Matrix (mm2) 320 × 224 448 × 314 160 × 128 128 × 128 192 × 160

Slice Thickness (mm) 5 3 3 3 3
Slice Gap (mm) 1 0 0 0 0

NEX 2 4 12 2 1

b-value (s/mm2) N/A N/A 0, 800 0, 1000,
2000 N/A

Bandwidth (kHz) 62.50 31.3 250 250 31.3
Scan time 1 min 44 s 4 min 4 s 2 min 32 s 5 min 9 s 1 min 22 s

GRE = gradient-recalled echo; SS-EPI = single-shot echo planar imaging; FSE = Fast spin-echo; FOV = field-of-view;
NEX = number of excitations.

Tumor segmentation was performed as reported in prior studies (Appendix A).
Up to 4 dominant lesions in each patient were segmented using semi-automated

“Random-Walker” 3D s algorithm on portal venous phase (PVP) images by a postdoctoral
fellow (—) with >2 years of experience in using the software, who was blinded to pathol-
ogy results. Then target tumor, histograms, and volumetric statistics were obtained for
volumetric ADC and VE (vADC and vVE) parameters [20,21].

2.4. Feature Extraction

An in-house-developed MATLAB-based (R2017b, Mathworks Inc., Natick, MA, USA)
program was used to perform analysis using the texture analysis toolbox (https://github.
com/mvallieres/radiomics, accessed on 12 August 2021), which extracted 95 texture fea-
tures from the segmented tumor (Figure 2).

The analysis included 9 global features, in addition to 43 features each for ADC and
VE maps: 3 histogram-based features, 9 gray-level co-occurrence matrix features (GLCM),
13 gray-level run-length matrix features (GLRLM), 13 gray-level size-zone matrix (GLSZM)
features, and 5 neighborhood gray-tone difference matrix (NGTDM) features.

Global features included the mean, maximum, and minimum voxel intensity for both
ADC and VE maps. In addition to the 6 global features above, ADC-map derived tumor
solidity, surface area, and volume were also included. The texture analysis consisted of the
following histogram-based features: Variance, skewness, and kurtosis. Histogram-based
features, unlike all other texture features, were spatially invariant such that the arrangement
of the pixels relative to one another did not affect the analysis.

The GLCM, GLRLM, GLSZM, and NGTDM matrix features included are shown in
Table 2.

https://github.com/mvallieres/radiomics
https://github.com/mvallieres/radiomics
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Table 2. Extracted Texture Features from the Tumor Segments.

Texture Feature Category Extracted Features in Each Category

Global Features Mean, Maximum, and Minimum (for both ADC and VE), Tumor Solidity, Surface Area, and Volume

Histogram-based Features Variance, Skewness, and Kurtosis

Gray Level Co-occurrence
Matrix Features (GLCM) *

Contrast, Correlation, Energy, Variance, Sum average, Dissimilarity, Autocorrelation, Entropy, and
Homogeneity

Gray Level Run Length
Matrix Features (GLRLM) **

Short-run emphasis (SRE), Long-run Emphasis (LRE), Gray-level non-uniformity (GLN),
Run-length non-uniformity (RLN), Run Percentage (RP), Low Gray-level Run Emphasis (LGRE),
High Gray-level Run Emphasis (HGRE), Short Run Low Gray-level Emphasis (SRLGE), Short Run
High Gray-level Emphasis (SRHGE), Long Run Low Gray-level Emphasis (LRLGE), Long Run
High Gray-level Emphasis (LRHGE), Gray-level Variance (GLV), and Run Length Variance (RLV)

Gray Level Size Zone Matrix
Features (GLSZM) ***

Small Zone Emphasis (SZE), Large Zone Emphasis (LZE), Gray-level non-uniformity (GLN), Zone
Size non-uniformity (ZSN), Zone percentage (ZP), Low Gray-level Zone Emphasis (LGZE), High
Gray-level Zone Emphasis (HGZE), Small Zone Low Gray-level Emphasis (SZHGE), Large Zone
Low Gray-level Emphasis (LZLGE), Large Zone High Gray-level Emphasis (LZHGE), Gray-level
Variance (GLV), and Zone Size Variance (RLV)

