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Abstract: Insomnia disorder (ID) and obstructive sleep apnea (OSA) with respiratory arousal thresh-
old (ArTH) phenotypes often coexist in patients, presenting similar symptoms. However, the typical
diagnosis examinations (in-laboratory polysomnography (lab-PSG) and other alternatives methods
may therefore have limited differentiation capacities. Hence, this study established novel models to
assist in the classification of ID and low- and high-ArTH OSA. Participants reporting insomnia as
their chief complaint were enrolled. Their sleep parameters and body profile were accessed from the
lab-PSG database. Based on the definition of low-ArTH OSA and ID, patients were divided into three
groups, namely, the ID, low- and high-ArTH OSA groups. Various machine learning approaches,
including logistic regression, k-nearest neighbors, naive Bayes, random forest (RF), and support
vector machine, were trained using two types of features (Oximetry model, trained with oximetry
parameters only; Combined model, trained with oximetry and anthropometric parameters). In the
training stage, RF presented the highest cross-validation accuracy in both models compared with
the other approaches. In the testing stage, the RF accuracy was 77.53% and 80.06% for the oximetry
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and combined models, respectively. The established models can be used to differentiate ID, low- and
high-ArTH OSA in the population of Taiwan and those with similar craniofacial features.

Keywords: insomnia disorder; obstructive sleep apnea; in-laboratory polysomnography; respiratory
arousal threshold; random forest

1. Introduction

Obstructive sleep apnea (OSA) and insomnia are both common sleep disorders that
generally coexist in patients [1]. A review in 2019 of 37 related studies documented that
the worldwide prevalence of insomnia in patients with OSA ranged from 18% to 42% [2].
A population-based epidemiological study investigated the cultural factors that affect
insomnia by comparing the prevalence of insomnia in adolescents in the United States
and in Hong Kong, and demonstrated similar estimates of approximately 9.3% [3]. For
OSA, various regional ethnicities were analyzed, and the results suggested that Asians and
Hispanic/Mexican Americans tended to have an elevated prevalence of OSA compared
with Europeans and African Americans [4]. A 2021 review reported that the reduced
physical activity and elevated food intake due to the pandemic and consequent lockdowns
were associated with an increase in the obese population, which consequently increased
the risk of having OSA [5]. Similarly, stress induced by the pandemic has been observed to
increase the prevalence of insomnia [6]. The appropriate medical approaches for treating
these sleep disorders must be discerned.

Regarding disease characteristics, OSA induces reduced or ceased airflow during
sleep resulting from either the complete or partial obstruction in the upper airway. This
respiratory event may lead to the occurrence of arousal, altering the sleep stage from that
of deep sleep to light sleep or even awakening [7,8]. The respiratory arousal threshold
(ArTH) that determines the ventilatory drive trigger may play a substantial role in arousal
occurrence [9]. In approximately one-third of patients with OSA, a low-ArTH led to an
early arousal response and triggered a ventilatory drive that terminated the respiratory
event [10]. A high-ArTH, however, promotes breathing stability through its reduction in
undesired repetitive arousal, but consequently induces severe hypoxemia [11,12]. Insomnia
disorder (ID), as defined in the criteria of the Diagnostic and Statistical Manual of Mental
Disorders, Fifth Edition (DSM-V) [13,14], presents itself as the difficulty in initiating or
maintaining sleep and can be associated with the effects of other mental or sleep disorders.
However, individuals exhibiting the phenotypes of OSA or ID typically present similar
clinical symptoms and describe similar chief complaints, such as daytime sleepiness,
inadequate sleep quality, and depression [15]. This may limit the development of disease
diagnosis and any treatment strategy [16]. Additionally, an unsuitable sleep disorder
treatment can aggravate disease severity. For example, hypnotics, such as benzodiazepines,
have been commonly administered to alleviate insomnia [16]; however, such medication
must be avoided by patients with OSA who experience insomnia symptoms because such
medications may increase the severity of OSA [17,18]. Furthermore, hypnotics must be
cautiously used in light of how they reduce muscle tone as a side effect, which may increase
the risk of elevating the arousal threshold and desaturation frequency. Continuous positive
airway pressure (CPAP) therapy is the first-line treatment for OSA. However, patients with
low-ArTH OSA may require co-administration of hypnotics (e.g., trazodone) to increase
CPAP adherence given the discomfort of using the device may interrupt continuous sleep,
especially for those patients with OSA and low-ArTH who are easily awakened [10]. The
inappropriate use of hypnotics by patients with OSA and high-ArTH may aggravate
the severity of their OSA. Hence, the accurate classification of ID and the various ArTH
phenotypes of OSA is critical.

Overnight in-laboratory polysomnography (lab-PSG) is typically employed to deter-
mine the type of sleep disorder. Although this examination is currently the gold standard,
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concerns have been raised about the numerous factors potentially affecting the validity
of lab-PSG results. More specifically, hospital environmental factors and measurement
equipment can cause sleep disturbance that induces unusual sleep patterns. One study de-
scribed the first-night effect, which represents the tendency for individuals to demonstrate
an atypical sleep pattern when sleeping in a new environment. This effect was observed
in older adults in the United States with ID (mean age: 67.5 years) during their lab-PSG
examination [19]. Other research indicates that the sleep parameters obtained through
polysomnography (PSG) could be misestimated as a consequence of environmental factors
or the first-night effect [20]. Moreover, a related sleep field study concluded that a lab-PSG
cannot be used to evaluate insomnia [21].

