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Abstract: The new strains of the pandemic COVID-19 are still looming. It is important to develop
multiple approaches for timely and accurate detection of COVID-19 and its variants. Deep learning
techniques are well proved for their efficiency in providing solutions to many social and economic
problems. However, the transparency of the reasoning process of a deep learning model related to a
high stake decision is a necessity. In this work, we propose an interpretable deep learning model
Ps-ProtoPNet to detect COVID-19 from the medical images. Ps-ProtoPNet classifies the images by
recognizing the objects rather than their background in the images. We demonstrate our model on
the dataset of the chest CT-scan images. The highest accuracy that our model achieves is 99.29%.
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1. Introduction

The pandemic COVID-19 is looming as a worst menace on the world populations
while its several new strains are being identified. Some vaccines for COVID-19 have been
developed, but the list of the variants of COVID-19 is also getting bigger. There are seven
lineages of the variants of the virus, such as: B.1.1.7, B.1.351, P.1, B.1.427, B.1.429, B.1.525,
B.1.617.1 and B.1.617.2 [1]. The detection of the virus is usually done with molecular
tests, that is, the tests that look for the virus by detecting the presence of the virus’s
RNA. The molecular tests include RT-PCR, CRISPR, isothermal nucleic acid amplification,
digital polymerase chain reaction, microarray analysis, and next-generation sequencing [2].
The presence of the virus can also be detected from the medical images, such as: chest
X-ray and CT images. Although, RT-PCR is still a gold standard for COVID-19 testing,
but deep learning techniques to identify the virus from medical images can also be helpful
in certain circumstances, such as: unavailability of RT-PCR kits. A deep learning model
can also be used for the pre-screening before RT-PCR testing. Many models have been
proposed to detect COVID-19 from the medical images, see [3–15]. However, these models
lack the interpretability/transparency of the reasoning process of their predictions. So,
we propose an interpretable deep learning model: pseudo prototypical part network (Ps-
ProtoPNet), and experiment it over the dataset of CT-scan images, see Section 2.4. Ps-
ProtoPNet is closely related to ProtoPNet [16], Gen-ProtoPNet [17] and NP-Proto-PNet [18],
but strikingly different from these models.

A prototype represents a patch of an image. To classify a test image, ProtoPNet
compares the different parts of the test image with the learned prototypes of images from
all classes. Then the decision is made based on the weighted combination of similarity
scores [16]. To calculate the similarity scores between learned prototypes (with square
spatial dimensions 1× 1) and parts of the test image, ProtoPNet and NP-ProtoPNet use L2
distance function, whereas Gen-ProtoPNet uses a generalized version of L2.

In this work, we present a theorem that calculates the impact of the change in the
hyperparameters of the dense layer on the logits, see Theorem 1. Ps-ProtoPNet chooses
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negative connections between the similarity score and logits of incorrect classes as sug-
gested by the theorem. Also, our model uses prototypes that can have any type of spatial
dimensions, that is, square and rectangular.

A model should classify an image of an object by identifying the object in the image
instead of the background of the object in the image. The model that uses prototypes of
smaller spatial dimensions (1× 1) can classify an image just on the basis of the background
and give higher accuracy with wrong reasoning process. For example, the most part of the
images of birds of a sea specie is not similar to any patch of the images of birds of a jungle
specie. So, the images from these two classes can be classified on the basis of backrounds.
Another scenario, images of birds of different sea bird species can share same background
water on the most part. Therefore, a model with prototypes of small spatial dimensions
(1× 1) can classify wrongly the images just on the basis of the background of the birds.
On the other hand, the use of prototypes with the dimensions equal to the dimensions
of an image can also reduce the accuracy because there can be only few images that are
similar to the whole image, but their parts can be similar. So, we need to use optimum
spatial dimensions for the prototypes. To identify an image that has not been encountered
before, humans may compare patches of the image with the patches of images of the known
objects. Our model’s reasoning is inspired from the above reasoning, where comparison of
image parts with learned prototypes is integral to the reasoning process of the model. That
is, a new image is compared with learned prototypes from all classes, and it is classified to
the class whose prototypes are more similar to parts of the image. We have three classes of
images: Covid, Normal and Pneumonia. Therefore, a COVID-19 CT image is distinguished
from the pneumonia CT images based on the greater similarity of parts of the image with
the prototypes.

2. Materials and Methods
2.1. Related Work

Numerous perspectives have been emerged to explain convolution neural networks,
including posthoc interpretability analysis. A neural network with posthoc analysis is inter-
preted following classifications made by a model. Activation maximization [19–25], deconvo-
lution [26], and saliency visualization [23,27–29] are some forms of posthoc analysis approach.
Nevertheless, these techniques do not throw light on the reasoning process with transparency.
Another approach to make the reasoning process of the neural networks clear is attention-
based interpretability that includes class activation maps (CAM) and part-based models.
In this approach, a model aims to point out the parts of a test image that are its centers of
attention [30–41]. These models do not point out the prototypes that are similar to parts of
the test image.

Oscar et al. [42] developed a model that uses prototypes of the size of a whole image
to find the similarity scores. A substantial improvement over the above work was made
by Chen et al. with the development of their model ProtoPNet [16]. The models Gen-
ProtoPNet [17] and NP-ProtoPNet [18] are close variations of ProtoPNet.
2.2. Data

Many datasets of medical images are publicly available [43–45]. However, we used
the dataset of chest CT-scan images of normal people, COVID-19 patients and pneumonia
patients [44]. This dataset has 143, 778 training images and 25,658 test images. The training
dataset consists of 35,996, 25,496 and 82,286 CT-scan images of normal people, pneumonia
patients and COVID-19 patients, respectively. The test dataset consists of 12, 245, 7395 and
6018 CT-scan images of normal people, pneumonia patients and COVID-19 patients. We
resized the images to the dimensions 224× 224 as required by the base models. We put
these images into three classes Covid (first class), Normal (second class) and Pneumonia
(third class).
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2.3. Working Principal and Novelty of Ps-ProtoPNet

ProtoPNet classify an image on the basis of a weighted combination of the similarity
scores [16]. For each class, a fixed number of prototypes are selected. We select 10 proto-
types for each class. The model calculates the Euclidean distance of each prototype from
each latent patch of the test image that has spatial dimensions equal to 1× 1. Then these
distances are inverted and a maximum of the inverted distances is called the similarity
score of the prototype. Thus, for a given image, only one similarity score for each prototype
is obtained. In the dense layer, these similarity scores are multiplied with the weights to
calculates the logits. During the training process, ProtoPNet does the convex optimization
of the last layer to make the certain weights zero [16].