Neighborhood Gray-tone
Difference Matrix
(NGTDM) ****

Mean, Variance, Kurtosis, Strength, and Skewness

* GLCM elements in row (i) and column (j) represent the frequency in which a given gray level of
value (i) is horizontally adjacent to gray-level (j). For the purposes of this study, these calculations
were performed in vertical, horizontal, 45◦, and 135◦ directions, which were then averaged together
to minimize directional dependence in the samples.
** Rows (i) represent the gray-levels while the columns (j) represent the run-length, or the
consecutive number of pixels with a particular gray-level. Elements within the matrix represent the
frequency of pixel line segments with a run-length (j) and a gray-level (i).
*** Rows (i) represent the gray-levels while the columns (j) represent the 3D zone-size, or the
consecutive number of 3D zones with a particular gray-level. Elements within the matrix represent
the frequency of zones with a zone-size (j) and a gray-level (i).
**** these features provide a histogram of the absolute gradient values in the tissue segment. In this
analysis, differences in all pixel values within a tumor segment were analyzed using a 3 × 3
neighborhood

GLCM features were calculated based on a symmetric matrix with rows (i) and columns (j) ranging from 0 to Ng,
such that Ng is equal to the number of gray-levels within the image.
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2.5. Grey Level Discretization

To investigate the dependence of texture features on the number of gray levels (Ng),
texture features were extracted with resampled Ng values of 16, 32, 64, 128, and 256.
Of these, 64 was the optimal value in our analysis and provided the best classification
performance.

2.6. Statistical Analysis

In our analysis, we compare the ability of radiomics to classify tumor differentiation
compared to the mean ADC and venous enhancement values alone. Once the features
were extracted using texture analysis, statistical machine learning was used to identify
the performance of the combined set of texture features in the classification of tumors into
well, moderately, and poorly differentiated classes. We used both a two-class (well vs.
moderate/poor) and a multi-class (well vs. moderate vs. poor) random forest classification
algorithm [22] for that purpose and then tuned the algorithm to optimize the parameters.
The Gini index was used for split criterion. Parameters used in the multi-class classification
were: Minimum leaf node size = 9, number of variables tried at each split = 44, and number
of decision trees = 500. Predictor importance was estimated based on the minimal depth
of the maximal subtree. If a predictor is influential in prediction, then the variable is
likely to occur nearer to the root rather than the leaf nodes. The out-of-bag error from the
random forest algorithm was used as the metric to quantify classification error and assess
performance (Figure 3).
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error rate stabilizes after around 400 trees in our study.

OOB estimates measure the prediction error of random forest models utilizing boot-
strap aggregating (bagging). Bagging uses subsampling with replacement to create training
samples for the model to learn from. Bootstrap aggregating allows one to define an out-
of-bag estimate of the prediction performance improvement by evaluating predictions on
those observations which were not used in the building of the base learner. The ability
of the model to distinguish well from moderate/poorly differentiated tumors was quan-
tified using the area under the receiver operating characteristic (ROC) curve (AUC) and
misclassification error rates. OOB AUC’s between the models were compared to assess if
the differences in AUC were significant (pROC package). A chi-squared test was used to
compare if the differences in the OOB misclassification rates were significant.
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Stata software (Version 15, StataCorp, College Station, TX, USA) was used for the
analysis of demographic and clinical parameters. Normality of these variables was assessed
by Shapiro–Wilk test, and appropriate statistical tests were used for univariate associations.
Kruskal–Wallis and Chi square tests were used for continuous and categorical parameters,
respectively. All p-values were considered statistically significant at p < 0.05.