Additional limitations of the lab-PSG include the lack of space in sleep laboratories
and the high costs incurred by the requirement of a technician for continuous sleep moni-
toring [22]. Hence, the waiting lists for undergoing lab-PSG are usually long, after which
treatment is initiated. In the United States, the mean waiting time for conducting sleep
disorder treatment following lab-PSG is 11.6 months [23]. To address these restrictions,
various self-rated questionnaires have been applied as low-cost alternative measurement
tools, such as the Insomnia Severity Index (ISI), Pittsburgh Sleep Quality Index (PSQI), and
Epworth Sleepiness Scale (ESS). However, because patients with OSA or ID can exhibit
similar daytime symptoms, utilizing the ISI with its cutoff point based on individuals with
insomnia may lead to the misclassification of patients with OSA [24]. A community-based
study enrolled 244 older adults in Taiwan to assess the efficacy of the PSQI in screening
for ID [25], with the results revealing that this questionnaire may be an ineffective tool
because of its low specificity. For the ESS, although a related study documented elevated
scores in patients with insomnia compared with those in the control group, the researchers
determined that this increase was not reliably predictive of an insomnia diagnosis [26]. Low-
ArTH has been defined as follows: (1) a minimum oxygen saturation measured using pulse
oximetry (SpO2-min) of less than 82.5%, (2) apnea–hypopnea index (AHI) measurement of
less than 30 events/h, and (3) percentage of hypopnea (hypopnea events/hypopnea events
+ apnea events, (F-hypopnea)) greater than 58.3% [9]. Patients are classified as having
low-ArTH if they had two of the aforementioned criteria. However, these clinical sleep
parameters are only available through lab-PSG determination, and no relative questionnaire
for classifying OSA in relation to ArTH phenotypes is available.

The home sleep test (HST) is yet another alternative portable measurement tool for differ-
entiating between OSA and ID and is often employed to diagnose insomnia or OSA or trace
the treatment improvements of these sleep disorders [27]. However, the efficacy of the device
in classifying OSA and ID remains unclear. The HST also has several limitations. For example,
according to the recommendations of the American Association of Sleep Medicine (AASM)
for using HST, this method may only be suitable for populations without comorbid medical
conditions, the presence of which could decrease its accuracy [28]. Furthermore, clinical
guidelines for employing the HST to evaluate OSA in patients who are overweight (body
mass index (BMI) > 40 kg/m2) or older adults (aged >65 years) have not been established [29].
Because of these shortcomings in the current measurements for categorizing ID and low- or
high-ArTH OSA, a novel method for precise classification is required.

Machine learning has been widely employed in different medical areas, such as in med-
ical analysis aid systems or advancing diagnostic tools [30], and has demonstrated adequate
level of accuracy. Therefore, these approaches can potentially be applied to differentiate the
aforementioned sleep disorders, which cause similar symptoms in patients. Previous stud-
ies have established several machine learning approaches based on multidimensional input
features to perform disease classification. A recent review study, for example, reported that
one of the machine learning approaches, clustering, was applied to predict the response of
patients with depression who had insomnia and were treated with antidepressants [31].
Another recent relevant study developed a neural network based on electrocardiography
signals obtained by using a single-lead device for classification of sleep disorders—ID,
epilepsy, or rapid eye movement sleep behavior disorder (RBD)—and exhibited favorable
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performance [32]. For classifying the severity of OSA, several previously developed models,
including k-nearest neighbors (kNN), and various types of neural networks based on the
time-domain variables extracted from photoplethysmography data were employed, and
the reported accuracy of their most effective model was higher than 90% [33]. Another
related study established a random forest (RF) model by using electroencephalographic
signals and achieved a high mean accuracy (over 90%) for RBD classification [34]. Those re-
searchers suggested using RF because this ensemble approach was effective in establishing
and demonstrating acceptable performance and high reliability for some training strategies,
such as boosting and bagging. Additionally, RF provided better interpretation of input
parameters compared with other supervised learning approaches (e.g., support vector
machine (SVM) or kNN). However, these published methods were trained by using open
datasets or physiological signals that may not be obtained easily. Moreover, no currently
established models that can separate ID and low- or high-ArTH OSA exist.