Theorem 1 finds the impact of the change in the weights on the logits. Therefore,
along with the use of prototypes with spatial dimensions bigger than 1× 1, Ps-ProtoPNet
uses the negative weights for similarity scores that connect to incorrect classes. Thus,
for a given CT-scan image as in Figure 1, Ps-ProtoPNet identifies the parts of the image
where it thinks that this part of the image looks like that prototypical part, and this part of
the image does not look like that prototypical part. In addition to the positive reasoning
process, Ps-ProtoPNet does not do the convex optimiza-tion of the last layer to keep the
impact of the negative reasoning process on the image classification, whereas ProtoPNet
model emphasizes on the positive reasoning process. The non-optimization of the last
layer enabled us to write Theorem 1, because it ensures that the weights of last layer do not
change during the training process. Also, it reduces the training time considerably.
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Figure 1. For a given CT-scan image, Ps-ProtoPNet identifies the parts of the image where it thinks that this part of the image looks
like that prototypical part, and this part of the image does not look like that prototypical part.
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Figure 1. For a given CT-scan image, Ps-ProtoPNet identifies the parts of the image where it thinks that this part of the
image looks like that prototypical part, and this part of the image does not look like that prototypical part.

2.4. Ps-ProtoPNet Architecture

In this section, we introduce and explain the architecture and the training procedure
of our model Ps-ProtoPNet in the context of CT-scan images.

We construct our network over the state-of-the-art mod-els: VGG-16, VGG-19 [46],
ResNet-34, ResNet-152 [47], DenseNet-121, or DenseNet-161 [48]. In this paper, these
models are called baseline or base models. The base models were pretrained on Ima-
geNet [49]. In the Figure 2, we see that the model comprises of the convolution layers of
any of the above base model that are followed by an additional 1× 1 layer (we denote
these convolution layers together by `) and then these convolution layers are followed by
a generalized [50,51] convolution layer pp of prototypical parts and a dense layer w with
weight matrix mw. The dense layer does not have any bias. We denote the parameters of `
by `conv. The activation function Sigmoid is used for the additional convolution layer.

We provide an explanation of our model with the base model VGG-16. For an input
image x, let `(x) be the output of the convolutional layers `. Therefore, the shape of `(x)
is 512× 7× 7. Let Pk = {pk

l }m′
l=1 be the set of prototypes of a class k and P = {Pk}n

k=1 is
set of prototypes of all classes, where m′ is the number of prototypes for each class and n
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is the total number of classes. In our case, m′ = 10 and n = 3, and the hyperparameter
m′ = 10 is chosen randomly. For example, p1

1, p1
2, . . . , p1

10 prototypes belong to the first class
(Covid class). The shape of each prototype is 512× h× w, where 1× 1 < h× w < 7× 7,
that is, h and w are neither simultaneously equal to 1 nor 7. Hence, every prototype can be
considered as a representation of some prototypical part of some CT-scan image.Version September 9, 2021 submitted to Diagnostics 3 of 16
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Figure 2. Ps-ProtoPNet architecture.
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As explained in Section 2.3, Ps-ProtoPNet calculates the similarity scores between
an input image and the prototypical parts p1

1 − p1
10, p2

1 − p2
10 and p3

1 − p3
10, see Figure 2.

Note that, similarity score of the prototype p1
1 (0.03955200) is greater than the similarity

scores of p2
1 (0.00021837) and p3

10 (0.00023386). The complete list is given in the similarity
score matrix S, see Section 2.6. The source image of the prototypes p1

1, p2
1 and p3

10 are also
given in the third column of the Figure 2. The model keeps track of spatial relation of the
convolutional output and the prototypical parts, and upsamples the parts to the size of
input image to point out the patch on the source images that corresponds to the prototypes.
The rectangles in the source images are the parts of the source images from where the
prototypical parts are taken. In layer w, the matrix S is multiplied with mw to get the logits.
The logits for the first, second and third class are 0.5744, −0.5790 and −0.5787, respectively.

2.5. The Training of Ps-ProtoPNet

We use the generalized version d of the distance function L2 (Euclidean distance).
We consider the baseline VGG-16 to present d in this section. For a given image x, let
z = `(x). Therefore, the shape of `(x) is 512× 7× 7, where 512 is the depth of `(x) and
7× 7 are the spatial dimensions of `(x). Let p be a prototype of the shape 512× h× w,
where 1 ≤ h, w ≤ 7, but h and w are neither simultaneously equal to 1 nor 7. Since p can be
any prototype of any class, p does not have any subscript and superscript. The output z of
the convolutional layers ` has (8− h)(8− w) patches of dimensions h× w. Hence, square
of the distance d(Zij, p) between the prototype p and (i, j) patch Zij (say) of z is:

d2(Zij, p) =
h

∑
l=1

w

∑
m=1

512

∑
k=1
||z(i+l−1)(j+m−1)k − plmk||22. (1)

For prototypes of spatial dimension 1× 1, that is, h = w = 1, we have d2(Zij, p) =
512
∑

k=1
||zijk − p11k||22, which is the square of the Euclidean distance between the prototype p

and a patch of z, where p11k ' pk. Therefore, the distance function d is a generalization of
L2. The prototypical unit pp calculates the following.

pp(z) = max
1≤i≤8−h, 1≤j≤8−w

log

(
d2(Zij, p) + 1
d2(Zij, p) + ε

)
.
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In other words,

pp(z) = max
Z∈patches(z)

log
(

d2(Z , p) + 1
d2(Z , p) + ε

)
. (2)

The Equation (2) tells us that a prototype p is more similar to input image x if the
inverse of the distance between a latent patch of x and p is smaller. The two training steps
of our model are as follows.

2.5.1. Optimization of All Layers before the Dense Layer

Suppose X = {x1 . . . xn} and Y = {y1 . . . yn} are sets of images and corresponding
labels, respectively. Let D = {(xi, yi) : xi ∈ X, yi ∈ Y}. Our objective function is:

min
P,`conv

1
n

n

∑
i=1

CrosEnt(h ◦ pp ◦ `(xi), yi) + λ1ClstCst + λ2SepCst, (3)

where ClstCst and SepCst are:

ClstCst =
1
n

n

∑
i=1

min
j:pj∈Pyi

min
Z∈patches(`(xi))

d2(Z , pj); (4)

SepCst = − 1
n

n

∑
i=1

min
j:pj 6∈Pyi

min
Z∈patches(`(xi))

d2(Z , pj). (5)

The Equation (4) tells us that the decrease in the cluster cost (ClstCst) leads to clustering
of prototypes surrounding their respective classes. However, the Equation (5) suggests
that the decrease in separation cost (SepCst) keeps prototypes away from their incorrect
classes [16]. The drop in cross entropy leads to improved classifications, see the objective
function (3). The hyperparameters λ1 and λ2 are selected from the set {0.4, 0.5, 0.7, 0.8, 0.9}
using cross validation. Since mw is the weight matrix for the last layer, m(i,j)

w is the weight
assigned to the connection between similarity score of jth prototype and logit of ith class.
Theorem 1 finds the impact of the selection of the weights m(i,j)

w on the logits. Therefore,
for a class k, we put m(i,j)

w = 1 for all j with pi
j ∈ Pi, and for all pk

j 6∈ Pi with k 6= i, m(k,j)
w

is chosen from the set {−1,−0.9,−0.7,−0.5,−0.2,−0.1}. Since the distance function is
nonnegative, the optimization of all layers except the last layer with the optimizer SGD
helps Ps-ProtoPNet to learn important latent space.
2.5.2. Push of Prototypical Parts

At this step, Ps-ProtoPNet pushes/projects the prototypes onto the patches of the
output `(x) of an image x that have smallest distances from the prototypes. That is,
Ps-ProtoPNet performs the following update:

pk
j ←− arg min

{Z :Z∈patches(`(xi)) ∀i s.t. yi=k}
d(Z , pk

j ).