3. Results
3.1. Descriptive Findings

A total of 171 HCC lesions were assessed in 129 patients. The median time between
MRI and biopsy was 30 days (range 12–68 days). The median time between MRI and resec-
tion/transplantation was 191 days (range 93–316 days). All demographic characteristics
(Age, Sex, Race) were similar between well, moderate, and poorly differentiated groups.
There was no significant difference in patients’ Child scores between the three groups.
There was no correlation between lesion location and its degree of differentiation. Alpha-
Fetoprotein (AFP) was significantly higher in poorly differentiated HCCs as compared to
well and moderately differentiated HCCs (p = 0.003). Table 3 summarizes the demographic
and clinical characteristics of all patients.

Table 3. Demographic and clinical parameters in all HCC patients, and in subgroups of well,
moderately, and poorly differentiated histopathology.

Parameter Total Degree of Differentiation p Value ∆

Well Moderate Poor

Age *, years 62 (57–68) 61 (57–69) 62 (58–66) 63 (57–73) 0.68

Sex, n (%)
Male 102 (79%) 28 (21.7%) 60 (46.5%) 14 (10.8%)

0.35
Female 27 (20.9%) 11 (8.5%) 12 (9.3%) 4 (3.1%)

Race, n (%)

White 72 (55.8%) 18 (13.9%) 40 (31%) 14 (10.8%)

0.40
Black 35 (27.1%) 12 (9.3%) 20 (15.5%) 3 (2.3%)

Asian 9 (6.9%) 4 (3.1%) 4 (3.1%) 1 (0.70%)

Other 13 (10%) 5 (3.8%) 8 (6.2%) 0 (0%)

Child-Pugh score, n (%)

Child A 91 (70.5%) 31 (24%) 45 (34.8%) 15 (11.6%)

0.12Child B 33 (25.5%) 8 (6.2%) 22 (17%) 3 (2.3%)

Child C 5 (3.8%) 0 (0%) 5 (3.8%) 0 (0%)

Patients’ outcome, n (%)
Alive 71 (55%) 25 (19.3%) 39 (30.2%) 7 (5.4%)

0.12
Died 52 (40.3%) 12 (9.3%) 29 (22.4%) 11 (8.5%)

Lobe, n (%) ¥

Left 41 (31.7%) 16 (12.4%) 19 (14.7%) 6 (4.6%)

0.26Right 84 (65.1%) 23 (17.8%) 49 (37.9%) 12 (9.3%)

Both lobes 4 (3.1%) 0 (0%) 4 (3.1%) 0 (0%)

AFP *, ng/mL 22.5
(6.8–171.93) 9.2 (4–94) 22 (7.8–125) 256.3

(36.3–9621) 0.003

AFP: alpha fetoprotein
* All continuous variables are presented by their median and (interquartile ranges)
¥ Total number of lesions is more than the number of patients. More than 1 lesion was identified in
35 patients.
∆ p Values of Kruskal–Wallis test reported for continuous variables (age, AFP), and P values of chi
square test reported for categorical parameters (sex, race, Child–Pugh score, patients’ outcome, lobe)

3.2. Radiomics Feature Extraction

Of the total of 95 texture features that were extracted, ADC features performed better
in distinguishing well differentiated from poorly differentiated HCCs. The top radiomics
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features estimated from the minimum depth of the maximal subtree for the multi-class
random forest classifier were also extracted (Figure 4. Top features as obtained from
the multi-class classification algorithm were as follows: (1) Mean ADC value, (2) ADC
gray-level zone-length matrix low gray level zone emphasis, (3) enhancement NGTDM
coarseness, (4) ADC global variance, and (5) ADC gray-level zone-length matrix short zone
low gray level emphasis.
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improved differentiation between moderate and poor categories.

3.3. Classification Ability of Radiomics-Based Model

The mean ADC and venous enhancement map alone had an out-of-bag error rate of
39.8%, the error decreased to 32.8% (p < 0.01) with the addition of the radiomics features in
the multi-class model.

The AUC improved significantly from 75.2% to 83.2% (p = 0.03) with the addition
of the radiomics features for distinguishing well differentiated from moderate/poorly
differentiated HCCs in the multi-class model (Figure 5).
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Figure 5. ROC curves showing the performance of models for classifying well from moderate/poorly
differentiated tumors with (a) and without (b) radiomics-derived texture features in the multi-
class model.