To develop novel tools with easily-determined features for classifying OSA pheno-
types and ID, their potential predictors must be identified. For example, body profiles,
such as BMI and neck and waist circumference, are simple to obtain and could serve as
prediction features. Obesity is not markedly associated with ID [35,36] but is with OSA [37].
Age and sex also represent suitable indicators for classification. A study exploring the
gender difference in insomnia prevalence among 9851 Hong Kong Chinese reported that
women had a higher prevalence of insomnia than men [38]. By contrast, a review study
analyzing 24 articles that focused on OSA prevalence in Asian populations revealed that
this disease was disproportionately more common in men than in women [39]. Moreover,
OSA with insomnia symptoms may be more prevalent in older adults because age is a
risk factor for the development of both diseases [40,41]. ID is diagnosed independent
of any coexisting OSA, and oximetry-related measurements may thus act as alternative
indicators for classifying ID and OSA [42]. For instance, the oxygen saturation of lab-PSG
measured using pulse oximetry (SpO2) and its derived parameter, oxygen desaturation
index (ODI-3%), have been applied as surrogates to evaluate OSA severity [43,44]. For
the OSA phenotype classification, research has demonstrated that the SpO2 level during
lab-PSG examination was highly associated with ArTH type classification [9]. Hence, the
variables of sex, age, body profiles, and oximetry parameters can be determined without the
use of complicated devices or laboratory equipment and may serve as applicable indicators
for establishing classification models.

In this study, we hypothesized that body profiles and oximetry parameters during
sleep can be used as potential features for developing classification models for low-ArTH
OSA, high-ArTH OSA, and ID. The primary objective of this study was to establish models
for two ArTH phenotypes of OSA and ID through the application of easily accessible
parameters. These models were established using various machine learning approaches,
namely, logistic regression (LR), kNN, naive Bayes (NB), RF, and SVM. We developed these
models with clinically feasible methods to perform the accurate differentiation of ID and
low- and high-ArTH OSA. Moreover, the sleep parameters of the ID group and low- and
high-OSA groups were subjected to mean comparisons to further assess sleep alteration
patterns in different sleep disorder groups.

2. Materials and Methods
2.1. Study Population

Figure 1 illustrates the data collection procedure of this study. First, we enrolled
participants who reported insomnia as their chief complaint and who underwent lab-PSG
in the sleep center of Taipei Medical University Shuang Ho Hospital (New Taipei, Taiwan)
between January 2015 and August 2020.
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widely used in sleep disorder diagnosis with adequate accuracy—for instance, AHI pre-
diction [50], OSA severity [51], and ID diagnosis [52]. A schematic illustration of the ma-
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Not eligible for the requirement

The patients with the chief 
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Figure 1. Flowchart of the data collection in the study. The data collection procedure involved included
and excluded criteria and eligible data amounts. The data of 1602 patients reporting insomnia as their
chief complaint were collected, and 1579 of them were eligible for further analysis. Abbreviation: ID:
insomnia disorder; ArTH: respiratory arousal threshold; OSA: obstructive sleep apnea.

Other inclusion criteria were as follows: (1) patients were aged 18 to 80 years; (2) the
total recording time of their lab-PSG was more than 6 h; (3) and their lab-PSG did not
apply continuous positive airway pressure or oral devices. Patients who had undergone
surgery for OSA or those with sleep disorders other than ID or OSA, such as rapid eye
movement (REM) sleep behavior disorder and limb movement disorder, were excluded.
The medical record number of eligible patients was collected for further data analysis.
Second, the sleep parameters of the lab-PSG report as well as body profiles (records
of age, gender, BMI, and neck and waist circumference) were extracted from the sleep
center database. Compared with their Caucasian counterparts of similar OSA severity,
patients from the Han Chinese population typically have a lower BMI but more restricted
craniofacial features [45]. Another study suggested that Han Chinese ethnicity tends to
manifest restricted craniofacial bone size and that Caucasians tend to be more overweight
at the same level of OSA severity [46]. A related study analyzed the craniofacial features of
severity-matched patients with OSA from various ethnicities. Those outcomes documented
that smaller craniofacial bone dimensions were observed in those of Japanese ancestry in
Brazil, whereas white Brazilians demonstrated a larger volume in the soft tissue of the
upper airway [47]. Thus, based on these prior observations, craniofacial features, which
affect the upper airway space, may influence the ArTH level and severity of OSA. However,
craniofacial features were not employed as indicators in this study because the participants
were all of a single ethnicity within the Taiwanese population. Next, deidentification of
patients’ personal information was performed, and the participants were divided into three
groups, the ID group and the low- and high-ArTH OSA groups [9,14]. Patients with an AHI
score lower than 5 or greater than or equal to 5 were classified into the ID and low-ArTH
groups, respectively, based on the relevant classification criteria [9].



Diagnostics 2022, 12, 50 6 of 17

2.2. PSG Results

In this study, either the Embla N7000 (Natus Medical, Pleasanton, CA, USA) or Embla
MPR system (Natus Medical, Pleasanton, CA, USA) was used for lab-PSG examination.
The sampling rate of the oximetry of these recording devices was set as 25 Hz. In terms
of the software, RemLogic™ 3.41 (Embla Systems, Kanata, ON, Canada) was employed
for scoring, with all sleep stages, indices (arousal index (ArI), spontaneous arousal index
(SpArI), and respiratory arousal index (RArI)), and other measurements (e.g., SpO2) scored
by a certified sleep technician in accordance with the 2017 AASM clinical guidelines [48].
Following lab-PSG completion, all data were summarized into a report for each patient.
In this study, we established models by using easily accessible sleep parameters that can
be measured in a home sleeping environment. Because hospital-based sleep parameters,
such as the AHI score (measured using nasal pressure and thermistor signals), percentage
of each sleep stage, and total sleep time (TST; measured using brainwave signals), cannot
be determined without measurement by a sleep technician, these parameters were not
employed in model construction. The oximetry data and its related parameters, which
were readily obtained without complicated devices and technician support, were applied
in this study. Specifically, the mean and minimal values of SpO2 (SpO2-mean and SpO2-min)
as well as the ratio of accumulation time for an SpO2 below 90% and total recording time,
namely, the index of SpO2-<90% (I-SpO2-<90%), were adopted [49]. Next, because the ODI-
3% was derived from the TST and may not be accurately determined without lab-PSG,
we introduced a surrogate index, the total recording time ODI-3% (ODI-3%-TRT), to infer
oxygen desaturation severity; the total number of oxygen desaturation events (>3%) was
calculated and divided by the total recording time.