Therefore, prototype layer gets updated prototypical parts that are more closer to their
respective classes [16]. The patch of x that is the most similar to p is used for visualization of
p. The activation value of the prototype must be at least 94th percentile of all the activation
values of pp [16].

2.6. Explanation of Ps-ProtoPNet with an Example

The test image in the first column of Figure 3 belongs to the first class (Covid). In
the second column, the test image has some patches enclosed in green rectangles. These
patches give the highest similarity score to the corresponding prototypes in the third
column. The prototypes in the third column are taken from the corresponding source
images in the fourth column. The rectangles on the source image pin-point the patches
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from where the corresponding prototypes are taken. The fifth column has similarity scores
of the prototypes and sixth column has the weights. The entries of the seventh column are
obtained by multiplying the similarity scores with the corresponding weights. The logit
(0.5744) of the first class is the sum of entries of the seventh column. The logit for the first
class can also be obtained from the multiplication of the first row of weight matrix mw with
the similarity score matrix S. Similarly, the logit for the second class (−0.5790) and third
class (−0.5787) can be obtained by multiplying second and third row of the weight matrix
with the similarity score matrix S.Version September 9, 2021 submitted to Diagnostics 6 of 16
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Figure 3. The explanation of the classification process of the model.

from our experiments are as follows:183
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Figure 3. Explanation of the classification process of the model.

The transpose of the weight matrix mw and similarity scores matrix S that we obtain
from our experiments are as follows:
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mT
w =




1 −1 −1
1 −1 −1
1 −1 −1
1 −1 −1
1 −1 −1
1 −1 −1
1 −1 −1
1 −1 −1
1 −1 −1
1 −1 −1
−1 1 −1
−1 1 −1
−1 1 −1
−1 1 −1
−1 1 −1
−1 1 −1
−1 1 −1
−1 1 −1
−1 1 −1
−1 1 −1
−1 −1 1
−1 −1 1
−1 −1 1
−1 −1 1
−1 −1 1
−1 −1 1
−1 −1 1
−1 −1 1
−1 −1 1
−1 −1 1




and S =
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

0.03955200
0.03955200
0.03955200
0.03955200
0.03955200
0.03955200
0.03955200
0.03955200
0.22292000
0.03955200
0.00021837
0.00021837
0.00021837
0.00021837
0.00021837
0.00021837
0.00021837
0.00021837
0.00021837
0.00021813
0.00023386
0.00023386
0.00023374
0.00023386
0.00023386
0.00023386
0.00023386
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0.00023374
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


.

3. Results
In this section we present the metrics given by our model and compare the perfor-

mance of our model with the performance of the other models.

3.1. The Metrics and Confusion Matrices

For a given class, true positive (TP) and true negative (TN) are the number of items
correctly predicted as belonging to the class and not belonging to the class, respectively,
see [52]. False positives (FP) and false negatives (FN) are the number of items incorrectly
predicted as belonging to the class and not belonging to the class, respectively, see [53].
The metrics accuracy, precision, recall and F1-score are [54–56]:

Accuracy =
TP + TN

Total Cases
, Precision =

TP
TP + FP

. (6)

Recall =
TP

TP + FN
, F1-score =

2
Precision−1 + Recall−1 . (7)

In Figures 4–9, the confusion matrices of Ps-ProtoPNet with the base models are given.
For example, in Figure 4, the confusion matrix N (say) of Ps-ProtoPNet with base model
VGG-16 is provided. Thus, the numbers N[0][0], N[1][1] + N[2][2], N[0][1] + N[0][2] and
N[1][0] + N[2][0] denote the true positives TP, true negatives TN, false positives FP and
false negatives FN of the Covid class. Therefore, by Equations (6) and (7), the accuracy for
Ps-ProtoPNet is 98.83%, and the precision, recall and F1-score are equal to 0.96, 0.98 and
0.97, respectively.
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Figure 4. Ps-ProtoPNet with base VGG-16.
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Figure 6. Ps-ProtoPNet with ResNet-34.



Diagnostics 2021, 11, 1732 9 of 20

Version September 9, 2021 submitted to Diagnostics 7 of 16

3. Results184

In this section we present the metrics given by our model and compare the performance185

of our model with the performance of the other models.186

3.1. The Metrics and Confusion Matrices187

For a given class, true positive (TP) and true negative (TN) are the number of items
correctly predicted as belonging to the class and not belonging to the class, respectively,
see [49]. False positives (FP) and false negatives (FN) are the number of items incorrectly
predicted as belonging to the class and not belonging to the class, respectively, see [46].
The metrics accuracy, precision, recall and F1-score are:

Accuracy =
TP + TN

Total Cases
, Precision =

TP
TP + FP

. (6)

Recall =
TP

TP + FN
, F1-score =

2
Precision−1 + Recall−1 . (7)

Covid Normal Pneumonia

C
ov

id
5997 178 11

N
or

m
al

12 11980 2

Pn
eu

m
on

ia

9 87 7382

Covid Normal Pneumonia

C
ov

id

5987 165 5

N
or

m
al

6 11904 1

Pn
eu

m
on

ia

25 176 7389

Actual class Actual class188

Pr
ed

ic
te

d
C

la
ss

Pr
ed

ic
te

d
C

la
ss

189

Figure 5. Ps-ProtoPNet with base VGG-16 Figure 6. Ps-ProtoPNet with base VGG-19190

Covid Normal Pneumonia

C
ov

id

5964 153 29

N
or

m
al

25 12072 8

Pn
eu

m
on

ia

29 20 7358

Covid Normal Pneumonia

C
ov

id

5924 127 9

N
or

m
al

53 12071 12

Pn
eu

m
on

ia

41 47 7374

Actual class Actual class191

Pr
ed

ic
te

d
C

la
ss

Pr
ed

ic
te

d
C

la
ss

192

Figure 7. Ps-ProtoPNet with ResNet-34 Figure 8. Ps-ProtoPNet with ResNet-152193

Covid Normal Pneumonia

C
ov

id

5980 114 4

N
or

m
al

16 12094 3

Pn
eu

m
on

ia

22 37 7388

Covid Normal Pneumonia

C
ov

id

5989 174 18

N
or

m
al

20 12043 2

Pn
eu

m
on

ia

9 28 7375

Actual class Actual class194

Pr
ed

ic
te

d
C

la
ss

Pr
ed

ic
te

d
C

la
ss

195

Figure 9. Ps-ProtoPNet with DenseNet-121 Figure 10. Ps-ProtoPNet with DenseNet-161196

Figure 7. Ps-ProtoPNet with ResNet-152.
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Figure 9. Ps-ProtoPNet with DenseNet-121 Figure 10. Ps-ProtoPNet with DenseNet-161196

Figure 8. Ps-ProtoPNet with DenseNet-121.
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Figure 9. Ps-ProtoPNet with DenseNet-121 Figure 10. Ps-ProtoPNet with DenseNet-161196

Figure 9. Ps-ProtoPNet with DenseNet-161.

