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Abstract: Anterior cruciate ligament (ACL) tear is very common in football players, volleyball players,
sprinters, runners, etc. It occurs frequently due to extra stretching and sudden movement and causes
extreme pain to the patient. Various computer vision-based techniques have been employed for
ACL tear detection, but the performance of most of these systems is challenging because of the
complex structure of knee ligaments. This paper presents a three-layered compact parallel deep
convolutional neural network (CPDCNN) to enhance the feature distinctiveness of the knee MRI
images for anterior cruciate ligament (ACL) tear detection in knee MRI images. The performance
of the proposed approach is evaluated for the MRNet knee images dataset using accuracy, recall,
precision, and the F1 score. The proposed CPDCNN offers an overall accuracy of 96.60%, a recall rate
of 0.9668, a precision of 0.9654, and an F1 score of 0.9582, which shows superiority over the existing
state-of-the-art methods for knee tear detection.

Keywords: anterior cruciate ligament; deep learning; deep convolutional neural network; medical
image processing; tear detection

1. Introduction

Deep learning plays a crucial role in distinct medical image processing applications
such as image reconstruction, lesion and tissue segmentation, and the characterization
and disease detection of medical abnormality [1,2]. Deep learning is important in disease
detection in clinical radiology, as it diminishes the bias and errors that occur due to fatigue
and distraction. In recent years, deep learning is chiefly used for the detection of breast
mammogram masses [3]; opacities, cardiomegaly, and lung nodules in chest radiographs;
and interstitial lung disease and lung nodules in chest CT. However, the application of
deep learning is rarely addressed for MRI images because of the complexity of the analysis
and the processing of multiple sections of MRI images [4,5].

The anterior cruciate ligaments (ACLs) of the knee connect and stabilize the femur to
the tibia bone of the leg. The knee consists of four ligaments: two internal ligaments known
as anterior cruciate ligament (ACL) and posterior cruciate ligament (PCL) and two outside
ligaments known as the medial collateral ligament and lateral collateral ligament. ACL tear
injury is most common in sports persons and occurs due to sudden jerks, accidents, extra
stretching, running, etc. [6,7]. The symptoms of ACL tear injury include swelling, pain,
knee deformation, and difficulty in walking [3,4]. A radiologist’s job is to use radiological
images to discover injuries such as torn ACLs. Manually interpreting knee ACL injuries,
meniscus tears, and knee cartilage abnormalities from radiological pictures is a tedious
task [8,9]. Different tears may cause knee osteoarthritis, osteoporosis, or knee joint replace-
ment. Physical tests and biomarkers, X-rays, computed tomography (CT), mammography,
ultrasound imaging, and magnetic resonance imaging (MRI) are all used to identify an
ACL tear in the knee. As the ACL is not visible on a basic X-ray, MRI is the best option for
identifying ACL tears [10]. Sprains and partial tears of the ACL can be distinguished from
the complete and partial tears of the meniscus via MRI. An ACL is often a narrow band of
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low signal intensity that runs from the femoral end to the apex and can be visible in a single
slice or numerous slices depending on the rotation of the scanning. ACL tears must be read
in the coronal, sagittal, and axial planes to obtain the full picture of the ACL tear [11]. ACL
injuries can be detected by analyzing the structure and orientation of the ligaments in an
MRI image. ACL tears show changes in contour, and discontinuity and signal irregularity
within the injured ligament [12]. Deep learning algorithms for image analytics have been
widely applied in the medical imaging arena in recent years to handle problems such as seg-
mentation, detection, classification, and diagnosis without the intervention of a radiologist.
In the field of categorization and representation learning, the use of CNNs has received
considerable attention in recent years. CNNs are effective classifiers that have excellent
accuracies in a wide range of applications and have a large number of free parameters.
However, many deep-learning frameworks provide a poor feature representation of MRI
images because of the improper selection of network hyperparameters.

This paper presents an ACL tear detection method based on a compact parallel deep
convolutional neural network (CPDCNN) using knee MRI images. The significant contri-
butions of the paper are summarized as follows:

• The investigation of CPDCNN for improving the deep feature discrimination to
represent the complex features of knee MRI images for ACL tear detection;

• The performance estimation of the proposed CPDCNN using the public MRNet dataset
based on various evaluation metrics such as accuracy, precision, recall rate, and the
F1 score.