2.3. Statistical Analysis

All statistical analyses in this research were conducted using SPSS Version 18.0 (IBM,
Chicago, IL, USA). The Shapiro–Wilk test was first used to examine the normality of
the obtained continuous variables. Because the data of each variable were not normally
distributed (Shapiro–Wilk test: p < 0.05), the Kruskal–Wallis H test was applied to examine
the differences in parameters among the three groups. Dunn’s test was also employed
to provide a pairwise comparison of the three groups. The level of significance for all
statistical analyses was set as 0.05.

2.4. Prediction Model

To develop models to aid in the clinical classification of ID and two OSA phenotypes
(low- or high-ArTH) based on easily accessible parameters, this study applied the machine
learning approaches of LR, kNN, NB, RF, and SVM. All of these techniques have been
widely used in sleep disorder diagnosis with adequate accuracy—for instance, AHI predic-
tion [50], OSA severity [51], and ID diagnosis [52]. A schematic illustration of the machine
learning approaches employed in this study appears in Figure 2. Technical explanations are
as follows. First, LR is a statistical method that is commonly employed in estimating proba-
bilities for classification. kNN is a clustering approach with the classification principle that
objects in the same category have similar characteristics (close proximity in the dimension
of feature). Hence, this method entails setting up the k values for referencing the type of
the k number of near neighbors. For the NB model, the classification technique is based on
the assumption of variable independence according to Bayes’ theorem, meaning that its
classification mechanism relies on the assumption that the presence of a particular feature
in a class is not relevant to the presence of any other feature. Concerning RF, this ensemble
approach consists of multiple classification and regression trees (CART), and each CART is
trained by a subpart of the dataset. When conducting a classification task, each CART in
the RF generates their predicted class, and the class that has the highest votes is considered
the prediction of RF. Last, SVM provides a decision boundary (line or hyperplane) that
separates the input features into classes.
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Figure 2. Schematic workflow. All derived data were first subjected to mean comparison for the
three disease groups. Next, all data were divided into training and testing datasets. Five matching
learning approaches were employed in this study, namely, a logistic regression (LR) model, k-nearest
neighbors (kNN), naive Bayes (NB), random forest (RF), and support vector machine (SVM). Two
types of models were established by using these five approaches, including the oximetry model,
which was only trained using oximetry parameters, and combined models, which were trained by
both oximetry and anthropometric parameters. The trained model with the highest accuracy in the
training outcomes for both model types was used to predict the testing dataset. Abbreviations: ID:
insomnia disorder; ArTH: respiratory arousal threshold; OSA: obstructive sleep apnea.

In terms of the input features, two types of datasets were employed in the training
stage, namely, the oximetry-based model (type 1: oximetry parameters only) and combined
model (type2: oximetry and body profile parameters). Figure 3 depicts the model estab-
lishment procedure. First, the dataset was divided into the training and testing datasets
at a ratio of 80:20. To prevent overfitting and evaluate the performance of the established
models, the k-fold cross-validation technique (k = 10) was applied in this phase. The setup
details of each model are described as follows. The k value of the kNN model was set as 5,
which exhibited the highest accuracy among the k values from 1 to 10. With respect to the
RF structure, the number of CART was set as 800. This value was determined through
out-of-bag sampling estimation, which can be employed to assess the convergence of the
error rate [53,54]. Additionally, the bootstrap technique was applied in the training stage of
the RF models [55]. This technique randomly samples a subset from the training dataset to
decrease training time and prevent overfitting. For SVM, the Gaussian radial basis function
was employed as the kernel function. After completion of the training and validation stages,
the models with the highest mean accuracy of validation results were used to predict the
testing dataset for evaluating model performance and its feature importance.
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employed in the training–validation stage to separately develop two types of models through five
machine learning approaches. Subsequently, the models with the highest accuracy in oximetry typing
and combined parameter typing were respectively used to predict the testing dataset for evaluating
the overall accuracy and input feature importance. Abbreviations: ID: insomnia disorder; ArTH:
respiratory arousal threshold; OSA: obstructive sleep apnea; LR: logistic regression; kNN: k-nearest
neighbors; NB: naive Bayes; RF: random forest; SVM: support vector machine; SpO2-mean: mean level
of peripheral arterial oxygen saturation measured using pulse oximetry; SpO2-min: minimum level
of peripheral arterial oxygen saturation measured using pulse oximetry; I-SpO2-<90%: index for the
ratio of the amount of time during which the peripheral arterial oxygen saturation measured using
pulse oximetry is lower than 90% to the sleep period time; ODI-3%-TRT: total number of oxygen
desaturation events (>3%) divided by the total recording time; BMI: body mass index.