3.2. The Performance Comparison of the Models

The models Ps-ProtoPNet, Gen-ProtoPNet, NP-ProtoPNet and ProtoPNet are con-
structed over the convolution layers of base models. We trained and tested these models
over the dataset of CT-scan images [44]. Although, the accuracies of these models stabilize
before 30 epochs (see Section 3.3), but we trained and tested the models for 100 epochs.

The comparison of the performance in the metrics is given in the Table 1. We observe
from the third column of Table 1 that when we construct our model over the convolutional
layers of VGG-16, and use the prototypes of spatial dimensions 3× 4 then the accuracy,
precision, recall and F1-score given by Ps-ProtoPNet are 98.83, 0.96, 0.98 and 0.97, respec-
tively. The accuracy, precision, recall and F1-score given by the models Gen-ProtoPNet,
NP-ProtoPNet and ProtoPNet with baseline VGG-16 are 95.85, 0.93, 0.95 and 0.94; 98.23,
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0.93, 0.95 and 0.94; and 90.84, 0.89, 0.91 and 0.90, respectively. The accuracy, precision, recall
and F1-score given by VGG-16 itself (Base only) are 99.03, 0.98, 0.99 and 0.98, respectively.
Also, we observe from the Table 1 that the performance of Ps-ProtoPNet is the highest after
base models.

Table 1. The performances comparison of the models while experimented over the dataset of the CT-scan images.

Base (B) Metric Ps-ProtoPNet Gen-ProtoPNet [14] NP-ProtoPNet [17] ProtoPNet [5] B Only

VGG-16 3 × 4

accuracy 98.83 95.85 98.23 90.84 99.03
precision 0.96 0.93 0.93 0.89 0.98

recall 0.98 0.95 0.95 0.91 0.99
F1-score 0.97 0.94 0.94 0.90 0.98

VGG-19 3 × 6

accuracy 98.53 98.17 98.23 96.54 98.71
precision 0.97 0.95 0.91 0.93 0.98

recall 0.99 0.99 0.96 0.95 0.99
F1-score 0.98 0.97 0.93 0.94 0.98

ResNet-34 3 × 3

accuracy 98.97 ± 0.05 98.40 ± 0.12 98.45 ± 0.07 97.05 ± 0.06 99.24 ± 0.10
precision 0.97 0.96 0.96 0.95 0.99

recall 0.99 0.99 0.99 0.96 0.99
F1-score 0.98 0.97 0.97 0.96 0.99

ResNet-152 2 × 3

accuracy 98.85 ± 0.04 95.90 ± 0.09 98.48 ± 0.06 88.20 ± 0.08 99.40 ± 0.05
precision 0.97 0.93 0.99 0.87 0.99

recall 0.98 0.93 0.99 0.87 0.99
F1-score 0.97 0.93 0.99 0.87 0.99

DenseNet-121 3 × 5

accuracy 99.24 ± 0.05 98.97± 0.02 98.83 ± 0.10 98.81 ± 0.07 99.32 ± 0.03
precision 0.98 0.98 0.99 0.98 0.99

recall 0.99 0.99 0.98 0.98 0.99
F1-score 0.98 0.98 0.98 0.98 0.99

DenseNet-161 2 × 2

accuracy 99.02 ± 0.03 98.87 ± 0.02 98.88 ± 0.03 98.76 ± 0.07 99.41 ± 0.07
precision 0.96 0.98 0.97 0.97 0.99

recall 0.99 0.99 0.99 0.99 0.99
F1-score 0.97 0.98 0.97 0.98 0.99

3.3. The Graphical Comparison of the Accuracies

In the Figures 10–15, the accuracies given by Ps-ProtoPNet are graphically compared
with the accuracies given by the other models. As mentioned in Section 3.2, the accuracies of
these models stabilize before 30 epochs, but we trained and tested the models for 100 epochs
over the dataset of CT-scan images [44]. In Figure 10, the comparison of the accuracies given
by the models with baseline VGG-16 is provided. The curves of colors green, purple, yellow,
brown and blue sketch the accuracies of Ps-ProtoPNet, Gen-ProtoPNet, NP-ProtoPNet,
ProtoPNet and VGG-16, respectively. Although, it is hard to see the difference between
the accuracies in the Figures 10–15, but the figures clearly show the difference between the
accuracies before they stabilize.
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3.4. The Test of Hypothesis for the Accuracies

Since accuracy is the proportion of correctly classified images among all the test
images, we can apply the test of hypothesis concerning system of two proportions. Let n
be the size of test dataset, and the number of images correctly classified by model 1 and 2
are x1 and x2, respectively. Let p̃1 = x1/n and p̃2 = x2/n. The statistic for test concerning
difference between two proportions is given by [57]:

Z =
p̃1 − p̃2√

2p̃(1− p̃)/n
, where p̃ = (x1 + x2)/2n. (8)
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Let p1 and p2 be the accuracies given by model 1 and 2. Therefore, our hypothesis is
as follows:

H0 : (p1 − p2) = 0 (null hypothesis)
Ha : (p1 − p2) 6= 0 (alternative hypothesis)
We test the hypothesis for the level of confidence (α) = 0.05. Since the hypothesis is

two-tailed, the p-value must be less than 0.025 to reject the null hypothesis. In the above
hypotheses, p1 is the accuracy given by Ps-ProtoPNet and p2 represents the accuracies given
by Gen-ProtoPNet, NP-ProtoPNet, ProtoPNet and base models. We obtain the values of
test statistic Z from the above formula given by the Equation (8). Then the corresponding p-
values are obtained from the standard normal table (Z-table). The complete list of p-values
is given in the Table 2. For example, when VGG-16 is used as a base model, the p-values
obtained from the accuracy given by Gen-ProtoPNet in pairs with accuracies given by Gen-
ProtoPNet, NP-ProtoPNet and ProtoPNet are 0.0002, 0.0002, 0.0002 and 0.0367, respectively.
Since α = 0.05, we reject the null hypothesis for all the p-values listed in the Table 2
except the five p-values written in bold. The p-values in bold in the last column means the
accuracies given by Ps-ProtoPNet are not statistically different from accuracies given by
the three base models. However, we can say with 95% confidence that the accuracies given
by Ps-ProtoPNet are better than the corresponding accuracies given by Gen-ProtoPNet,
NP-ProtoPNet and ProtoPNet except in the two cases.

Table 2. The p-values obtained with the test of hypothesis for system of two proportions (accuracies)
between our proposed model, Ps-ProtoPNet, and each of the other model.

Base (B) Gen-ProtoPNet [17] NP-ProtoPNet [18] ProtoPNet [16] B Only

VGG-16 0.0002 0.0002 0.0002 0.0367

VGG-19 0.0007 0.0036 0.0002 0.0409

ResNet-34 0.0002 0.0002 0.0002 0.0002

ResNet-152 0.0002 0.0002 0.0002 0.0002

DenseNet-121 0.0002 0.0002 0.0002 0.0582

DenseNet-161 0.0467 0.0582 0.0075 0.0002

3.5. The Impact of Change in the Hyperparameters of the Last Layer

In this section, we prove a theorem analogous to [16], Theorem 2.1. Our experi-
ments show that w(k,j)

m can hardly be made equal to 0 for pk
j 6∈ Pi during the training,

an assumption made in [16], Theorem 2.1. Therefore, we don’t assume this condition.

