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Abstract: A targeted and timely treatment can be a beneficial tool for patients with hematological
emergencies (particularly acute leukemias). The key challenges in the early diagnosis of leukemias
and related hematological disorders are their symptom-sharing nature and prolonged turnaround
time as well as the expertise needed in reporting confirmatory tests. The present study made use
of the potential morphological and immature fraction-related parameters (research items or cell
population data) generated during complete blood cell count (CBC), through artificial intelligence
(AI)/machine learning (ML) predictive modeling for early (at the pre-microscopic level) differentia-
tion of various types of leukemias: acute from chronic as well as myeloid from lymphoid. The routine
CBC parameters along with research CBC items from a hematology analyzer in the diagnosis of
1577 study subjects with hematological neoplasms were collected. The statistical and data visualiza-
tion tools, including heat-map and principal component analysis (PCA,) helped in the evaluation of
the predictive capacity of research CBC items. Next, research CBC parameter-driven artificial neural
network (ANN) predictive modeling was developed to use the hidden trend (disease’s signature) by
increasing the auguring accuracy of these potential morphometric parameters in differentiation of
leukemias. The classical statistics for routine and research CBC parameters showed that as a whole,
all study items are significantly deviated among various types of leukemias (study groups). The
CPD parameter-driven heat-map gave clustering (separation) of myeloid from lymphoid leukemias,
followed by the segregation (nodding) of the acute from the chronic class of that particular lineage.
Furthermore, acute promyelocytic leukemia (APML) was also well individuated from other types
of acute myeloid leukemia (AML). The PCA plot guided by research CBC items at notable variance
vindicated the aforementioned findings of the CPD-driven heat-map. Through training of ANN
predictive modeling, the CPD parameters successfully differentiate the chronic myeloid leukemia
(CML), AML, APML, acute lymphoid leukemia (ALL), chronic lymphoid leukemia (CLL), and other
related hematological neoplasms with AUC values of 0.937, 0.905, 0.805, 0.829, 0.870, and 0.789,
respectively, at an agreeably significant (10.6%) false prediction rate. Overall practical results of
using our ANN model were found quite satisfactory with values of 83.1% and 89.4.7% for training
and testing datasets, respectively. We proposed that research CBC parameters could potentially be
used for early differentiation of leukemias in the hematology–oncology unit. The CPD-driven ANN
modeling is a novel practice that substantially strengthens the predictive potential of CPD items,
allowing the clinicians to be confident about the typical trend of the “disease fingerprint” shown by
these automated potential morphometric items.
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1. Introduction

Artificial intelligence (AI) has seen remarkable development and increased value
during the past two decades along with its successful introduction for solving complex
data-related problems [1]. In fact, in recent years, a significant increase in this trend has been
noted for the use of AI in clinical aims for all three conventional medical tasks: diagnosis,
therapy, and prognosis, but comparatively more for diagnosis [2,3]. A well-known and
commonly used process or tool thorough which AI can achieve its learning objectives is
Machine Learning (ML). For clinicians, a major question is whether ML will prove itself
as an applied clinical tool in medical diagnostics. Through a brief literature survey, we
can easily find various studies regarding successful applications of the ML approach in
specialized diagnostic fields [4–8]. However, for complex fields of clinical diagnostics such
as hematology, limited examples of successful applications of ML have been reported.