2.5. Performance Evaluation

The confusion matrices were computed from the testing data predicted using the
selected model. These matrices indicated the values of true-positive, true-negative, false-
positive, and false-negative results, which were used to determine performance in relation
to accuracy, precision, recall, F1-score, and the area under the receiver operating charac-
teristic curve. In regard to feature importance, only the models that demonstrated the
highest accuracy in the oximetry and combined models were further investigated for their
input feature contribution to prediction. Different machine learning approaches were used
corresponding to specific evaluation methods. For instance, permutation importance was
applied to evaluate the feature importance for NB, SVM, and kNN [56]. Next, the method
of averaging the impurity decrease was used for assessing the variable importance of RF,
and coefficient comparison was employed for LR [57,58].

3. Results
3.1. Demographics of Study Participants

The baseline characteristics of the collected data from eligible participants are listed in
Table 1. A total of 404, 624, and 551 patients were assigned to the ID, low-ArTH phenotype
OSA, and high-ArTH OSA groups, respectively. The mean age of the ID group was
significantly lower than that of the OSA groups (p < 0.05). For the anthropometric profiles,
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among the three groups, the ID group had the lowest significant mean BMI and neck and
waist circumference values (p < 0.05), whereas the high-ArTH OSA group exhibited the
highest significant values (p < 0.05). Similarly, the mean values of the three parameters
used to define low-ArTH, namely, the AHI, SpO2-min, and F-hypopnea, among the three
groups were significantly different (p < 0.05). Furthermore, the majority of the high-ArTH
group was diagnosed as having severe OSA (87.66%).

Table 1. Demographic characteristics of the participants grouped by arousal threshold criteria.

Categorical Variable ID
(n = 404)

Low-ArTH OSA
(n = 624)

High-ArTH OSA
(n = 551)

Sex (male/female) b 137/267 361/263 422/129
Age (years) a 45.91 ± 13.81 #,4 52.42 ± 13.88 # 53.47 ± 13.02 4

BMI (kg/m2) a 23.22 ± 4.03 #,4 26.06 ± 4.52 #,* 28.08 ± 4.87 *,4

Neck (cm) a 34.05 ± 3.37 #,4 36.74 ± 3.70 #,* 38.81 ± 3.90 *,4

Waist (cm) a 80.51 ± 10.25 #,4 89.69 ± 10.73 #,* 96.13 ± 12.30 *,4

Low-ArTH criteria a

AHI (events/h) 2.21 ± 1.48 #,4 15.52 ± 7.01 #,* 49.57 ± 21.71 *,4

SpO2-min (%) 92.44 ± 2.96 #,4 86.74 ± 5.26 #,* 78.63 ± 8.30 *,4

F-hypopnea (%) 45.25 ± 10.94 #,4 91.21 ± 11.18 #,* 67.28 ± 29.79 *,4

OSA severity b

Mild, n (%) - 334 (53.53%) 30 (5.44%)
Moderate, n (%) - 290 (46.47%) 38 (6.90%)

Severe, n (%) - - 483 (87.66%)
Abbreviations: ID: insomnia disorder; ArTH: respiratory arousal threshold; OSA: obstructive sleep apnea;
AHI: apnea–hypopnea index; SpO2-min: minimum level of peripheral arterial oxygen saturation measured
using pulse oximetry; F-hypopnea: percentage of respiratory events that were hypopneas. Data are expressed
as mean ± standard deviation. a Differences among groups were assessed using the Kruskal–Wallis H test.
b Differences among groups were assessed using the chi-square test. # p-value was less than 0.05 between the ID
and low-ArTH OSA group. 4 p-value was less than 0.05 between the ID and high-ArTH OSA group. * p-value
was less than 0.05 between the low-ArTH OSA and high-ArTH OSA group.

3.2. Sleep Architecture and Oximetry

The sleep architecture and oximetry of the three groups are summarized in Table 2.
In terms of the sleep architecture, the mean sleep latency of the ID group was significantly
higher than that of the two OSA groups (p < 0.05). The average minutes of wake after sleep
onset (WASO) and the mean percentage of the wake stage in the sleep period time (SPT) of
the high-ArTH OSA group were significantly higher than those of the other two groups.
Conversely, the mean percentage of the REM stage in the SPT of the high-ArTH OSA
group was significantly lower compared with the other groups. Regarding the oximetry
parameters, the SpO2-mean and ODI-3% of the three groups were significantly different
(p < 0.05). In terms of the arousal response, the highest mean values in the ArI and RArI
were observed in the high-ArTH OSA group compared with those of the low-ArTH OSA
and ID groups (p < 0.05). Contrarily, for the SpArI, the high-ArTH OSA group had the
lowest significant mean value compared with those of the other two groups (p < 0.05).
Moreover, the patients with ID exhibited the highest significant mean SpArI.