In the two-class problem, the addition of radiomics features decreased the overall error
rate from 27.5% to 22.2% (p < 0.01) and increased the AUC from 77.9% to 81.5% (p = 0.18).
(Figure 6).
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4. Discussion

In this study, we used a radiomics framework that included texture extraction fol-
lowed by statistical machine learning to analyze the role of volumetric ADC and venous
enhancement maps in determining the histopathology of HCC. Using a random forest
classification algorithm, we demonstrated that ADC radiomics features were among the
top classifiers in variable importance ranking for classifying HCC tumors as compared to
VE features. From all the features, we identified five that were superior to other features in
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tumor classification. The addition of radiomics textures improved classification compared
to ADC or venous enhancement values alone, indicating a potential role for radiomics in
non-invasive histologic grading of HCC tumors.

To date, despite the major improvement in surgical and chemotherapy techniques,
survival of HCC patients remains poor. High recurrence rate is among the main reasons for
poor survival in treated patients [23]. Poorly differentiated HCCs have been reported to
have higher recurrence rates as compared to well and moderately differentiated tumors and
with worse overall survival [2]. Poorly differentiated HCCs need more extensive resection
in order to reduce the recurrence rate after surgery [24]. Additionally, more frequent follow-
ups might be needed in poorly differentiated HCCs for early detection of recurrence and
metastasis [25]. Fine-needle aspiration (FNA) biopsy is the pre-operative gold standard in
determining histopathological grading of HCC. However, it is an expensive and invasive
method with an increased risk of adverse outcomes, including bleeding, tumor seeding, and
sampling errors [26]. Due to the heterogeneous nature of HCC, tissue samples provided
by biopsy might not be a good representative of the entire tumor. Therefore, identifying a
non-invasive and accurate method to assess tissue characteristics of tumors can be of great
importance.

The radiomics’ potential role has been studied for predicting treatment response,
recurrence, and overall survival in HCC patients [27,28]. Additionally, several studies
have exploited radiomics on pre-contrast T1-W, post-contrast T1-W, T2W MRI, and also
contrast-enhanced computed tomography (CE-CT) imaging to distinguish between well
differentiated and moderately/poorly differentiated HCC [18,29,30]. Zhang et al. [31] used
DWI radiomics features in combination with T1- and T2-weighted imaging to predict
microvascular invasion (MVI) in HCC. Their results showed that radiomics features can
classify MVI HCCs and non-MVI HCCs with an accuracy of 78% in the training cohort and
82% in the validation cohort.

The results of a study by Hectors et al. showed no association between ADC radiomics
features and degree of tumor differentiation of HCCs [32]. In their study, they placed an
ROI on the HCC tumor on a single slice of the ADC map. Therefore, the results might not
be representative of the whole tumor.

Another study done by Zhou et al. used a convolutional neural network to extract deep
features from log maps resulting from three-b-value images of DWI. Their results showed
higher performance of their model for HCC grading as compared to ADC maps [26].
Gadolinium-based contrast agents have been used previously in differentiating HCC
from benign lesions [33], and studies showed inconclusive results regarding their role in
distinguishing HCC histopathological grading [34,35]. With the use of machine learning,
several studies exploited contrast-enhanced imaging in predicting early and late recurrence
in HCC patients [36,37].

We exploited random forest (RF) classifiers in our study as the machine learning
algorithm of choice. RFs have several inherent advantages over other classifiers like
statistical logistic regression techniques that are routinely used: (1) They deal well with
non-linear associations as the tree method identifies several cut-points during branching,
(2) the variables do not have to be normally distributed, (3) the algorithm provides added
robustness to prevent overfitting by randomly choosing a subset of variables at each node
and also choosing a subset of patient data for each tree, and (4) the algorithm also provides
the importance of each variable used.