For medical diagnoses where a physician needs to determine which disease most
likely explains the patient’s signs and symptoms, personal medical skills, knowledge, and
experience are interlinked and together play a key role [9]. Laboratory tests assist in the
confirmation, exclusion, classification, and/or monitoring of diseases along with further
guidance for treatment [10]. Sadly, the typical practice of clinicians and diagnostic staff
is aimed exclusively at targeting ‘out of reference range’ parameters (values) in the entire
test report, which can limit the extended and even actual diagnostic potential of laboratory
tests. This approach has a direct link with the underestimation and overlooking of the
actual power of diagnostic test results [11]. Heavy workloads and a lack of convenient
solutions for assistance in the prompt screening of the entire details generated along with
routine laboratory testing may be behind this current clinical/diagnostic practice. The
diagnostic workup for hematological diseases, especially neoplasms like leukemias, are
ordinarily led by a basic blood test: complete blood cell count (CBC), and even a well-
trained technologist/hematologist can pass over the trends, relations, and deviations among
the increasing values of classical and additional (extended) data/parameters generated
by modern hematology analyzers. The particularly advanced hematologic analyzers are
now able to count and recognize the morphological characteristics of the types/subtypes of
blood cell subpopulations by using the principles of electrical impedance, radiofrequency
conductivity, light scattering, and/or Cytochemistry [12]. The above-mentioned analyzers
also incorporate innovative computer algorithms and advanced hardware technology
that help them in the collection and generation of the cell’s morphologic data, which are
called Research CBC parameters or cell population data (CPD), a potential automated
quantitative morphologic item. The Research CBC parameters are generated by multiple
channels corresponding to the size, complexity (cytoplasmic granularity), and DNA/RNA
content [12]. The presence of immature/abnormal white blood cells (WBCs) in peripheral
blood deviate the values of CPD parameters, thus able to offer some sort of ‘disease
signature’. The degree of modification in the values of CPD parameters is linked with the
number and immaturity or abnormality of that individual type of immature/abnormal
white blood cell (WBCs). The clinical utility of these research CBC parameters, particularly
for sepsis, infection, and hematological disorders, are well reported [13–27]. Morphological
assessments through these CPD items might be preeminently objective, quantitative, and
automated and can minimize the risk of subjective interpretation [22,28].

Compared to other hematological disorders, leukemias have highly bizarre clinical,
morphological, and biological characteristics. Starting treatment without waiting for a
definitive diagnosis or delaying for other concerns is an effective practice in treating
leukemias [29,30]. In routine practice in a hematology clinic, ML tools can effectively
facilitate the clinical personals by smartly handling hundreds of attributes (items) like



Diagnostics 2022, 12, 138 3 of 11

CPD parameters, and they have the potential for sensible detection and utilization of
various patterns (disease’s fingerprints) among routine and research CBC parameters
for various diseases. The particular disease signatures can make this specialization of
diagnostics especially tempting for AI/ML applications. Apart from the morphology-
based classification systems and their limitations, we worked to propose a novel prediction
model based on the ML framework that would utilize the deviation trends among the
values of CBC data, especially CPD parameters, as ‘fingerprints’ for leukemias and related
disorders. This CBC data-driven ML (artificial neural network (ANN)) tool will offer
efficient screening for backing early expulsion and directing presentation of “patients’
flow-from” in hematology–oncology departments.

2. Material and Methods
2.1. Study Population

The study population consisted of newly diagnosed acute leukemia cases that were
presented to the academic research center (National Institute of Blood Diseases and Bone
Marrow Transplantation, Karachi, Pakistan) from February 2014 to December 2020. A total
of 1577 cases having >1000 WBCs and at least a 2% immature/abnormal WBCs cell count
in peripheral blood with a complete diagnostic work-up are included in this study. The
diagnosis and subtypes of leukemias and related hematological disorders were confirmed
through bone marrow examination, immunophenotyping, cytogenetic and/or molecular
tests based on initial workups, along with clinical and demographic information according
to the WHO classification of tumors of the hematopoietic and lymphoid tissues (2008). In
the final reports from diagnostic work-ups, all cases were allocated to one of the six principle
disease groups and thus 354, 96, 213, 272, 153, and 489 cases were of acute myeloid leukemia
(AML), acute promyelocytic leukemia (APML) PML-RARA, chronic myeloid leukemia
(CML), acute lymphoid leukemia (ALL), chronic lymphoid leukemia (CLL), and ‘others
(’Non-Hodgkin’s lymphoma, Plasma cell dyscrasia, and etc.), respectively. The collection
of patient data and samples (blood and bone marrow) has been carried out in accordance
with the Declaration of Helsinki, under the terms of all relevant local legislation. The
responsible ethical committee of the National Institute of Blood Disease (NIBD) reviewed
and approved the study in accordance with the ‘medical research involving human subjects
act’ on permit number: NIBD/RD-167/14-201 dated 16th December 2013. Each study
subject gave informed consent.

