
����������
�������

Citation: Aboutalebi, H.; Pavlova, M.;

Shafiee, M.J.; Sabri, A.; Alaref, A.;

Wong, A. COVID-Net CXR-S: Deep

Convolutional Neural Network for

Severity Assessment of COVID-19

Cases from Chest X-ray Images.

Diagnostics 2022, 12, 25. https://

doi.org/10.3390/diagnostics12010025

Academic Editor: Tim Duong

Received: 21 November 2021

Accepted: 13 December 2021

Published: 23 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diagnostics

Article

COVID-Net CXR-S: Deep Convolutional Neural Network for
Severity Assessment of COVID-19 Cases from Chest
X-ray Images

Hossein Aboutalebi 1,2,*, Maya Pavlova 3 , Mohammad Javad Shafiee 2,3,4, Ali Sabri 5 , Amer Alaref 6,7

and Alexander Wong 2,3,4

1 Department of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada
2 Waterloo Artificial Intelligence Institute, University of Waterloo, Waterloo, ON N2L 3G1, Canada;

mjshafiee@uwaterloo.ca (M.J.S.); a28wong@uwaterloo.ca (A.W.)
3 Department of Systems Design Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada;

mspavlova@uwaterloo.ca
4 DarwinAI Corp., Waterloo, ON N2V 1K4, Canada
5 Department of Radiology, Niagara Health, McMaster University, St. Catharines, ON L2S 0A9, Canada;

Sabri.ali@gmail.com
6 Department of Diagnostic Radiology, Thunder Bay Regional Health Sciences Centre,

Thunder Bay, ON P7B 6V4, Canada; Alarefa@tbh.net
7 Department of Diagnostic Imaging, Northern Ontario School of Medicine, Thunder Bay, ON P7B 5E1, Canada
* Correspondence: haboutal@uwaterloo.ca

Abstract: The world is still struggling in controlling and containing the spread of the COVID-19
pandemic caused by the SARS-CoV-2 virus. The medical conditions associated with SARS-CoV-2
infections have resulted in a surge in the number of patients at clinics and hospitals, leading to a
significantly increased strain on healthcare resources. As such, an important part of managing and
handling patients with SARS-CoV-2 infections within the clinical workflow is severity assessment,
which is often conducted with the use of chest X-ray (CXR) images. In this work, we introduce
COVID-Net CXR-S, a convolutional neural network for predicting the airspace severity of a SARS-
CoV-2 positive patient based on a CXR image of the patient’s chest. More specifically, we leveraged
transfer learning to transfer representational knowledge gained from over 16,000 CXR images from a
multinational cohort of over 15,000 SARS-CoV-2 positive and negative patient cases into a custom
network architecture for severity assessment. Experimental results using the RSNA RICORD dataset
showed that the proposed COVID-Net CXR-S has potential to be a powerful tool for computer-
aided severity assessment of CXR images of COVID-19 positive patients. Furthermore, radiologist
validation on select cases by two board-certified radiologists with over 10 and 19 years of experience,
respectively, showed consistency between radiologist interpretation and critical factors leveraged by
COVID-Net CXR-S for severity assessment. While not a production-ready solution, the ultimate goal
for the open source release of COVID-Net CXR-S is to act as a catalyst for clinical scientists, machine
learning researchers, as well as citizen scientists to develop innovative new clinical decision support
solutions for helping clinicians around the world manage the continuing pandemic.

Keywords: computer vision; COVID-19; deep neural networks; severity assessment

1. Introduction

The impact of the COVID-19 pandemic on the health and economy has been unprece-
dented. While more than one year has been passed since the declaration of the global
pandemic by the World Health Organization [1], countries are still struggling with con-
trolling the spread of the SARS-CoV-2 virus that is causing the pandemic. In this regard,
the global healthcare system has suffered a devastating impact from this pandemic, with
hospitals and clinics overwhelmed by the surge of patients, and thus not all patients can
have access to intensive care units for further treatment and care [2]. Furthermore, there
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have been shortages in PPEs, ventilators, and other medical supplies due to the increasing
demand on healthcare resources [2,3].

This significant strain on healthcare resources caused by the COVID-19 pandemic
from both a personnel and supplies perspective necessitates improved clinical decision
support tools for aiding clinicians and front-line healthcare workers with more efficient and
effective clinical resource allocation. A critical part of clinical resource allocation during this
pandemic has been severity assessment, which is often conducted with the assistance of
chest X-ray (CXR) images. More specifically, radiology indicators within the patient’s lungs
such as ground-glass opacities can provide critical information for determining whether the
condition of a SARS-CoV-2 positive patients warrants advanced care such as ICU admission
and ventilator administration.