Theorem 1. Let h ◦ pp ◦ ` be a Ps-ProtoPNet. For a class k, let bk
l and ak

l be the values of l-th
prototype for class k before the projection of pk

l and after the projection of pk
l , respectively. Let x be

an input image that is correctly classified by Ps-ProtoPNet before the projection, and k be the correct
class label of x. Suppose that:

A1 zk
l = arg minz̃∈patches(`(x)) d(z̃, ak

l );

A2 there exists some δ with 0 < δ < 1 such that:

A2a for all incorrect classes k′ 6= k and l ∈ {1, . . . , mk′}, we have d(ak′
l , bk′

l ) ≤ θd(zk′
l , bk′

l )−
√

ε,

where ε is given by pp(z) = maxZ∈patches(z) log
(

d2(Z , p) + 1
d2(Z , p) + ε

)
and θ = min(

√
1 + δ− 1, 1−

1√
2− δ

);

A2b for all l ∈ {1, . . . , mk}, we have d(ak
l , bk

l ) ≤ (
√

1 + δ− 1)d(zk
l , bk

l ) and d(zk
l , bk

l ) ≤
√

1− δ.

Then after projection, the output logit for the correct class k can decrease at most by ∆ = m′ log(1 +

δ)(2− δ)(1+
1
r
(n− 1)), where−1/r is the weight assigned to incorrect classes, and r is a positive

real number.
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Proof of Theorem 1. For any class k, let Lk(x, {pk
l }m′

l=1) be the output logit for input image
x, where {pk

l }m′
l=1 denote the prototypes of class k. Since negative connections between

similarities scores of incorrect classes and logits are equal to −1/r,

Lk(x, {pk
l }m′

l=1) =
m′

∑
l=1

log

(
d2(zk

l , pk
l ) + 1

d2(zk
l , pk

l ) + ε

)
− 1

r ∑
k′ 6=k

m′

∑
l=1

log

(
d2(zk′

l , pk′
l ) + 1

d2(zk′
l , pk′

l ) + ε

)
.

Let ∆k be the difference between the output logit of class k before and after the projec-
tion of pr-ototypes {pk

l }m′
l=1 to their nearest latent training patches. Suppose Lk(x, {bk

l }m′
l=1)

and Lk(x, {ak
l }m′

l=1) denotes the logits before the projection and after the projection, respec-
tively. Therefore, we have

∆k = Lk(x, {ak
l }m′

l=1)− Lk(x, {bk
l }m′

l=1)

=
m′

∑
l=1

log

(
d2(zk

l , ak
l ) + 1

d2(zk
l , bk

l ) + 1
· d2(zk

l , bk
l ) + ε

d2(zk
l , ak

l ) + ε

)
− 1

r ∑
k′ 6=k

m′

∑
l=1

log

(
d2(zk′

l , ak′
l ) + 1

d2(zk′
l , bk′

l ) + 1
· d2(zk′

l , bk′
l ) + ε

d2(zk′
l , ak′

l ) + ε

)
.

Suppose that,

Ψk
l =

d2(zk
l , ak

l ) + 1

d2(zk
l , bk

l ) + 1
× d2(zk

l , bk
l ) + ε

d2(zk
l , ak

l ) + ε
, and Ψk′

l =
d2(zk′

l , ak′
l ) + 1

d2(zk′
l , bk′

l ) + 1
× d2(zk′

l , bk′
l ) + ε

d2(zk′
l , ak′

l ) + ε
. (9)

Therefore,

∆k =
m′

∑
l=1

log Ψk
l − ∑

k′ 6=k

m′

∑
l=1

log Ψk′
l . (10)

From the inequality given in the assumption (A2b), we have

d2(zk
l , ak

l ) + 1

d2(zk
l , bk

l ) + 1
≥ 1

d2(zk
l , bk

l ) + 1
≥ 1

2− δ
. (11)

By the triangle inequality, we have d(zk
l , ak

l ) ≤ d(zk
l , bk

l ) + d(ak
l , bk

l ). Consequently,

d2(zk
l , bk

l ) + ε

d2(zk
l , ak

l ) + ε
≥ d2(zk

l , bk
l ) + ε

(d(zk
l , bk

l ) + d(ak
l , bk

l ))
2 + ε

. (12)

Again, by (A2b), we have

d(ak
l , bk

l ) ≤ (
√

1 + δ− 1)d(zk
l , bk

l ), that is, d(ak
l , bk

l ) + d(zk
l , bk

l ) ≤ d(zk
l , bk

l )
√

1 + δ.

On squaring both sides of the above inequality and then adding ε to both sides of the
inequality, we obtain

(d(ak
l , bk

l ) + d(zk
l , bk

l ))
2 + ε ≤ (1 + δ)d2(zk

l , bk
l ) + ε ≤ (1 + δ)(d2(zk

l , bk
l ) + ε).

On rearranging the above inequality, we have

d2(zk
l , bk

l ) + ε

(d(ak
l , bk

l ) + d(zk
l , bk

l ))
2 + ε

≥ (1 + δ). (13)

Therefore, by inequalities (12) and (13), be obtain

d2(zk
l , bk

l ) + ε

d2(zk
l , ak

l ) + ε
≥ (d2(zk

l , bk
l ) + ε

(d(ak
l , bk

l ) + d(zk
l , bk

l ))
2 + ε

≥ (1 + δ). (14)
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Hence, by Equations (11) and (14), we have

Ψk
l =

d2(zk
l , ak

l ) + 1

d2(zk
l , bk

l ) + 1
× d2(zk

l , bk
l ) + ε

d2(zk
l , ak

l ) + ε
≥ 1

(1 + δ)(2− δ)
. (15)

Now we derive an upper bound of Ψk′
l , where k′ 6= k. Using the triangle inequality,

we obtain
d2(zk′

l , ak′
l ) ≤ (d(zk′

l , bk′
l ) + d(ak′

l , bk′
l ))

2 + 1.

Therefore,
d2(zk′

l , ak′
l ) + 1

d2(zk′
l , bk′

l ) + 1
≤ (d(zk′

l , bk′
l ) + d(ak′

l , bk′
l ))

2 + 1

d2(zk′
l , bk′

l ) + 1
. (16)

By assumption (A2a), we have

d(ak′
l , bk′

l ) ≤ (
√

1 + δ− 1)d(zk′
l , bk′

l )−
√

ε ≤ (
√

1 + δ− 1)d(zk′
l , bk′

l ). (17)

By the inequality (17), we have

(d(zk′
l , bk′

l ) + d(ak′
l , bk′

l ))
2 ≤ (d(zk′

l , bk′
l ) + (

√
1 + δ− 1)d(zk′

l , bk′
l ))

2

= ((
√

1 + δ)d(zk′
l , bk′

l ))
2 = (1 + δ)d2(zk′

l , bk′
l ).