2.2. Sample Preparation and Methods

Overall, 1577 peripheral whole blood samples were collected in K3EDTA blood tubes
(Becton Dickinson, Franklin Lakes, NJ, USA). The analysis of all samples was performed with
the Sysmex XN-Module (Kobe, Japan) by strictly following the manufacturer’s instructions,
and the quality of the data was validated by regular analysis of internal quality control material
(XN-CHECK levels 1, 2 and 3; Streck Laboratories Inc., Omaha, NE, USA). A peripheral blood
smear was also prepared for all samples followed by May–Grunwald—Giemsa staining.
Peripheral blood morphological examination was performed by optical microscopy (OM),
in accordance with the recommendations of the International Council for Standardization in
Hematology (ICSH) [31]. Briefly, differential count analysis by OM was carried out by two
skilled hematologists (the opinion of a third hematologist was called upon where results were
found to have >5% disagreement) on 200 cells at 100×magnification, as recommended by the
CLSI document H20-A2 [32] and by the ICSH guidelines [31].

2.3. Classical Statistical Data Analysis

Data was analyzed using SPSS version 23.0 (New York, NY, USA) and visualized
through Clustvis (Institute of Computer Science, University of Tartu, J. Liivi-Tartu, Estonia),
which is a web tool for visualizing the clustering of multivariate data (inspired by the
PREDECT project and mostly based on BoxPlotR codes). The calculation of mean, standard
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deviation (SD), and significance (P-) values among study groups were also carried out
through SPSS.

To delve into and obtain visualization of the subtle patterns of the Research CBC
parameters among study groups, heat map (a supervised data visualization tool) and
principal component analyses (PCA) were conducted. Heat map and PCA plots were
generated through “Clustvis” https://biit.cs.ut.ee/clustvis/ (accessed on 1 December
2021), which is a web tool for visualizing the clustering of multivariate data. Aimed
clustering (nodding) of study parameters, the function ‘correlation’ for the “clustering
distance”, ‘average’ for the “clustering methods” and ‘tightest cluster first’ considering the
“tree ordering of columns” were used. For the color grading scheme of the heat map, the
command of function ‘diverging: RdBu (Red to Blue)’ at ‘minimum-2 to maximum-2′ was
used. The diverging: RdBu contains diverging palette options, more suitable for data with
both negative and positive values, which is the same as in our data.

2.4. AI Based Approach

For AI applications, artificial neural network (ANN) from ML tools was selected for
predictive modeling. The primary reason for selecting ANN is its superiority over other AI
tools for finding patterns that are far too complex or numerous for a human programmer
to extract and teach the machine to recognize. To conduct ANN predictive modeling with
the aim of prediction/differentiation and classification, and to determine the nature of our
dataset, first we tried the two most fitted modeling tools: Radial basis function network
(RBFN) and Multiple perceptron (MLP) networking. In the training and testing stages,
RBFN out-performed MLP with ‘lower percent incorrect prediction’ rates, so we continued
with RBFN. It is a computational non-linear data modeling having three (input, hidden, and
output) layers and a feed-forward, supervised learning network that can smartly classify
the cases through the input layer (variables—in our case, CBC parameters) similarity
measurement with respect to examples from a training (data) set. Each hidden layer stores
a ‘prototype’ that is an individual example of many more present in the training set. For
the classification of a new case, each variable computes the Euclidean distance among a
new input and its prototype. An input layer/factor (which provides information from the
outside world to the network), a hidden layer also called the radial basis function layer
(which has no direct connection with the outside world and performs computations and
transfers information from input nodes to output nodes), and an output layer/dependent
variables (which is responsible for computations and transferring information from the
network to the outside world). The hidden layer transforms the input vectors into radial
basis functions.

RBFN algorithm. To create an RBFN predictive model, SPSS syntax-programming
language was used that allowed operators for any possible modification, and in this way,
we tried various dataset partitions of 50, 60, 70 and 50, 40, 30 for training and testing,
respectively, for our network. In this regard, cases were randomly assigned based on
relative numbers of cases without using any portioning variable to assign cases. In the
architecture of our predictive network, we used options to automatically compute ranges in
finding the best number of units within this range, and for numbers of units in the hidden
layer, the normalized radial basis function was selected for the activation function of the
hidden layer, and we tabbed an automatic computation of the amount of overlap to allow
for overlapping among hidden units. Methodologically, the RBFN model was developed in
two steps: first, by using clustering methods, radial basis functions were determined and
the width and center of each of the radial basis functions were calculated. In the second
step, the network determined the synaptic weights given the radial basis functions. Both
classification and prediction through the output layer were laid by sum-of-squares error
functions with the identity activation function.