There were some limitations to our study. First, this study was retrospective, and
patients’ data were recorded for several years. The variation in study setting over time
is an inherent limitation to all retrospective studies. This limitation was minimized by
adhering to consistent protocols in our institute. The other limitation is the use of either
biopsy or the entire tumor examination for histopathology grading. This could have
potentially affected our findings as the accuracy of biopsy might be lower than tumor
excision. However, we performed subgroup analysis in these two groups and also adjusted
our final multivariable models for the sampling method, which demonstrated consistent
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results. Future prospective studies with a better control of confounders can determine other
predictors of tumor grading and patients’ survival.

In conclusion, the addition of radiomics-based texture analysis improved classification
over and above that of ADC or venous enhancement values alone. Radiomics, by better
capturing the tumor microenvironment, may assist in non-invasive histologic grading of
HCC tumors.
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Appendix A

Appendix A.1. MRI Technique

Our standard protocol was used on a 1.5 T MRI scanner (Siemens MAGNETOM
Avanto, Siemens Healthineers, Erlangen, Germany) equipped with a phased-array body
coil to perform MR imaging on our patients [38]. This included T2-weighted turbo spin-
echo images (matrix size, 256 × 256; slice thickness, 8 mm; interslice gap, 2 mm; repetition
time [TR]/echo time [TE] 4500/92 ms; receiver bandwidth, 32 kHz) and breath-hold DWI
single-shot echo-planar images (matrix size, 128 × 128; slice thickness, 8 mm; interslice
gap, 2 mm; b-value = 50 and 750 s/mm2; TR 3000 ms; TE 69 ms; receiver bandwidth,
64 kHz). We also obtained breath-hold unenhanced and contrast-enhanced (0.1 mmol/kg
intravenous gadopentetate dimeglumine [Magnevist, Bayer Healthcare, Leverkuzen, Ger-
many]; injection rate 2 cc/s) T1-weighted 3D fat-suppressed spoiled-gradient-echo images
(field of view, 320–400 mm2; matrix size, 192 × 160; slice thickness, 2.5 mm; TR 5.77 ms; TE,
2.77 ms; receiver bandwidth, 64 kHz; flip angle, 10◦), in the arterial (20 s), portal (70 s), and
delayed (3 min) phases.

Appendix A.2. Segmentation

From all sequences of contrast-enhanced MR imaging, DWI, ADC maps, pre-contrast
T1-weighted images, and portal venous phase (PVP) images (T1-weighted images at
70 s) were selected and retrieved as digital imaging and communications in medicine
(DICOM) format from our picture archiving and communicating system (PACS, Carestream,
Rochester, NY, USA) and anonymized.

Primarily, the pre-contrast (P) and portal venous phase (PVP) images were transferred
to a prototype software (MR Arithmetics, Siemens Healthineers, Erlangen, Germany).
Then, P images were aligned to PVP images using a non-rigid (deformable) 3D registration
method to improve the capture range and accuracy. Then the portal venous enhancement
map was calculated as VE = (PVP − P)/P × 100 and exported in DICOM format. These
results were reported as relative intensity ratio (RIR), which showed the increase in signal
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intensity during the portal phase relative to the pre-contrast phase and are an estimate of
accumulated contrast agent in tumor cells.

Then the PVP image, the previously computed VE map, the lowest acquired b-value
(b = 50 s/mm2), and the ADC map were loaded into a prototype software (MR Multi-
parametric Analysis, Siemens Healthineers, Erlangen, Germany) for segmentation. The
low-b-value images with high anatomic detail were elastically co-registered to the PVP
images to ensure accurate anatomic alignment of images, and the resulting transformation
was also applied to the ADC map, which was calculated based on both b-values [39,40].

Up to four dominant lesions in each patient were selected. A semi-automated “Random-
Walker” 3D segmentation algorithm was used to segment the entire lesion of interest on PVP
images [20] by a postdoctoral fellow (—) with >2 years of experience in using the software
and reading abdominal MRI, who was blinded to pathology results. After semi-automated
segmentation of the target tumor, the prototype software automatically reconstructed
the tumor in three dimensions and generated the histograms and volumetric statistics as
volumetric ADC and VE (vADC and vVE) parameters [21].
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