Given that severity assessment using CXR images can be quite challenging even for
expert radiologists, providing computer-aided clinical support for this task can greatly
benefit the hospitals in determining patients’ conditions and respond more quickly to those
who may require more advanced treatments or intensive care. While much of research
literature have focused on computer-aided COVID-19 detection from CXR images [4,5] and
computed tomography (CT) scans [6–10], the area of computer-aided severity assessment
is significantly less well explored. Some of the notable works in this area are COVID-Net S,
a tailored deep convolutional neural network proposed by Wong et al. [11] to predict the
extent scores from CXR images, as well as the study by Cohen et al. [12] where the same
extent scores are predicted.

Motivated to extend upon this area in the direction of airspace disease grading, we introduce
COVID-Net CXR-S, a convolutional neural network for predicting the airspace severity of a SARS-
CoV-2 positive patient based on a CXR image of the patient’s chest, as part of the COVID-Net open
source initiative [4,7,8,11]. The paper is organized as follows. Section 2 describes the methodology
behind the design and construction of the proposed COVID-Net CXR-S, a demographic and
protocol analysis of the dataset used, as well as radiologist validation. Section 3 presents and
discusses the quantitative and qualitative results obtained from the experiments evaluating the
efficacy of the proposed COVID-Net CXR-S.

2. Material and Methods

In this work, we introduce COVID-Net CXR-S, a convolutional neural network tailored
for the prediction of airspace severity of a SARS-CoV-2 positive patient based on chest
X-ray images. To train COVID-Net CXR-S, we transferred representational knowledge
from CXR images of a multinational cohort, and then leveraged the CXR data grouped
based on airspace severity levels. We further validated the behavior of COVID-Net CXR-S
in a transparent and responsible manner via explainability-driven performance validation,
as well as conducted radiologist validation on select cases by two expert board-certified
radiologists. The details between network design, data preparation, explainability-driven
performance validation, and radiologist validation are described below.

2.1. Network Design

The proposed COVID-Net CXR-S architecture is depicted in Figure 1, with additional
details on each layer within the architecture detailed in Table 1. More specifically, we lever-
aged a machine-driven design exploration strategy [13] to construct a backbone architecture
tailored for a strong balance between accuracy and efficiency [14]. The constructed back-
bone architecture exhibits light-weight macro-architecture and micro-architecture designs
comprised primarily of depthwise and pointwise convolutions with selective long-range
connectivity. We then leveraged transfer learning to transfer representational knowledge
gained from over 16,000 CXR images from a multinational cohort of over 15,000 SARS-CoV-
2 positive and negative patient cases [15–20] via the constructed backbone architecture into
a custom network architecture for severity assessment, where a combination of a dense layer
and a severity prediction layer is used to predict between two levels of airspace severity.
Specifically, 16,352 CXR images with 2358 SARS-CoV-2 positive images and 1505 positive
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patient cases were leveraged in the transfer learning. The multi-national patient cohort
curated by the Radiological Society of North America (RSNA) RICORD initiative [20] was
used afterwards for the evaluation of the efficacy of the proposed network.

Table 1. Detailed description of each layer of COVID-Net CXR-S architecture. PRPE refers to layer
with convolution layer of filter size 1× 1.

Layer Name Output Size Specs (Filter Shape, Filter Number)

Conv1 240× 240 7× 7, 48

PRPE 1.1 120× 120 1× 1, 160

PRPE 1.2 120× 120 1× 1, 160

PRPE 1.3 120× 120 1× 1, 160

PRPE 2.1 60× 60 1× 1, 328

PRPE 2.2 60× 60 1× 1, 328

PRPE 2.3 60× 60 1× 1, 328

PRPE 2.4 60× 60 1× 1, 328

PRPE 3.1 30× 30 1× 1, 640

PRPE 3.2 30× 30 1× 1, 640

PRPE 3.3 30× 30 1× 1, 640

PRPE 3.4 30× 30 1× 1, 640

PRPE 3.5 30× 30 1× 1, 640

PRPE 3.6 30× 30 1× 1, 640

PRPE 4.1 15× 15 1× 1, 2048

PRPE 4.2 15× 15 1× 1, 2048

PRPE 4.3 15× 15 1× 1, 2048

Dense 2 2048× 1, 2

Figure 1. COVID-Net CXR-S network design. The COVID-Net backbone design exhibits high archi-
tectural diversity and sparse long-range connectivity, with macroarchitecture and microarchitecture
designs tailored specifically for the detection of COVID-19 from chest X-ray images. The network de-
sign leverages light-weight design patterns in the form of projection-expansion-projection-expansion
(PEPE) patterns to provide enhanced representational capabilities while maintaining low architectural
and computational complexities.