We estimated the importance of set of the selected CBC attributes with our normalized
radial basis function algorithm and evaluated our ML network results for classification
(diagnostic) problems by observing the classification accuracy (true positive rate) generated

https://biit.cs.ut.ee/clustvis/
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after training the network against relevant data set. To avoid false negative and false
positive results that may put the patient’s life at risk by causing delays in treatment
as well as potentially resulting in unnecessary health care costs, we added a normal
(healthy) population in the training set of our data. Furthermore, to visualize the network
behavior, an ROC curve, predicted-by-observed chart, cumulative gains chart, and lift chart
were generated.

3. Results

Baseline characteristics (routine CBC along with research items) of the analytic cohort
in consonance with study groups are presented in Table 1 as mean, standard deviation (SD),
and significance. Exceptionally, NRBC (%) was noted as insignificant while all other study
parameters showed significant difference by classical statistical analysis. Furthermore,
correlation-based clustering of study groups on the heat map (Figure 1) underpinned the
subtle trends of CBC research items for the types of leukemias.
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Figure 1. The heat map: color grading and clustering trends of CBC Research parameters
among study groups. For heat map color grading ‘diverging Red to Blue’ scheme (for higher
to lower values, respectively) was used. The clustering of study groups (columns) is presented on
function ‘correlation’.

In the heat map illustration (Figure 1), color-grading the parameters (rows) allows
a quick view of hot and cold spots within the dataset but also clusters (rearranges) the
study groups (columns) with identical patterns by nodding (branching) them. As a whole,
hot spots were noted for CML followed by AML and APML while CLL followed by ALL
presented greater numbers of cold spots. Notably, group ‘others’ showed a mixed pattern
(both cold and hot spots).

The nodding trends help us to find how closely patterned to each other our study
parameters are. The step/level of any particular node where it groups to other node/s
describes its degree of clustering (correlation, in our case). The first step of nodding was
observed between CML and all other study groups. At the second step (level of nodding),
AML and APML were separated from ALL, CLL, and group ‘others’. Through the third
level, nodding group ‘others’ were distinct from ALL and CLL. Various levels of clustering
at our Research CBC parameter driven heat map suggested the predictive potential of our
study parameters, particularly for CML from other leukemias, as well as for differentiation
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of myeloid from lymphoid leukemias. The lower the level of nodding, the closer the values
of the study (lower predictive potential).

Table 1. Baseline characteristics (classical CBC and research CBC (CPD) of analytic cohorts, according
to types of leukemias and related hematological disorders).

Study Parameters

Study Groups

Sig.
AML APML CML ALL CLL Others

Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD

Automated Classical CBC Parameters

Hb 8.19 ± 2.10 8.56 ± 1.61 9.38 ± 1.87 8.17 ± 2.59 10.64 ± 2.47 9.69 ± 3.24 <0.005
RBC (1012/L) 2.78 ± 0.82 2.93 ± 0.61 3.49 ± 0.8 3.02 ± 1.29 3.92 ± 0.99 3.68 ± 1.56 <0.005

PCV 25.09 ± 8.09 25.6 ± 5.29 28.86 ± 6.24 24.73 ± 7.64 34.39 ± 7.51 30.27 ± 10.53 <0.005
MCV 90.34 ± 10.47 88.18 ± 8.06 83.45 ± 10.14 83.94 ± 9.12 88.93 ± 9.01 85.47 ± 10.93 <0.005
MCH 29.39 ± 3.53 29.01 ± 3.05 27.1 ± 3.9 27.36 ± 2.91 27.41 ± 3.29 27.15 ± 4.18 <0.005