The rest of the paper is structured as follows: Section 2 includes prior work on ACL
tear detection of knee. Section 3 provides brief information on the proposed CPDCNN for
ACL tear detection. Section 4 gives a detailed information about experimental results and
parameter configurations. Section 5 depicts the discussions and findings from the result.
Finally, Section 6 concludes of the proposed work and provides the future scope of the
proposed method to improve its performance.

2. Related Work

Bien et al. [13] investigated DCNNs for meniscal and ACL tear detection, which
yielded an overall accuracy of 95%. Later, Lai et al. [14] utilized a combination of high-level
features obtained using DCNNs and traditional handcrafted features to tackle the dilemma
of high-resolution and insufficient datasets. It resulted in 90.2% and 90.15% accuracy
values for the ISIC2017 and HIS2828 datasets, respectively. Subsequently, Liu et al. [15]
proposed two deep CNN layers to segment the ACL from the T2 weighted MRI knee
images for the detection of structural abnormalities. The area under the ROC curve for the
ACL tear detection of the system was 0.98. Consequently, recurrent CNNs (R-CNNs) [16]
have been used for the segmentation and detection of the meniscus region. The perfor-
mance of the system depends on the segmentation of ACLs using a morphological filter,
and over-segmentation or under-segmentation may lead to poor performance. Recently,
deep learning models based on CNNs have been successfully presented for knee injury
detection [17,18]. Very few works have been presented for ACL tear detection using a larger
MRI database. Recently, various existing pre-trained deep learning architectures have been
presented for knee ligament tear detection. Azcona et al. [19] investigated ResNet18 for
ACL tear detection, which provided an overall accuracy of 93.40%. ResNet18 needs more
than 11 M trainable parameters. Further, Kara et al. [20] presented ResNet50 for ACL tear
detection in sagittal MRI images, resulting in an accuracy of 81.27%. It provided a better
spatial representation of the MRI images, but the complex model resulted in 39,636,608
trainable parameters, which limits the performance of a standalone system, and therefore,
the model needs more time for training as well as testing. Irmakci et al. [21–23] provided a
comparison of various pre-trained deep learning frameworks such as ResNet, AlexNet, and
GoogleNet for ACL tear detection. These pre-trained models were comparable for ACL
tear detection using MRI images and resulted in an area under the curve (AUC) of 0.956
(ResNet), 0.938 (AlexNet), and 0.890 (GoogleNet). Awan et al. [24] presented ResNet14
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along with the collaboration of real-time data augmentation and class balancing to tackle
the problem of over-fitting in ACL tear detection. It gave 92% accuracy for five-fold cross-
validation, along with 179,075 trainable parameters on a dataset having 917 MRI images.
However, it suffered from an extensive training burden, and results were not presented for
imbalanced classes. Tran et al. [25] presented CNNs based deep learning model to improve
the generalization capability of tear detection models, which resulted in 87.5% and 87.00%
accuracy values for the MRNet and KneeMRI datasets, respectively. Various deep learning
frameworks have been investigated for knee tear detection using MRI images, and they
have shown significant improvement over machine-learning-based knee tear detection.
However, the existing architectures used for knee tear detection have complex network
architectures, thus leading to larger training parameters [26,27]. The complex deeper deep
learning architectures require extensive hyper-parameter tuning and need larger trainable
parameters. The selection of particular convolutional filter window sizes and layers that
can provide a better spatial representation of the fine and coarse texture of the knee MRI is
a critical problem [28,29].

3. Proposed Methodology

Most of the traditional sequential DCNN networks consider the same filter kernel
size for convolutional operation in all the layers connected one after another. How-
ever, the selection of a specific filter kernel is challenging because smaller filter windows
(e.g., 3 × 3 pixels) provide a better representation of finer textures but may neglect larger
texture variations in an MRI image, whereas larger filter windows (e.g., 7 × 7 pixels) pro-
vide a superior representation of coarse textures but may neglect finer texture variations.