(18)

Using the inequality (18), we obtain

d(zk′
l , bk′

l ) + d(ak′
l , bk′

l ))
2 + 1

d(zk′
l , bk′

l )
2 + 1

≤ (1 + δ)d(zk′
l , bk′

l )
2 + 1

d(zk′
l , bk′

l )
2 + 1

≤ (1 + δ)d(zk′
l , bk′

l )
2 + 1 + δ

d(zk′
l , bk′

l )
2 + 1

= 1 + δ.

(19)

On combining the inequalities (16) and (19), we have

d2(zk′
l , ak′

l ) + 1

d2(zk′
l , bk′

l ) + 1
≤ 1 + δ. (20)

Again, by the triangle inequality, we have

d(zk′
l , ak′

l ) ≥ d(zk′
l , bk′

l )− d(ak′
l , bk′

l ). (21)

Also, inequality in the assumption (A2a) implies d(zk′
l , bk′

l )− d(ak′
l , bk′

l ) > 0.
Therefore, the inequality (21) and the positivity of the expression d(zk′

l , bk′
l )− d(ak′

l , bk′
l ) give:

d2(zk′
l , bk′

l ) + ε

d2(zk′
l , ak′

l ) + ε
≤ d2(zk′

l , bk′
l ) + ε

(d(zk′
l , bk′

l )− d(ak′
l , bk′

l ))
2 + ε

≤
(

d(zk′
l , bk′

l ) +
√

ε

d(zk′
l , bk′

l )− d(ak′
l , bk′

l )

)2

. (22)

Again, by using the assumption (A2a), we have

d(ak′
l , bk′

l ) ≤
(

1− 1√
2− δ

)
d(zk′

l , bk′
l )−

√
ε.

On simplifying the above inequality, we obtain

1√
2− δ

d(zk′
l , bk′

l ) +
√

ε ≤ d(zk′
l , bk′

l )− d(ak′
l , bk′

l ).
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Therefore,

1√
2− δ

d(zk′
l , bk′

l ) +

√
ε√

2− δ
≤ 1√

2− δ
d(zk′

l , bk′
l ) +

√
ε ≤ d(zk′

l , bk′
l )− d(ak′

l , bk′
l ).

The above inequality gives:

d(zk′
l , bk′

l ) +
√

ε

d(zk′
l , bk′

l )− d(ak′
l , bk′

l )
≤
√

2− δ. (23)

Combining inequalities (22) and (23), we obtain

d(zk′
l , bk′

l ) + ε

d(zk′
l , ak′

l ) + ε
≤ (
√

2− δ)2 = 2− δ. (24)

The inequalities (21) and (24) give us

Ψk′
l =

d2(zk′
l , ak′

l ) + 1

d2(zk
l , bk

l ) + 1
× d2(zk

l , bk
l ) + ε

d2(zk′
l , ak′

l ) + ε
≤ (1 + δ)(2− δ). (25)

Therefore, by Equations (9), (10), and inequalities (14) and (25), we have

Ψk
l ≥

1
(1 + δ)(2− δ)

and Ψk′
l ≤ (1 + δ)(2− δ).

Since log is an increasing function, we have

log Ψk
l ≥ log

1
(1 + δ)(2− δ)

and log Ψk′
l ≤ log(1 + δ)(2− δ).

Therefore,

log Ψk
l ≥ − log(1 + δ)(2− δ) and − log Ψk′

l ≥ − log(1 + δ)(2− δ).

By the Equation (10), we have

∆k ≥ −
m′

∑
l=1

log(1 + δ)(2− δ)− 1
r ∑

k′ 6=k

m′

∑
l=1

log(1 + δ)(2− δ)

≥ −m′ log(1 + δ)(2− δ)− 1
r ∑

k′ 6=k
m′ log(1 + δ)(2− δ)

≥ −m′ log(1 + δ)(2− δ)(1 +
1
r ∑

k′ 6=k
).

(26)

Note that, ∑
k′ 6=k

= n− 1, thus

− ∆k ≤ m′ log(1 + δ)(2− δ)(1 +
1
r
(n− 1)). (27)

The -ve sign indicates the decrease in the logit after the projection of a prototype.

4. Discussion

Ps-ProtoPNet is closely related to three interpretable deep learning models ProtoPNet,
Gen-PrtoPNet and NP-ProtoPNet, but strikingly different from them as explained the
Section 2.3. Ps-ProtoPNet uses a generalized version of the distance function L2 along
with the non-optimization of the last layer. The non-optimization of the last layer helps to
preserve the negative connection of the logits with incorrect classes that further helped to
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establish Theorem 1. Moreover, the non-optimization of the last layer helped us to include
the negative reasoning process along with positive reasoning process.

5. Conclusions

The non-optimization of the last layer and the use of prototypes with rectangular
spatial dimensions and square spatial dimensions greater than 1× 1 helped our model to
improve its performance over NP-ProtoPNet, Gen-ProtoPNet and ProtoPNet.

Author Contributions: G.S. is the first author of this article. K.-C.Y. is the corresponding author
of this article. Yow reviewed and supervised this project. All authors have read and agreed to the
published version of the manuscript.

Funding: We acknowledge the support of the Natural Sciences and Engineering Research Council
of Canada (NSERC), funding reference number DDG-2020-00034. Cette recherche a été financée par
le Conseil de recherches en sciences naturelles et en génie du Canada (CRSNG), numéro de référence
DDG-2020-00034.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used in this study are openly available [44].

Acknowledgments: The authors are grateful to the Faculty of Engineering and Applied Sciences
at the University of Regina for making arrangement of a deep learning server for them to run
their experiments.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript,
or in the decision to publish the results.

References
1. Wikipedia. Variants of SARS-CoV-2. Available online: https://en.wikipedia.org/wiki/Variants_of_SARS-CoV-2#Variants_of_

Interest_(WHO) (accessed on 30 June 2021).
2. Wikipedia. COVID-19 Testing. Available online: https://en.wikipedia.org/wiki/COVID-19_testing (accessed on 24 August

2021).
3. Al-Waisy, A.S.; Mohammed, M.A.; Al-Fahdawi, S.; Maashi, M.S.; Garcia-Zapirain, B.; Abdulkareem, K.H.; Mostafa, S.A.; Kumar,

N.M.; Le, D.-N. COVID-DeepNet: Hybrid Multimodal Deep Learning System for Improving COVID-19 Pneumonia Detection in
Chest X-ray Images. Comput. Mater. Contin. 2021, 67, 2409–2429. [CrossRef]

4. Al-Waisy, A.S.; Al-Fahdawi, S.; Mohammed, M.A.; Abdulkareem, K.H.; Mostafa, S.A.; Maashi, M.S.; Arif, M.; Garcia-Zapirain, B.
COVID-CheXNet: Hybrid deep learning framework for identifying COVID-19 virus in chest X-rays images. Soft Comput. 2020,
1–16. [CrossRef]

5. Azemin, M.Z.C.; Hassan, R.; Tamrin, M.I.M.; Ali, M.A.M. COVID-19 Deep Learning Prediction Model Using Publicly Available
Radiologist-Adjudicated Chest X-Ray Images as Training Data: Preliminary Findings. Hindawi Int. J. Biomed. Imaging 2020, 2020,
8828855. [CrossRef] [PubMed]