MCHC 32.35 ± 1.93 32.95 ± 2.34 32.15 ± 2.25 32.64 ± 1.93 30.81 ± 2.44 31.65 ± 1.92 <0.005
WBC (109/L) 39.66 ± 66.75 26.8 ± 47.65 192.39 ± 142.46 70.91 ± 107.47 95.81 ± 123.45 16.99 ± 36.84 <0.005
PLT (103/µL) 60.88 ± 83.18 53.73 ± 85.94 438.42 ± 292.94 53.74 ± 62.92 187.03 ± 105.8 304.35 ± 406.31 <0.005

NEUT# (103/µL) 9.59 ± 29.59 10.35 ± 18.81 161.65 ± 125.42 3.25 ± 4.22 5.83 ± 4.49 8.39 ± 13.65 <0.005
LYMPH# (103/µL) 9.07 ± 12.93 4.77 ± 11.01 9.62 ± 5.23 47.76 ± 77.4 82.74 ± 115.79 6.19 ± 31.27 <0.005
MONO# (103/µL) 21.29 ± 42.93 12.05 ± 25.11 8.25 ± 8.81 20.09 ± 42.26 6.8 ± 17 1.91 ± 5.26 <0.005

EO# (103/µL) 0.18 ± 0.99 0.07 ± 0.15 5.1 ± 5.24 0.13 ± 0.29 0.3 ± 0.42 0.36 ± 1.35 <0.005
BASO# (103/µL) 0.07 ± 0.21 0.06 ± 0.13 5.32 ± 5.22 0.15 ± 0.39 0.15 ± 0.23 0.08 ± 0.15 <0.005

NEUT (%) 22.16 ± 19.91 35.91 ± 19.93 81.92 ± 11.61 13.12 ± 17.24 12 ± 12.26 54.22 ± 23.9 <0.005
LYMPH (%) 37.9 ± 22.28 37.91 ± 26.65 7.19 ± 5.86 64.36 ± 22.07 80.56 ± 17.37 31.97 ± 22.22 <0.005
MONO (%) 39.09 ± 23.61 25.37 ± 21.72 4.88 ± 4.61 21.07 ± 18.04 6.48 ± 10.98 11.35 ± 11.68 <0.005

EO (%) 0.67 ± 2.07 0.71 ± 1.5 3.16 ± 5.5 0.5 ± 0.96 0.73 ± 1.5 1.96 ± 2.45 <0.005
BASO (%) 0.18 ± 0.36 0.1 ± 0.16 2.85 ± 2.04 0.22 ± 0.3 0.23 ± 0.33 0.49 ± 0.75 <0.005

IG# (103/µL) 1.86 ± 4.83 1.53 ± 3.76 65.04 ± 57.27 0.73 ± 1.51 0.45 ± 1.62 1.18 ± 3.61 <0.005
IG (%) 4.38 ± 6.33 5.08 ± 7.77 30.31 ± 9.61 1.76 ± 2.93 0.54 ± 1.33 4.07 ± 6.64 <0.005

NRBC# (103/µL) 0.35 ± 1.07 0.11 ± 0.22 2.16 ± 3.42 0.51 ± 1.56 0.05 ± 0.27 0.47 ± 4.46 <0.005
NRBC (%) 1.61 ± 3.55 0.91 ± 1.35 1.15 ± 1.38 1.4 ± 3.87 0.28 ± 1.51 1.56 ± 8.43 0.549
PDW (fL) 8.76 ± 7.24 6.19 ± 7.35 11.09 ± 6.35 7.03 ± 6.72 11.92 ± 4.6 8.31 ± 6.58 <0.005
MPV (fL) 7.23 ± 5.46 5.05 ± 5.67 8.83 ± 4.6 5.89 ± 5.35 9.93 ± 3.39 6.97 ± 5.25 <0.005
PCT (%) 0.05 ± 0.09 0.04 ± 0.09 0.41 ± 0.35 0.04 ± 0.07 0.19 ± 0.12 0.28 ± 0.42 <0.005

Retic count 1.93 ± 11.84 1.15 ± 1.51 3.13 ± 2.21 0.55 ± 1.07 0.2 ± 0.54 1.88 ± 1.63 0.015