This paper presents a compact parallel deep convolutional neural network (CPDCNN)
that consists of three parallel segments of a DCNN with differentially sized filter kernels,
as shown in Figure 1. The first parallel layer includes a three-layered DCNN architecture
with 3 × 3 pixels convolutional filter kernels at each convolutional layer. The second
and third parallel layers consist of 5 × 5 and 7 × 7 pixels convolutional filter kernels,
respectively, at each convolutional layer. The proposed CPDCNN is aimed to provide
a better fine and coarse texture representation of knee MRI images and minimize the
computational complexity of the network. The CNN layer in each parallel segment consists
of a convolutional layer (CL), a rectified linear unit layer (ReLU), a maximum pooling layer
(MP), a fully connected layer, and a classification layer. Each parallel segment consists
of a total of 32, 64, and 128 convolutional filters at the first, second, and third CNN
layers, respectively. Figure 2 illustrates the representation of the first CNN layer of the
proposed CPDCNN.
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Figure 1. Flow diagram of proposed DCNN-based ACL tear detection.
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3.1. Convolutional Layer

In the convolutional layer, a leg knee MRI image is convolved with convolutional
filters. A convolutional layer gives a better spatial and temporal relationship between
the local regions of the leg knee image signal. It provides local connectivity between the
various pixels that help to learn the discriminative attributes of changes in the frequency
and amplitude of the leg knee image signal indicating a tear injury. In the convolutional
layer, the original knee MRI is convolved with the N number of convolutional filters.
During the convolutional operation, the filter window of w × w size is multiplied with the
w × w size local region of the image using element multiplication.

To capture the local connections of the leg knee image signal texture, the convolutional
filter window can be moved over the complete knee MRI image. To prevent the window’s
edges from disappearing, one pixel is retained in the window. Throughout the training
phase, filter weights are continually updated and initialized at random. The original spec-
trogram is zero-padded with one pixel all around the edges to keep the image’s original size.
N convolutional feature maps are produced through this convolutional procedure. Differ-
ent textural characteristics of the cloth material may be learned by each filter. The intrinsic
textural characteristics of the fabric material are represented by convolutional layers. Over
the Whole image, the convolutional kernel advances one pixel at a time. Six convolutional
kernels with a size of m × n are chosen for implementation. The initialization of each filter
kernel is random. Each value on the map is called a neuron. Equations (1) and (2) provide
the convolutional process for leg and knee images Iconv using filter F. The original image
I(m, n) having dimensions of R× C is convolved using the filter kernel F with the stride of
one pixel over the rows and columns of the knee MRI image.

Iconv(m, n) = I(m, n) ∗ F (1)

Iconv(m, n) =
R

∑
i=1

C

∑
j=1

I(i, j)F(i−m, j− n) (2)

3.2. ReLU Layer

The convolutional feature map’s nonlinear qualities are enhanced by the rectified
linear unit. The convolutional layer’s negative values might cause the features’ nonlinear
characteristics to deteriorate. The size of the feature mappings in this layer is identical to
those in the convolutional layer. The negative values in convolutional feature maps are
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rounded to 0 in this layer, and all non-negative values are left alone to create the ReLU
feature map (IReLU) as given in Equation (3).

IReLU(i, j) = max
i=1:R, j=1:C

{0, Iconv(i, j)} (3)

3.3. Batch Normalization

The BN layer normalizes the output of the convolutional layer to reduce the inter-
nal co-variance change in the network and minimize the inter-dependency between the
various layers.

3.4. Maximum Pooling Layer

By ignoring the less important features, the pooling layer assists in gathering the key
characteristics from the ReLU layer feature maps. The maximum of the local window is
chosen as the salient characteristic in maximum pooling. Additionally, pooling aids in
reducing feature dimensions. Feature maps are scaled by a factor of (1/M) for the largest
pooling window, which has M ×M dimensions. For the nonoverlapping window of size
M ×M, pooling is performed. Equation (4) may be used to calculate the maximum pooling
(IMP) for the ReLU layer output with a dimension of R × C.

IMP(i, j) = max
i=1:R−1, j=1:C−1

IReLU(i : i + 1, j : j + 1) (4)

3.5. Fully Connected Layer

In a fully connected layer, each neuron of one layer is connected to all other neurons
of the other layers to give a deeper representation of the leg knee image.

3.6. Softmax Layer

To determine the class of an unknown sample, a classification layer called Softmax
is used. The probabilities for each class are provided, and the class label with the highest
probability is chosen as the output class. Since the Adam optimization technique requires
less memory and has simple computing requirements, it is utilized to learn the CPDCNN
algorithm. It has a learning rate of 0.001, decay rates of 0.9 and 0.999, and a small positive
parameter ε = 10−8 to avoid division by zero [19].