6. Chaudhary, Y.; Mehta, M.; Sharma, R.; Gupta, D.; Khanna, A.; Rodrigues, J.J.P.C. Efficient-CovidNet: Deep Learning Based
COVID-19 Detection From Chest X-Ray Images. In Proceedings of the 2020 IEEE 22nd International Conference on e-Health
Networking, Applications and Services, Shenzhen, China, 1–2 March 2020. [CrossRef]

7. Cohen, J.P.; Dao, L.; Roth, K.; Morrison, P.; Bengio, Y.; Abbasi, A.; Shen, B.; Mahsa, H.; Ghassemi, M.; Li, H. Predicting COVID-19
Pneumonia Severity on Chest X-ray With Deep Learning. Cureus 2020. [CrossRef] [PubMed]

8. Gunraj, H.; Wang, L.; Wong, A. COVIDNet-CT: A Tailored Deep Convolutional Neural Network Design for Detection of
COVID-19 Cases From Chest CT Images. Front. Med. 2020, 7, 1025. [CrossRef] [PubMed]

9. Jain, G.; Mittal, D.; Thakur, D.; Mittal, M. A deep learning approach to detect COVID-19 coronavirus with X-Ray images. Biocybern.
Biomed. Eng. 2020, 40, 1391–1405. [CrossRef] [PubMed]

10. Jain, R.; Gupta, M.; Taneja, S.; Hemanth, D.J. Deep learning based detection and analysis of COVID-19 on chest X-ray images.
Appl. Intell. 2021. [CrossRef]

11. Kumar, R.; Arora1, R.; Bansal, V.; Sahayasheela, V.; Buckchash, H.; Imran, J.; Narayanan, N.; Pandian, G.N.; Raman1, B. Accurate
Prediction of COVID-19 using Chest X-Ray Images through Deep Feature Learning model with SMOTE and Machine Learning
Classifiers. medRxiv 2020. [CrossRef]

12. Ozturk, T.; Talo, M.; Yildirim, E.A.; Baloglu, U.B.; Yildirime, O.; Acharya, U.R. Automated detection of COVID-19 cases using
deep neural networks with X-ray images. Comput. Biol. Med. 2020, 121, 103792. [CrossRef] [PubMed]

https://en.wikipedia.org/wiki/Variants_of_SARS-CoV-2#Variants_of_Interest_(WHO)
https://en.wikipedia.org/wiki/Variants_of_SARS-CoV-2#Variants_of_Interest_(WHO)
https://en.wikipedia.org/wiki/COVID-19_testing
http://doi.org/10.32604/cmc.2021.012955
http://dx.doi.org/10.1007/s00500-020-05424-3
http://dx.doi.org/10.1155/2020/8828855
http://www.ncbi.nlm.nih.gov/pubmed/32849861
http://dx.doi.org/10.1109/HEALTHCOM49281.2021.9398980
http://dx.doi.org/10.7759/cureus.9448
http://www.ncbi.nlm.nih.gov/pubmed/32864270
http://dx.doi.org/10.3389/fmed.2020.608525
http://www.ncbi.nlm.nih.gov/pubmed/33425953
http://dx.doi.org/10.1016/j.bbe.2020.08.008
http://www.ncbi.nlm.nih.gov/pubmed/32921862
http://dx.doi.org/10.1007/s10489-020-01902-1
http://dx.doi.org/10.1101/2020.04.13.20063461
http://dx.doi.org/10.1016/j.compbiomed.2020.103792
http://www.ncbi.nlm.nih.gov/pubmed/32568675


Diagnostics 2021, 11, 1732 19 of 20

13. Reddy, G.T.; Bhattacharya, S.; Ramakrishnan, S.S.; Chowdhary, C.L.; Hakak, S.; Kaluri, R.; Reddy, M.P.K. An ensemble based
machine learning model for diabetic retinopathy classification. In Proceedings of the 2020 international conference on emerging
trends in information technology and engineering (ic-ETITE), Vellore, India, 26 December 2020; pp. 1–6.

14. Sharma, A.; Rani, S.; Gupta, D. Artificial Intelligence-Based Classification of Chest X-Ray Images into COVID-19 and Other
Infectious Diseases. Hindawi Int. J. Biomed. Imaging 2020, 2020, 8889023. [CrossRef]

15. Zebin, T.; Rezvy, S. COVID-19 detection and disease progression visualization: Deep learning on chest X-rays for classification
and coarse localization. Appl. Intell. 2020. [CrossRef]

16. Chen, C.; Li, O.; Tao, C.; Barnett, A.J.; Su, J.; Rudin, C. This Looks Like That: Deep Learning for Interpretable Image Recognition.
In Proceedings of the 33rd Conference on Neural Information Processing Systems (NeurIPS), Vancouver, BC, Canada, 8–14
December 2019.

17. Singh, G.; Yow, K.-C. An Interpretable Deep Learning Model for COVID-19 Detection With Chest X-Ray Images. IEEE Access
2021, 9, 85198–85208. [CrossRef]

18. Singh, G.; Yow, K.-C. These Do Not Look Like Those: An Interpretable Deep Learning Model. IEEE Access 2021, 9, 41482–41493.
[CrossRef]

19. Erhan, D.; Bengio, Y.; Courville, A.; Vincent, P. Visualizing Higher-Layer Features of a Deep Network. Technical Report 1341, the
University of Montreal, June 2009. Also presented at theWorkshop on Learning Feature Hierarchies. In Proceedings of the 26th
International Conference on Machine Learning (ICML 2009), Montreal, QC, Canada, 14–18 June 2009.

20. Hinton, G.E. A Practical Guide to Training Restricted Boltzmann Machines. In Neural Networks: Tricks of the Trade; Springer:
Berlin/Heidelberg, Germany, 2012; pp. 599–619.

21. Lee, H.; Grosse, R.; Ranganath, R.; Ng, A.Y. Convolutional Deep Belief Networks for Scalable Unsupervised Learning of
Hierarchical Representations. In Proceedings of the 26th International Conference on Machine Learning (ICML), Montreal, QC,
Canada, 14–18 June 2009; pp. 609–616.

22. Nguyen, A.; Dosovitskiy, A.; Yosinski, J.; Brox, T.; Clune, J. Synthesizing the preferred inputs for neurons in neural networks
via deep generator networks. In Advances in Neural Information Processing Systems 29 (NIPS); NIPS: Grenada, Spain, 2016;
pp. 3387–3395.

23. Simonyan, K.; Vedaldi, A.; Zisserman, A. Deep Inside Convolutional Networks: Visualising Image Classification Models
and Saliency Maps. In Proceedings of the Workshop at the 2nd International Conference on Learning Representations (ICLR
Workshop), Banff, AB, Canada, 14–16 April 2014.

24. Oord, A.v.; Kalchbrenner, N.; Kavukcuoglu, K. Pixel Recurrent Neural Networks. In Proceedings of the 33rd International
Conference on Machine Learning (ICML), New York, NY, USA, 19–24 June 2016; pp. 1747–1756.