Automated Research CBC (CPD) Parameters

NE–SSC(ch) 140.81 ± 14.05 143.08 ± 10.87 149.05 ± 6.53 149.64 ± 9.26 150.16 ± 7.89 147.15 ± 10.04 <0.005
NE–SFL(ch) 51.43 ± 17.33 65.85 ± 22.71 45.86 ± 5.12 50.71 ± 8.3 45.81 ± 8.45 45.66 ± 7.27 <0.005
NE–FSC(ch) 72.29 ± 11.15 72.59 ± 11.81 84.04 ± 5.57 80.89 ± 7.03 82.23 ± 5.73 78.92 ± 7.69 <0.005

LY–X(ch) 87.33 ± 10.39 84.5 ± 10.35 81.63 ± 8.89 84.75 ± 7.25 79.58 ± 4.46 81.45 ± 4.49 <0.005
LY–Y(ch) 68.65 ± 12.29 65.54 ± 9.37 42.89 ± 19.68 68.91 ± 16.15 59.04 ± 8.9 65.11 ± 6.06 <0.005
LY–Z(ch) 56.68 ± 3.74 57.32 ± 3.02 52.44 ± 3.49 58.2 ± 3.79 57.78 ± 2.94 56.66 ± 2.39 <0.005

MO–X(ch) 118.05 ± 8.27 120.75 ± 9.83 126.3 ± 6.91 110.2 ± 7.39 109.97 ± 6.14 119.14 ± 5.74 <0.005
MO–Y(ch) 114.65 ± 23.51 115.35 ± 25.35 112.09 ± 24.26 108.43 ± 23.79 101.6 ± 9.56 105.47 ± 17.45 <0.005
MO–Z(ch) 62.66 ± 4.97 65.49 ± 7.92 60.28 ± 2.89 65.29 ± 6.54 64.9 ± 3.53 62.82 ± 4.76 <0.005
NE–WX 435.71 ± 127.01 419.16 ± 119.61 501.29 ± 76.69 386.73 ± 108.58 323.69 ± 61.47 368.47 ± 88.09 <0.005
NE–WY 1388.88 ± 755.01 1262.53 ± 829.7 2467.69 ± 693.2 1226.47 ± 616.41 740.42 ± 279.96 897.1 ± 471.45 <0.005
NE–WZ 825.5 ± 257.67 801.79 ± 213.15 847.02 ± 109.49 721.08 ± 203.64 650.14 ± 154.81 691.02 ± 156.02 <0.005
LY–WX 533.66 ± 118.75 550.86 ± 136.81 695.52 ± 168.56 535.53 ± 119.29 530.33 ± 115.78 536.78 ± 109.45 <0.005
LY–WY 1069.66 ± 267.76 994.91 ± 184.93 1929.71 ± 1070.73 1060.03 ± 231.82 960.37 ± 169.92 1007.77 ± 220.04 <0.005
LY–WZ 568.06 ± 115.83 586.67 ± 142.48 801.74 ± 165.36 578.5 ± 138.35 460.95 ± 102.18 527.32 ± 122.95 <0.005

MO–WX 340.51 ± 75.02 301.81 ± 104.41 357.22 ± 65.23 319.04 ± 90.03 285.66 ± 66.46 291.38 ± 73.36 <0.005
MO–WY 873.84 ± 282.05 701.67 ± 446.57 1146.88 ± 346.87 878.07 ± 317.66 832.36 ± 218.58 736.74 ± 258.89 <0.005
MO–WZ 616.05 ± 112.94 601.16 ± 204.8 767.94 ± 100.79 681.88 ± 226.76 636 ± 255.98 597.25 ± 156.62 <0.005