The COVID-Net CXR-S network and associated scripts are available in an open source
manner at http://www.covid-net.ml.

http://www.covid-net.ml
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2.2. Data Preparation

In this study, we leveraged the RSNA RICORD (International COVID-19 Open Ra-
diology Database) dataset [20] for the severity scoring to train COVID-Net CXR-S after
transfer learning. The RSNA RICORD dataset was curated by the Radiological Society of
North America (RSNA) as part of a global initiative to assemble an international task force
of scientists and radiologists to create a multi-institutional, multinational, expert-annotated
COVID-19 imaging dataset. More specifically, we leveraged the airspace disease grading
provided by RSNA RICORD, where each lung is split into three separate zones (for a total
of six zones) and opacity is studied for each zone. We group the patient cases into two
airspace severity level groups: (1) Level 1: opacities in 1–2 lung zones, and (2) Level 2:
opacities in 3 or more lung zones. Example CXR images for the different airspace severity
level groups from the dataset are shown in Figure 2. This severity level designation was
chosen given clinical similarities between patient cases within each airspace severity level
groups in terms of the treatment regimen, and thus facilitates clearer guidelines for course
of action.

Figure 2. Example chest X-ray images from the RSNA RICORD dataset: (1) Level 1 airspace severity:
opacities in 1–2 lung zones and (2) Level 2 airspace severity: opacities in 3 or more lung zones.

Given this airspace severity level grouping scheme, the RSNA RICORD dataset used in
this study consists of 909 CXR images from 258 patients, with 227 images from 129 patients
in Level 1 and 682 images from 184 patients in Level 2. We used 150 randomly selected
CXR images for the test set, ensuring no patient overlap between the test and train datasets.
Table 2 summarizes the demographic variables and imaging protocol variables of the CXR
data in the RSNA RICORD dataset used in this study. It can be observed that the patient
cases in the cohort used in the study are distributed across the different age groups, with
the mean age being 59.11 and the highest number of patients in the cohort are between the
ages of 50–69.

The data preparation scripts are available in an open source manner at http://www.
covid-net.ml.

http://www.covid-net.ml
http://www.covid-net.ml
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Table 2. Summary of demographic variables and imaging protocol variables of CXR data in the
dataset used in this study. Age and sex statistics are expressed on a patient level, while imaging view
statistics are expressed on an image level.

Age Mean ± Std 59.11 ± 16.19

<20 2 (0.8%)

20–29 7 (2.7%)

30–39 26 (10.1%)

40–49 37 (14.3%)

50–59 58 (22.5%)

60–69 58 (22.5%)

70–79 42 (16.3%)

80–89 22 (8.5%)

90+ 6 (2.3%)

Sex

Male 161 (62.4%)

Female 97 (37.6%)

Imaging view

AP 505 (55.6%)

PA 5 (0.6%)

Unknown 399 (43.9%)

2.3. Network Training

Training on the COVID-Net CXR-S architecture after knowledge transfer is conducted
on the training portion of the aforementioned dataset using the Adam optimizer with a
learning rate of 0.0001 for 30 epochs with a batch size of 32. During the training, we account
for the imbalance in the number of patient cases between the airspace severity levels by
performing batch balancing, where at each epoch we randomly sampled an equal number
of CXR images from each severity level for each batch of data. As a pre-processing step,
the CXR images were cropped (top 8% of the image) prior to the training process to better
mitigate the influence of commonly-found embedded textual information, and resampled
to 480 × 480 for training purposes. In addition, we leveraged data augmentation during
the training process with the following augmentation types: translation (±10% in x and y
directions), rotation (±10◦), horizontal flip, zoom (±15%), and intensity shift (±10%).

The scripts for the aforementioned process are available in an open source manner at
http://www.covid-net.ml.