3.3. Model Construction and Performance

Two types of models (oximetry and combined models) were established based on the
machine learning approaches of LR, kNN, NB, RF, and SVM. Table 3 presents a comparison
of the cross-validation results among the various approaches in relation to the two model
types. First, in terms of the oximetry models, the overall accuracy ranged from 77.04% to
79.57%, with the RF model exhibiting the highest value compared with those of the other
approaches. Similarly, with respect to the combined models, RF also outperformed the
other five approaches in relation to accuracy (80.6%). Therefore, this study adopted the
RF models as the selected models to classify the testing set and investigate the feature
importance of both model types.
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Table 2. Comparison of the PSG parameter results among the three groups.

Categorical Variable ID
(n = 404)

Low-ArTH OSA
(n = 624)

High-ArTH OSA
(n = 551)

Sleep architecture
Sleep onset (min) 30.42 ± 36.79 #,4 26.72 ± 31.6 # 24.93 ± 34.11 4

WASO (min) 59.67 ± 55.54 #,4 62.81 ± 49.12 #,*, 72.11 ± 55.46 *,4

Wake (% of SPT) 17.75 ± 16.35 4 18.63 ± 14.58 * 21.65 ± 17.21 *,4

NREM (% of SPT) 71.87 ± 14.37 70.97 ± 12.85 69.84 ± 15.39
REM (% of SPT) 10.38 ± 6.51 4 10.41 ± 6.43 * 8.52 ± 5.93 *,4

Oximetry parameters
SpO2-mean (%) 97.12 ± 1.12 #,4 96.01 ± 1.35 #,* 94.61 ± 2.13 *,4

ODI-3% (events/h) 1.82 ± 1.54 #,4 12.97 ± 7.61 #,* 46.99 ± 22.28 *,4

Arousal parameters
(events/h)

ArI 13.67 ± 9.07 #,4 17.34 ± 9.12 #,* 30.89 ± 18.36 *,4

SpArI 11.34 ± 7.68 #,4 9.49 ± 6.41 #,* 6.80 ± 6.50 *,4

RArI 0.62 ± 0.97 #,4 5.99 ± 4.35 #,* 22.22 ± 16.62 *,4

SnArI 0.13 ± 0.65 #,4 0.32 ± 1.02 # 0.40 ± 1.40 4

LMArI 1.40 ± 3.11 1.38 ± 2.06 1.35 ± 2.13
Abbreviations: ID: insomnia disorder; ArTH: respiratory arousal threshold; OSA: obstructive sleep apnea; WASO:
wake after sleep onset; SPT: sleep period of time; NREM: nonrapid eye movement; REM: rapid eye movement;
SpO2-mean: mean level of peripheral arterial oxygen saturation measured using pulse oximetry; ODI-3% (events/h):
greater than or equal to the 3% oxygen desaturation index; ArI: arousal index; SpArI: spontaneous arousal index;
RArI: respiratory arousal index; SnArI: snoring arousal index; LMArI: limb movement-related arousal index. Data are
expressed as mean± standard deviation. Differences among groups were assessed using the Kruskal–Wallis H test.
# p-value was less than 0.05 between the ID and low-ArTH OSA group. 4 p-value was less than 0.05 between the ID
and high-ArTH OSA group. * p-value was less than 0.05 between the low-ArTH OSA and high-ArTH OSA group.

Table 3. Comparison of the cross-validation results of the two model types established using various
machine learning approaches.

Categorical
Variable LR kNN NB RF SVM

Training set
(n) ID: 332; Low-ArTH OSA: 416; High-ArTH OSA:515

Oximetry
model

Accuracy (%) 77.28 77.67 77.20 79.57 77.04
Precision (%) 77.25 78.17 79.03 80.38 77.88

Recall (%) 78.79 78.60 78.71 80.65 77.07
F1-score (%) 77.59 78.16 77.79 80.11 77.31

AUC (%) 91.82 89.60 91.79 92.52 90.99
Combined

model
Accuracy (%) 79.65 71.65 77.75 80.60 78.70
Precision (%) 79.57 72.89 79.35 81.88 79.73

Recall (%) 81.05 71.73 78.94 81.48 78.66
F1-score (%) 79.97 72.05 78.34 81.19 78.98

AUC (%) 93.17 86.96 91.16 93.40 92.01
Abbreviations: LR: logistic regression; kNN, k-nearest neighbors; NB: naive Bayes; RF: random forest; SVM:
support vector machine; ID: insomnia disorder; ArTH: respiratory arousal threshold; OSA: obstructive sleep
apnea; AUC: area under the curve.

Table 4 presents the classification results obtained using the RF models with the testing
set; the derived confusion matrices are illustrated in Figure 4. The overall accuracy of the
combined model was relatively superior to that of the oximetry model (80.06% and 77.53%,
respectively). For the accuracy in relation to each disease type, the combined model had
relatively higher values compared with those of the oximetry model; the precision and
recall rate values of the combined model were also relatively higher. Next, because the RF
model demonstrated the highest accuracy in both the oximetry and combined models, the
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method of averaging the impurity decrease was employed for the evaluation of feature
importance. In both model types, the ODI-3%-TRT exhibited the highest values. SpO2-min
and I-SpO2-<90% had similar feature importance and consisted of the second and third
highest values; sex had the lowest values for feature importance in the combined model.