Hb; hemoglobin, RBC; red blood cell, PCV; packed cell volume, MCH; mean cell hemoglobin, MCHC; mean
cell hemoglobin, WBC; white blood cell, PLT; platelet, NEUT# (103/µL); absolute neutrophil, LYMPH# (103/µL);
absolute lymphocyte count, MONO# (103/µL); absolute monocyte count, EO# (103/µL); absolute eosinophil
count, BASO# (103/µL); absolute basophil count, NEUT (%); percent neutrophil count, LYMP (%); percent
lymphocyte count, MONO (%); percent monocyte count, EO (%); percent eosinophil count, BASO (%); percent
basophil count, IG# (103/µL); absolute immature granulocyte count, IG (%); percent immature granulocyte
count. NE-SSC; neutrophil side scatter, NE-SFL; neutrophil side fluorescence, NE-FSC; neutrophil forward scatter,
LY-X; lymphocyte side scatter, LY-Y; lymphocyte side fluorescence, LY-Z; lymphocyte forward scatter, MO-X;
monocyte side scatter, MO-Y; monocyte side fluorescence, MO-Z; monocyte forward scatter, NE-WX; neutrophil
side scatter distribution width, NE-WY; neutrophil side fluorescence distribution width, NE-WZ; neutrophil
forward scatter distribution width, LY-WX; lymphocyte side scatter distribution width, LY-WY; lymphocyte side
fluorescence distribution width, LY-WZ; neutrophil forward scatter distribution width, MO-WX; monocyte side
scatter distribution width, MO-WY; monocyte side fluorescence distribution width, MO-WZ; monocyte forward
scatter distribution width.

The Principal Component Analysis (PCA) plot (Figure 2) was used to graphically
visualize our multivariate data and to extract the key information as a set of new attributes
called principle components (PC1 and PC2). PC1 and PC2 correspond to a linear merger
of our Research CBC parameters aimed at the identification of directions/principal com-
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ponents along which the variation in the data is maximal. For the most part, the PCA
plot vindicates the impression from heat map that CML from other study groups is highly
distinct while myeloid vs. lymphoid leukemias are decidedly apparent from each other.
Barely a minor degree of overlaps was noted for AML with APML, and ALL with group
‘others’ and CLL.
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Figure 2. Principal Component Analysis (PCA) plot demonstrating Research CBC parameters driven
relatedness among various types of leukemias (our study groups).

The model summary of our CBC research-driven RBFN predictive framework in
Figure 3 presents various positive signs. The sum of squared error remained 46.59 and
22.18 for training and testing, respectively. The smaller value of the squared error in testing
over training indicates the most-fit number of hidden units/layers to minimize error func-
tions. Furthermore, the percentage of incorrect predictions was noticeably lower at 16.9
for training and 10.6 in consideration of the testing dataset. Additionally, practical results
of using the network as shown in the classification table likewise decidedly remained de-
noting. The model’s performance-related scales in terms of predictive-pseudo probability,
sensitivity and specificity (AUC), gain, and lift charts were found to be promisingly con-
vincing for the predictive ability of the network. The ROC curve gives more powerful and
much cleaner visual presentation of the specificity and sensitivity in a single plot than the
series of tables. The ROC chart presents all six curves of AML, APML, CML, ALL, CLL, and
group ‘others’ with area values of 0.810, 0.789, 0.937, 0.829, 0.905, and 0.805, respectively. In
the predicted-by-observed chart, the ‘observed response’ and ‘predicted categories’ were
aligned with the x-axis and y-axis, respectively. The prediction is considered ‘Correct’ when
the boxplot is found near the level of ‘0.5′ for the y-axis. In our case, all boxplots are noted
near the 0.5 mark. In the present analysis, a cumulative gains chart was also presented
wherein ‘target’ (total number of cases) and ‘gained’ (in reference to the target of the overall
figure of cases for a particular class) were shown. In addition to points along both axes,
a ‘baseline’ curve is indicated in the shape of the diagonal line and curve laid above the
baseline and is accepted as a greater gain. The lift chart provides a different view of the
cumulative gains chart. The values along the y-axis represent the ratio of the cumulative
gains for each curve (category/ subgroups) against the baseline curve. In this way, the lift
at 10% for category AML is 25%/10% = 2.5. Both cumulative and lift charts are based on
combined testing and training samples.
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Figure 3. The model summary, classification table, predicted-by-observed chart, ROC curve, cu-
mulative gains and lift chart for the Research CBC parameters driven Radial Basis Function (RBF)
predictive model.
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4. Discussion