2.4. Explainability-Driven Performance Validation

To study the decision-making behavior of the proposed COVID-Net CXR-S network
in a transparent and responsible manner, we conducted explainability-driven performance
validation using GSInquire [21], which was shown to provide state-of-the-art explana-
tions. More specifically, GSInquire leverages the concept of generative synthesis [13] from
the machine-driven design exploration process via an inquisitor I within a generator-
inquisitor pair {G, I} to generate quantitative interpretations of the decision-making pro-
cess of COVID-Net CXR-S on a given CXR image. In this case, the generator G in the
generator-inquisitor pair is the optimal generator that was leveraged to construct the back-
bone architecture during the network design process. The details pertaining to GSInquire
for explaining the decision-making behavior of deep neural networks on CXR images can
be found in [4]. An interesting property of GSInquire that also makes it well-suited for
explainability-driven performance validation is that it is capable of producing explana-

http://www.covid-net.ml
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tions identifying specific critical factors within an image that quantitatively impacts the
decisions made by a deep neural network, thus making it more readily interpretable and
more quantitative for validation purposes than the types of relative importance variations
visualized by other methods.

This explainability-driven performance validation process enables the identification
of anomalies in decision-making behavior or potential erroneous indicators, leading to
invalidate decisions or biases, as well as the validation of whether clinically relevant
indicators are leveraged.

2.5. Radiologist Validation

The results obtained for COVID-Net CXR-S during the explainability-driven perfor-
mance validation process for selected patient cases are further reviewed and reported on by
two board-certified radiologists (A.S. and A.A.). The first radiologist (A.S.) has over 10 years
of experience, and the second radiologist (A.A.) has over 19 years of radiology experience.

3. Results and Discussion

To evaluate the efficacy of the proposed COVID-Net CXR-S for the purpose of severity
assessment of COVID-19 cases from CXR images, we conducted both quantitative perfor-
mance evaluation as well as qualitative explainability-driven performance validation. The
quantitative and qualitative results are presented and discussed below.

3.1. Quantitative Results

The overall quantitative performance assessment results of the proposed COVID-Net
CXR-S network on the RSNA RICORD dataset can be seen in Table 3. For comparison
purposes, quantitative performance assessment was also conducted on the ResNet-50 [22]
network architecture as well as on CheXNet [23], a state-of-the-art deep neural network
architecture that has been shown to outperform other network architectures for CXR image
analysis tasks. The architectural and computational complexity of COVID-Net CXR-S in
comparison to CheXNet [23] and ResNet-50 [22] is also shown in Table 4.

A number of observations can be made from the quantitative results. More specifically,
it can be observed that the COVID-Net CXR-S network can achieve a high level of accuracy
at 92.66%, which is 9.33% and 5.33% higher than that achieved by CheXNet and ResNet-50
network architectures, respectively. The COVID-Net CXR-S network also achieved strong
performance in terms of area under the receiver operating characteristic curve (AUC ROC),
achieving a 96.09% AUC which is 12.47% and 4.21% higher than the CheXNet and ResNet-
50 networks, respectively. The COVID-Net CXR-S network achieved higher accuracy and
AUC at a significantly lower computational complexity of ∼57% and ∼69% (at ∼11.1 G
FLOPs) in comparison to the CheXNet and ResNet-50 networks, respectively, as well as a
∼63% lower architectural complexity (at ∼8.8M parameters) than the ResNet-50 network,
and achieving similar architectural complexity when compared to CheXNet. Achieving
high architectural efficiency and computational efficiency is important for operation in
resource-limited clinical scenarios where low-cost computing devices are desired.

It can also be observed that the COVID-Net CXR-S network achieved a sensitivity of
92.3% on the Level 2 cases and sensitivity of 92.85% on the Level 1 cases. Furthermore, it
can also be seen that the proposed COVID-Net CXR-S network can achieve high positive
predictive value (PPV) of 95.78% and 87.27% for Level 2 cases and Level 1 cases, respec-
tively. This high PPV for Level 2 cases ensures that fewer false positives for more severe
cases are reported by COVID-Net CXR-S, which is important since patients with severe
conditions require advanced treatment and management and thus high false positive rate
can lead to significant burden on the healthcare system where resources are limited. Finally,
Table 5 provides a more detailed picture of the performance of COVID-Net CXR-S via the
confusion matrix.
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Table 3. Sensitivity, positive predictive value (PPV), and accuracy of the proposed COVID-Net CXR-S,
CheXNet [23], and ResNet-50 [22]. Best numbers are highlighted in bold.

Network
Metric Sensitivity (Level 1) Sensitivity (Level 2) PPV (Level 1) PPV (Level 2) AUC Accuracy

CheXNet [23] 93.88% 63.46% 82.88% 84.62% 83.62 % 83.33%

ResNet-50 [22] 91.84% 78.85% 89.11% 83.67% 91.88% 87.33%

COVID-Net CXR-S 92.3% 92.85% 87.27% 95.78% 96.09% 92.66%

Table 4. Architectural and computational complexity of the proposed COVID-Net CXR-S, CheXNet [23],
and ResNet-50 [22]. Best numbers are highlighted in bold.