4. Experimental Results
4.1. System Configurations and Dataset

The proposed system was implemented using Python-OpenCV programming on a
personal computer having a core i3 processor with a speed of 2.64 GHz, 4 GB RAM, and
a Windows environment. The performance of the proposed CPDCNN was evaluated on
the MRNet knee joint MRI dataset [20]. The MRNet dataset consists of MRI images in
sagittal T2, coronal T1, and axial PD views with multiple frames that consist of ACL and
meniscal tears. We selected specific frames from the dataset in the sagittal T2 view, which
consists of a complete view of normal and tear ligaments. Each image in the dataset has
a dimension of 256 × 256 pixels. The sample images from the dataset are illustrated in
Figure 3. We selected 845 normal and 450 abnormal samples to form the dataset. Out of
the total database, 70% of the data were used for training, and 30% of the data were used
for testing.
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4.2. Performance Metrics

The outcomes of the proposed scheme were validated using various quantitative and
qualitative metrics such as precision, recall, accuracy, and the F1 score. Equations (5)–(8)
are used to calculate precision, recall, accuracy, and the F1 score, respectively.

Precision =
TP

TP + FP
(5)

Recall =
TN

TN + FN
(6)

Accuracy (%) =
TP + TN

TP + TN + FP + FN
× 100 (7)

F1− Score =
2 ∗ Precision ∗ Recall

Precision + Recall
(8)

4.3. Network Parameters

The parameter specifications and feature maps of the different layers of the pro-
posed CPDCNN knee tear detection system are given in Table 1. The proposed CPDCNN
provided 393,216 trainable parameters per parallel arm and a total of 786,434 trainable
parameters for knee tear detection.

Table 1. Parameter specification of proposed CPDCNN.

Layer Filter
Dimensions Padding Stride Activation

Map
Total Trainable

Parameters

Input Image 256 × 256 × 1

Conv11 3 × 3 × 32 [1,1] [1,1] 256 × 256 × 32 4640

BN11 256 × 256× 32 64

ReLU11 256 × 256 × 32

MaxPool11 [2,2] 128 × 128 × 32

Conv12 3 × 3 × 64 [1,1] [1,1] 128 × 128 × 64 18,496

BN12 128 × 128 × 64 128

ReLU12 128 × 128 × 64

MaxPool12 [2,2] 64 × 64 × 64
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Table 1. Cont.

Layer Filter
Dimensions Padding Stride Activation

Map
Total Trainable

Parameters

Conv13 3 × 3 × 128 [1,1] [1,1] 64 × 64 × 128 73,856

BN13 64 × 64 × 128 256

ReLU13 64 × 64 × 128

MaxPool13 32 × 32 × 128

Conv21 3 × 3 × 32 [1,1] [1,1] 256×256 × 32 4640

BN21 256 × 256 × 32 64

ReLU21 256 × 256 × 32

MaxPool21 [2,2] 128 × 128 × 32

Conv22 3 × 3 × 64 [1,1] [1,1] 128 × 128 × 64 18,496

BN22 128 × 128 × 64 128

ReLU22 128 × 128 × 64

MaxPool22 [2,2] 64 × 64 × 64

Conv23 3 × 3 × 128 [1,1] [1,1] 64 × 64 × 128 73,856

BN23 64 × 64 × 128 256

ReLU23 64 × 64 × 128

MaxPool23 32 × 32× 128

Conv31 3 × 3 × 32 [1,1] [1,1] 256 × 256 × 32 4640

BN31 256 × 256 × 32 64

ReLU31 256 × 256 × 32

MaxPool31 [2,2] 128 × 128 × 32

Conv32 3 × 3 × 64 [1,1] [1,1] 128 × 128 × 64 18,496

BN32 128 × 128 × 64 128

ReLU32 128 × 128 × 64

MaxPool32 [2,2] 64 × 64 × 64

Conv33 3 × 3 × 128 [1,1] [1,1] 64 × 64 × 128 73,856

BN33 64 × 64 × 128 256

ReLU33 64 × 64 × 128

MaxPool33 32 × 32 × 128

FC (2 layers) 1 × 1 × 2 786,434

Softmax 1 × 1 × 2

Table 2 provides the experimental results for the proposed CPDCNN for various
CNN layers at each parallel arm. The use of a three-layered CPDCNN provided a better
representation of the fine and coarse textures of the knee MRI image, thus helping to
characterize such tear injuries from normal knee MRI images. The proposed CDCNN
provided accuracy values of 91.34%, 94.48%, and 96.60% for CPDCNNs that included,
respectively, one CNN with 32 filters, two CNNs with 32 and 64 filters, and three CNNs
with 32, 64, and 128 filters for convolutional operation. Increasing the CNN layers in
the parallel arm showed significant improvement in tear detection accuracy because of
improvement in deep feature representation. Figures 4 and 5 illustrate the performance of
the proposed CPDCNN for different CNNs at each parallel arm.
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Table 2. Performance of the proposed CPDCNN for different CNN layers.