Table 4. Classification performance and feature importance of the selected models (random forest) in
the prediction of the testing set.

Categorical Variable Oximetry Model Combined Model

Testing set (n) ID: 72; Low-ArTH OSA:109; High-ArTH OSA:135
Accuracy (%) 77.53 80.06
Precision (%) 78.72 80.17

Recall (%) 78.17 81.24
F1-score (%) 78.14 80.41

AUC (%) 92.24 93.61
Feature importance (%)

SpO2-mean 5.43 6.46
SpO2-min 14.89 14.69

I-SpO2-<90% 15.10 13.40
ODI-3%-TRT 64.57 49.50

Age - 3.25
BMI - 4.06
Neck - 3.29
Waist - 4.51
Sex - 0.84

Abbreviations: ID: insomnia disorder; ArTH: respiratory arousal threshold; OSA: obstructive sleep apnea; AUC:
area under the curve; SpO2-mean: mean level of peripheral arterial oxygen saturation measured using pulse
oximetry; SpO2-min: minimum level of peripheral arterial oxygen saturation measured using pulse oximetry;
I-SpO2-<90%: the ratio of the amount of time during which the peripheral arterial oxygen saturation measured
using pulse oximetry is lower than 90% to the sleep period time; ODI-3%-TRT: total number of oxygen desaturation
events (>3%) divided by the total recording time; BMI: body mass index.
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Confusion matrices indicating the accuracy of the multiclass classification using the selected model
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model); (B) The outcomes of the classification model with the anthropometric and oximetry-related
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4. Discussion

To accurately classify ID and high- and low-ArTH OSA, this study established predic-
tion models by using various machine learning approaches based on oximetry parameters
and anthropometric features for those with craniofacial features matching that of the Tai-
wanese population. The overall accuracy of the models were compared, and the feature
importance of selected models was evaluated. Additionally, we compared the parameters
of lab-PSG, anthropometric features, and different types of arousal responses among three
disease groups.

In terms of the overall accuracy of the established modes, RF demonstrated the highest
accuracy in the oximetry and combined models. Although no evidence has indicated the
superiority of RF over other machine learning approaches, these outcomes can be partially
explained by several reasons. RF generally uses the bagging and bootstrapping method,
which eliminates classification fluctuation and reduces the time until convergence in the
training stage [59]. All of these techniques may reduce the variance in the bias of the
order, representing an exact classification strategy [60]. In addition, RF, as an ensemble
learning model, has the capacity to enhance classification accuracy through calculation
of the prediction from each single decision tree classifier, which was trained using the
partitioned dataset. This also constituted an effective method against overfitting and
reduced the sensitivity caused by certain data characteristics or noise [61]. Taken together,
the RF could be used to complement the differential diagnosis of ID and various ArTH
phenotypes of OSA.

Regarding the accuracy of the established models based on the two data types, RF
training based on combined features outperformed the RF model trained only with oximetry
data. The likely explanation for this outcome is that the anthropometric features provided
more dimensional computations when classifying sleep disorders. Although the oximetry
parameters were distinct among the patients with ID and high- and low-ArTH OSA [9,62],
computation of the anthropometric features may assist in accurate disease classification.
Studies have indicated that patients with low-ArTH OSA were more likely to have a non-
obesity characteristic, whereas patients diagnosed as having high-ArTH OSA typically
exhibited high BMI values, with men composing the majority [63,64]. Similar studies have
reported that patients with ID had no significant relation to obesity, with further research
required to verify associations [35,65]. These prior observations were consistent with the
considerable differences in the body profile measurements of our enrolled groups in this
study. Because significant differences in both body profiles and oximetry details among
patients with ID and low- or high-ArTH were noted, computation of the oximetry and
anthropometric features together may increase the classification accuracy of these three
sleep disorder diseases compared to using oximetry data alone.