Network Parameters (M) FLOPs (G)

CheXNet [23] 8.1 26.0

ResNet-50 [22] 23.6 35.5

COVID-Net CXR-S 8.8 11.1

Table 5. Confusion Matrix of COVID-Net CXR-S.

Severity Level Level 1 Level 2

Level 1 48 4

Level 2 7 91

Therefore, it can be clearly seen that the COVID-Net CXR-S can successfully predict
the severity of COVID-19 infections and distinguish COVID-19 infections from CXR images
to make such predictions as evident by the predictive performance shown in Table 3 and
the critical factors it leveraged as identified by Figure 3.

Figure 3. Examples of Level 2 severity patient cases and the associated critical factors (highlighted in
red) as identified by GSInquire [21] during explainability-driven performance validation as what drove
the decision-making behavior of COVID-Net CXR-S. (left) Case 1, (middle) Case 2, (right) Case 3. Ra-
diologist validation showed that several of the critical factors identified are consistent with radiologist
interpretation.

3.2. Qualitative Results

Results from the conducted explainability-driven performance validation [21] (see
Figure 3) show that clinically relevant visual indicators in the lungs were leveraged in
the decision-making process. This validation is very important for auditing COVID-Net
CXR-S in a transparent and responsible manner to ensure that not only is it leveraging the
right indicators for driving the severity assessment process, but also that it is not primarily
leveraging erroneous visual indicators (e.g., embedded markers, motion artifacts, imaging
artifacts, etc.) to make ’right decisions for the wrong reasons’. Furthermore, this validation
has the potential to help in the discovery of additional visual indicators to assist a clinician
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in their severity assessment as well as improve the trust that clinicians may have during
operational use.

3.3. Radiologist Analysis

The expert radiologist findings and observations for select patient cases with respect
to the identified critical factors during explainability-driven performance validation as
shown in Figure 3 are as follows. In all three cases, COVID-Net CXR-S correctly detected
them to be patients with Level 2 airspace severity, which were clinically confirmed.

Case 1. According to radiologist findings, it was observed by both radiologists that
there is patchy airspace opacity in the lower left lung lobe, which is consistent with one of
the identified critical factors leveraged by COVID-Net CXR-S;

Case 2. According to radiologist findings, it was observed by both radiologists that
there are patchy airspace opacities in the left and right midlung regions that coincide
with the identified critical factors leveraged by COVID-Net CXR-S in that region. It was
further observed by one of the radiologists that there are additional lower lobe opacities in
both lungs;

Case 3. According to radiologist findings, it was observed by one of the radiologists
that there are hilar opacities on the right lung that coincide with the identified critical
factors leveraged by COVID-Net CXR-S. It was also observed that there are opacities in the
left lower lobe, with the superior aspect of the opacities being leveraged by COVID-Net
CXR-S. The second radiologist observed patchy airspace opacities in the right lung that
overlap with the critical factors leveraged by COVID-Net CXR-S.

As such, based on the radiologist findings and observations on the three patient
cases, it was shown that although some opacities were not identified by GSInquire as
critical factors driving the decision-making behavior of COVID-Net CXR-2, several other
abnormalities identified as critical factors were consistent with radiologist interpretations.
Therefore, based on the critical factors identified by GSInquire as critical factors driving
the decision-making behavior of COVID-Net CXR-S, the network was able to differentiate
between the airspace severity levels but not necessarily leverage all regions of concern in
making its severity assessment decisions.

4. Conclusions

In this study, we introduced COVID-Net CXR-S, a convolutional neural network for
the prediction of airspace severity of a SARS-CoV-2 positive patient based on a CXR image
of the patient’s chest. By leveraging transfer learning, we transferred representational
knowledge gained from over 16,000 CXR images from a multinational cohort of over
15,000 SARS-CoV-2 positive and negative patient cases into a custom network architecture
for severity assessment. The promising quantitative and qualitative results obtained from
the conducted experiments demonstrate that the proposed COVID-Net CXR-S, while not a
production-ready solution, can be a potentially become a powerful tool for aiding clinicians
and front-line healthcare workers via computer-aided severity assessment of CXR images
of COVID-19 positive patients. The ultimate goal for the open source release of COVID-Net
CXR-S (http://www.covid-net.ml) is to act as a catalyst for clinical scientists, machine
learning researchers, as well as citizen scientists to develop innovative new clinical decision
support solutions for helping clinicians around the world manage the continuing pandemic.
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