Layers Accuracy Recall Precision F1 Score

CPDCNN-Adam 96.60 % 0.9668 0.9554 0.9610

CPDCNN-SGDM 95.88% 0.9589 0.9589 0.9589

CPDCNN-RMSProps 94.48% 0.9448 0.9384 0.9415
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Figure 5. Recall, precision, and F1 score for proposed CPDCNN for various layers.

The outcomes of the proposed CPDCNN-based ACL tear detection were evaluated
for the different learning algorithms such as Adam, stochastic gradient descent momentum
(SGDM), and root-mean-square propagation (RMSProps) algorithm, as described in Table 3.
It had 96.60% accuracy for the 3 × 3 pixels convolutional kernel, which is superior to other
windows. The 3 × 3 pixels window provides better spatial connectivity of the local regions
of the MRI image that help to characterize the normal and tear textures of the knee MRI
image. It provided 96.60%, 95.88%, 94.48%, and 92.92% accuracy values for the 3 × 3 pixels,
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5 × 5 pixels, 7 × 7 pixels, and 9 × 9 pixels convolutional filter kernels, respectively. The
CPDCNN-Adam provided 96.60% accuracy, which is superior to CPDCNN-SGDM (95.88)
and CPDCNN-RMSProps (94.48%). The F1 score represents a good balance between the
quantitative (recall) and qualitative (precision) performance of the CPDCNN for knee tear
detection. The F1 scores of the proposed CPDCNN were 0.9610, 0.9589, and 0.9415 for
Adam, SGDM, and RMSProps learning strategies, respectively.

Table 3. Performance comparison of proposed system with previous ACL tear detection approaches.

Author (Year) Method % Accuracy Total Trainable
Parameters

Lai et al. (2018) [14] MLP 90.15%

Bien et al. (2018) [13] DCNN 95.00%

Tsai et al. (2020) [17] EfficientNet 91.05%

Kara et al. (2021) [21] ResNet50 81.27% (Sagittal view) 39,636,608

Azcona et al. (2020) [22] ResNet18 93.40% ~11 M

Irmakci et al. (2019) [23] ResNet, AlexNet and
GoogleNet

AUC = 0.956 (ResNet),
0.938 (AlexNet) and

0.890 (googleNet)
ResNet~11 M

Proposed CPDCNN 96.60 786,434

5. Discussion

The performance of the proposed system was compared with previous deep-learning-
based ACL tear detection techniques, as shown in Table 3. The proposed system showed sig-
nificant improvement in ACL tear detection, compared with previous deep-learning-based
approaches for ACL tear detection. The proposed CPDCNNN showed an improvement of
1.68%, 3.42%, 6.09%, 7.15%, and 18.86% in ACL tear detection accuracy over DCNN [13],
ResNet18 [22], Efficient Net [17], MLP [14], and ResNet50 [21], respectively, for ACL tear
detection. The proposed CPDCNN provided a total of 786434 trainable parameters, which
are fewer compared with ResNet50 [21], ResNet18 [22], and ResNet [23]. The proposed
network’s fewer trainable parameters provide faster training, testing, and implementation
feasibility on standalone devices based on microprocessors or microcontrollers.

6. Conclusions and Future Scope

Thus, in the proposed system, CPDCNN was presented to improve feature distinc-
tiveness, thus improving the representation capability of the complex knee MRI texture
for ACL tear detection using knee MRI images. CPDCNN helps to discriminate between
a torn texture and normal textures of the ACL region in knee MRI images and provides
better local and global feature representation capability. The proposed CPDCNN had
96.60% accuracy on the Knee MRI dataset, and it helps to minimize the complexity of deep
learning frameworks and the problem of hyperparameter tuning. The results of this study
revealed that the proposed system had better performance than the previous state-of-the-art
deep-learning-based methods for ACL tear detection. In the future, the performance of
the proposed approach can be improved by using an augmented dataset. The CPDCNN
provided a total of 786,434 trainable parameters, which are lower than the existing state-of-
the-art methods, thus helping to minimize the computational complexity of the network.
The proposed system yielded 96.60% accuracy for the three-layered CPDCNN for ACL
tear detection. This method can be extended to develop a generalized framework for the
detection of multiple types and multi-stage knee tear detection using datasets with higher
volumes of data.
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