In terms of the differences in the sleep architecture and arousal response among
the three groups, the high-ArTH group presented the highest values for the WASO, ArI,
and RArI. These findings may correspond with the high-ArTH group having the most
oxygen desaturation events and lowest SpO2-mean. The majority of respiratory events
were associated with arousal occurrences, which increase dilator muscle activity during
the airway obstruction phase [66]. However, this mechanism may alter the sleep stage,
which then constitutes brief awakenings that increase the accumulation of WASO. For the
patients with ID, the highest SpArI values were observed, which may be attributable to
these patients experiencing elevated activity in terms of their high-frequency brainwave
signals, resulting in a marked increase in SpArI occurrences [67]. Furthermore, the ID
group exhibited the longest sleep onset time; this is in line with the common ID symptom
of experiencing difficulty falling asleep [68]. Other research has documented results similar
to the current outcomes. For instance, a systematic review outlined the outcomes of several
related studies and revealed that patients with ID exhibited more frequent arousal response
and increased WASO compared with healthy sleep control groups [69]. Overall, sleep
patterns varied among patients with ID and low- and high-ArTH OSA and included
different physiological mechanisms and reactions.
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Several limitations must be considered in further research. First, the dataset employed
in the present study was limited to a single ethnicity (Taiwanese population), and anthro-
pometric parameters rather than craniofacial features were assessed despite the effects of
craniofacial factors on OSA symptoms in Asian populations [45]. Therefore, the established
models are applicable only to populations with craniofacial features matching those of
the Taiwanese population. In clinical practice, PSG serves as the gold standard in deter-
mining sleep patterns for the diagnosis of sleep disorders. Nevertheless, every PSG result
determination is conducted through manual scoring by different technicians, potentially
resulting in PSG scoring variability and affecting the accuracy of the sleep disorder diag-
nosis [70]. Although the current dataset was derived from one sleep center that regularly
provides interscore training to maintain PSG result consistency, scoring variability may still
influence the examination results. The first-night effect, which manifests during the first
night of PSG from the change in sleeping environment, and its characterizations can alter
sleep architecture and physiology, possibly leading to inaccurate PSG outcomes [19]. To
minimize PSG outcome bias, future studies could conduct multiple nights of PSG. Another
limitation was the lack of background information about the interaction of OSA and ID.
These sleep disorders are recognized as multifactorial, and lifestyle factors (e.g., tobacco
and alcohol use, menopausal status, and chronic illness) have been associated with both
OSA and ID [71]. Next, this retrospective study employed a database that only generally
documented patients who had insomnia complaints, instead of detailed reports of their
insomnia subphenotypes, such as nocturnal awakenings, short sleep maintenance, or other
conditions. Therefore, this limited the present study to obtaining the results of classifying
different OSA phenotypes and insomnia. Hence, future studies with data on the diagno-
sis of specific subphenotypes of insomnia and OSA should determine the possibility of
misclassification between these sleep disorders.

Model improvement is another issue that should be addressed in the next step. Models
may exhibit more accurate classification outcomes based on comprehensive input features.
However, because of the retrospective nature of the study, several factors that were asso-
ciated with ID and OSA were not obtained. For instance, the interviews for completing
various questionnaires, such as the ISI, PSQI, and ESS, were not performed. Additionally,
the descriptions of clinical symptoms in medical records were not in a uniform format,
which prevented this study from determining the subjective variables relating to clinical
symptoms, such as self-reported snoring level, frequency of breathing pauses, and other
symptoms. However, these clinical responses may provide additional significant numeric
features for classifying ID and OSA. With the training process based on such additional de-
rived data, the established models may be able to demonstrate higher overall accuracy and
thus exhibit improved performance. Additionally, it may be worthwhile to investigate the
internal associations and the effect on classification of the aforementioned factors. Hence,
a dataset with comprehensive dimensional features including information on personal
habits, comorbidities, and additional anthropometric parameters must be compiled prior
to the development of a novel classification model. Comprehensive measurement that
considers objective measurements and subjective parameters, including self-rated sleep
pattern, questionnaire outcomes, and other parameters, should be employed.

5. Conclusions

To develop models for differentiating OSA phenotypes and ID with easily accessi-
ble parameters, the present study collected a dataset including 1579 Taiwanese patients
with insomnia patterns. Two types of models, including one type only applying oximetry
parameters and one type applying both oximetry and anthropometric parameters, were
established through the use of five machine learning approaches (LR, kNN, NB, RF, and
SVM). RF demonstrated the highest accuracy among all the approaches in both types
of models, and ODI-3%-TRT had the highest feature importance on classification. The
combined-type RF model was superior to that of the oximetry-type RF model. Additionally,
various significant differences in anthropometry and sleep parameters among the three
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disease groups were observed. These established models can be applied to patients with
craniofacial features matching those of the Taiwanese population to assist in the classifica-
tion of ID and low- and high-ArTH OSA and can potentially be used in medical institutions
lacking PSG facilities because the models are based on easily obtainable parameters.
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Abbreviations

ID insomnia disorder
OSA obstructive sleep apnea
AASM American Association of Sleep Medicine
AHI apnea–hypopnea index
ArI arousal index
ArTH respiratory arousal threshold
AUC area under the curve
BMI body mass index
CART multiple classification and regression trees
CPAP continuous positive airway pressure
ESS Epworth Sleepiness Scale
F-hypopnea hypopnea events / hypopnea events + apnea events
HST home sleep test
ISI Insomnia Severity Index
I-SpO2-<90% the ratio of accumulation time for an SpO2 below 90% and total recording time
kNN k-nearest neighbors
lab-PSG in-laboratory polysomnography
LMArI limb movement-related arousal index
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LR logistic regression
NB naive Bayes
NREM nonrapid eye movement
ODI-3% oxygen desaturation index ≥ 3%
ODI-3%-TRT the total recording time ODI-3%
PSG polysomnography
PSQI Pittsburgh Sleep Quality Index
RArI respiratory arousal index
RBD rapid eye movement sleep behavior disorder
REM rapid eye movement
RF random forest
SnArI snoring arousal index
SpO2 peripheral arterial oxygen saturation measured using pulse oximetry
SPT sleep period of time
SVM support vector machine
TST total sleep time
TMU-JIRB Taipei Medical University–Joint Institutional Review Board
WASO wake after sleep onset
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