The Research CBC parameters (CPD items) generated by modern hematology ana-
lyzers are promising automated quantitative morphological parameters (by quantifying
the changes in morphological characteristics of blood cells) to introduce as signatory CBC-
based diagnostic items for hematological neoplasms, especially leukemias. The potential
clinical utility of CPD items for early exclusion of hematological disorders is well reported
in various studies [21,22,25]. However, none of these studies applies AI tools and only
a few studies report the utility of these CPD parameters by aiding statistical equations
and simple models/classifiers. As an illustration, a study by Yang et al. evaluated CPD
(white cell scattering) items for differentiation of acute leukemia lineage by using the
Coulter DxH800 analyzer. In this study, the authors derive a 21-CBC items-based model
(generated by the KYL program, an Excel macro program) and reported very high (100%)
specificity and sensitivity for differentiation of acute promyelocytic leukemia (APL) cases,
while for ALL, comparably less significant specificity and sensitivity was achieved [33]. In
another study by Virk et al., the clinical utility of the CPD parameters, scatter grams, and
flags by generating statistical equations for screening of AML cases was published [34].
Here, an exception is found in studies conducted by Shabbir et al. [35] and our work
(Haider et al.) [36], wherein ML tools were challenged for discernment between just two
study groups (hematologic vs. non-hematologic malignancies and acute promyelocytic
leukemia vs. other hematologic malignancies, respectively).

The findings from our study’s dataset present a promise for this early pre-microscopic
prediction of leukemias and related common hematological neoplasms, since the Research
CBC parameters are not only able to detect the presence of leukemia but can assist in
prediction of the lineage and type of leukemias. In addition, we showed that an AI
approach, using an ML algorithm trained on the Research CBC parameters along with
routine items-based results (dataset), is not only able to differentiate the lineage of leukemia
(either myeloid or lymphoid) but can also remain predictive for the type (acute or chronic
or other) of leukemia and related disorders. The result showed that our RFBN model
performed the classification with high accuracy and successfully differentiated the study
groups with a significant (10.6 percent) in-correction rate. The utility of our suggested
Research CBC parameters-driven predictive model for leukemias and related disorders
was established through its practical results of 83.1% and 89.4% for training and testing
datasets, respectively (Figure 1). The higher accuracy from RFBN in our case can be
justified as RFBN increases the feature vector (hidden layers). When the dimension of
hidden layers is increased, the linear reparability of hidden layers increases. The importance
of the proposed CBC data-driven ML predictive modeling increases for clinics and/or
diagnostic setups not specializing in hematology by serving as a screening tool to aid them
in diagnostic procedures and the proper and early referral of patients with hematological
emergencies such as acute leukemias. Furthermore, our proposed model can minimize
irrational ordering of laboratory tests (usually used for additional confirmations) in order
to research the correct diagnosis. AI applications in laboratory diagnostics facilitates early
(decisions) diagnosis through a limited profile of laboratory tests [10]. The suggested
approach has the potential to be replicated to differentiate other hematological disorders.

The results of this study are appealing and serve to legitimize the in-practice clinical
approach. Clinicians have acknowledged that results of laboratory investigations, examined
in isolation, have definite diagnostic importance in clinical decision-making, typically in
environments where clinical knowledge and expertise play a critical role [11]. This belief is
logical considering the deficiency of the reported work on the Research CBC parameters
such as CPD items and AI tools in hematology (laboratory) diagnostics. Accordingly,
the use of the AI approach in the clinical interpretation of laboratory tests can be more
diagnostically valuable as a speedy, directed, and more persuasive practice in lieu of
trailing the probable diagnosis through an increasing number of irrational and expensive
tests. The utility of AI/ML predictive models can be effectively enhanced provided that
information regarding clinical (patient’s) history and physical examination of patients
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become an integral part by adding more valuable attributes to such models. Here, it is
necessary to mention that the scope of our study is limited in its boarder clinical utility.
This limitation can be addressed by validation/re-validation, ideally through external
independent datasets at multiple centers.

5. Conclusions

In the present study, a particular disease’s signature raised by the research CBC
parameters is illustrated for early differentiation among various types of leukemias and
related disorders. The CPD-driven ANN modeling can be a novel practice that substantially
strengthens the disease signatory characteristics from these research CBC items in different
types of leukemias. The suggested approach can reduce the frequency of extra and irrational
diagnostic test ordering that is not only time-consuming but is also an extra burden on
patients and laboratory staff. Here, the application of CPD-driven predictive modeling as
an assistant predictive tool in the decision support system of hematology laboratory/clinics
is suggested.
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