25. Yosinski, J.; Clune, J.; Fuchs, T.; Lipson, H. Understanding Neural Networks through Deep Visualization. In Proceedings of the
Deep Learning Workshop at the 32nd International Conference on Machine Learning (ICML), Lille, France, 6–11 July 2015.

26. Zeiler, M.D.; Fergus, R. Visualizing and Understanding Convolutional Networks. In Proceedings of the European Conference on
Computer Vision (ECCV), Zurich, Switzerland, 5–12 September 2014; pp. 818–833.

27. Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual Explanations from Deep Networks
via Gradient-Based Localization. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy,
22–29 October 2017.

28. Smilkov, D.; Thorat, N.; Kim, B.; ViÃ©gas, F.; Wattenberg, M. SmoothGrad: Removing noise by adding noise. arXiv 2017,
arXiv:1706.03825

29. Sundararajan, M.; Taly, A.; Yan, Q. Axiomatic Attribution for Deep Networks. In Proceedings of the 34th International Conference
on Machine Learning (ICML), San Diego, CA, USA, 7–9 May 2017; pp. 3319–3328.

30. Fu, J.; Zheng, H.; Mei, T. Look Closer to See Better: Recurrent Attention Convolutional Neural Network for Fine-grained Image
Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA,
26 July 2017; pp. 4438-4446.

31. Girshick, R. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Washington, DC,
USA, 7–13 December 2015; pp. 1440–1448.

32. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 28 June 2014;
pp. 580–587.

33. Huang, S.; Xu, Z.; Tao, D.; Zhang, Y. Part-Stacked CNN for Fine-Grained Visual Categorization. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 30 June 2016; pp. 1173–1182.

34. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.
In Proceedings of the Advances in Neural Information Processing Systems 28 (NIPS), Montreal, QC, Canada, 7–12 December
2015; pp. 91–99.

35. Simon, M.; Rodner, E. Neural Activation Constellations: Unsupervised Part Model Discovery with Convolutional Networks.
In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015;
pp. 1143–1151.

36. Uijlings, J.R.; Sande, K.E.V.D.; Gevers, T.; Smeulders, A.W. Selective Search for Object Recognition. Int. J. Comput. Vis. 2013, 104,
154–171. [CrossRef]

http://dx.doi.org/10.1155/2020/8889023
http://dx.doi.org/10.1007/s10489-020-01867-1
http://dx.doi.org/10.1109/ACCESS.2021.3087583
http://dx.doi.org/10.1109/ACCESS.2021.3064838
http://dx.doi.org/10.1007/s11263-013-0620-5


Diagnostics 2021, 11, 1732 20 of 20

37. Xiao, T.; Xu, Y.; Yang, K.; Zhang, J.; Peng, Y.; Zhang, Z. The Application of Two-Level Attention Models in Deep Convolutional
Neural Network for Fine-grained Image Classification. In Proceedings of the Computer Vision and Pattern Recognition (CVPR),
2015 IEEE Conference, Boston, MA, USA, 12 June 2015; pp. 842–850.

38. Zhang, N.; Donahue, J.; Girshick, R.; Darrell, T. Part-based R-CNNs for Fine-grained Category Detection. In Proceedings of the
European Conference on Computer Vision (ECCV), Zurich, Switzerland, 5–12 September 2014; pp. 834–849.

39. Zheng, H.; Fu, J.; Mei, T.; Luo, J. Learning Multi-Attention Convolutional Neural Network for Fine- Grained Image Recognition.
In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 Octoter 2017; pp. 5209–5217.

40. Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A.; Torralba, A. Learning Deep Features for Discriminative Localization. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 2921–2929.

41. Zhou, B.; Sun, Y.; Bau, D.; Torralba, A. Interpretable Basis Decomposition for Visual Explanation. In Proceedings of the European
Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 119–134.

42. Li, O.; Liu, H.; Chen, C.; Rudin, C. Deep Learning for Case-Based Reasoning through Prototypes: A Neural Network that Explains
Its Predictions. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence (AAAI), New Orleans, LA, USA,
2–7 February 2018.

43. European Institute for Biomedical Imaging Research. COVID-19 Imaging Datasets. Available online: https://www.eibir.org/
COVID-19-imaging-datasets/ (accessed on 23 August 2021).

44. Kaggle. COVIDx CT-2 Dataset. Available online: https://www.kaggle.com/hgunraj/covidxct (accessed on 7 June 2021).
45. Zaffino, P.; Marzullo, A.; Moccia, S.; Calimeri, F.; Momi, E.D.; Bertucci, B.; Arcuri, P.P.; Spadea, M.F. An Open-Source COVID-19

CT Dataset with Automatic Lung Tissue Classification for Radiomics. Bioengineering 2021, 8, 26. [CrossRef]
46. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings of the 3rd

International Conference on Learning Representations (ICLR), San Diego, CA, USA, 7–9 May 2015.
47. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Vegas, NV, USA, 30 June 2016; pp. 770–778.
48. Huang, G.; Liu, Z.; Maaten, L.v.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.
49. Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Fei-Fei, L. ImageNet: A Large-Scale Hierarchical Image Database. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Juan, PR, USA, 17–19 June 2009; pp. 248–255.
50. Ghiasi-Shirazi, K. Generalizing the Convolution Operator in Convolutional Neural Networks. Neural Process. Lett. 2019.

[CrossRef]
51. Nalaie, K.; Ghiasi-Shirazi, K.; Akbarzadeh-T, M.R. Efficient Implementation of a Generalized Convolutional Neural Networks

based on Weighted Euclidean Distance. In Proceedings of the 2017 7th International Conference on Computer and Knowledge
Engineering (ICCKE), Mashhad, Iran, 26–27 October 2017; pp. 211–216.

52. Wikipedia. Sensitivity and Specificity. Available online: https://en.wikipedia.org/wiki/Sensitivity_and_specificity (accessed on
2 April 2021).

53. Wikipedia. Precision and Reacall. Available online: https://en.wikipedia.org/wiki/Precision_and_recall (accessed on 2 April
2021).

54. Wikipedia. F-Score. Available online: https://en.wikipedia.org/wiki/F-score (accessed on 2 April 2021).
55. Wikipedia. Accuracy and Precision. Available online: https://en.wikipedia.org/wiki/Accuracy_and_precision (accessed on 2

April 2021).
56. Wikipedia. Confusion Matrix. Available online: https://wikipedia.org/wiki/Confusion_matrix (accessed on 2 April 2021).
57. Johnson, R.A. Miller and Freund’s Probability and Statistics for Engineers, 9th ed.; Prentice Hall International: Harlow, UK, 2011.

https://www.eibir.org/COVID-19-imaging-datasets/
https://www.eibir.org/COVID-19-imaging-datasets/
https://www.kaggle.com/hgunraj/covidxct
http://dx.doi.org/10.3390/bioengineering8020026
http://dx.doi.org/10.1007/s11063-019-10043-7
https://en.wikipedia.org/wiki/Sensitivity_and_specificity
https://en.wikipedia.org/wiki/Precision_and_recall
https://en.wikipedia.org/wiki/F-score
https://en.wikipedia.org/wiki/Accuracy_and_precision
https://wikipedia.org/wiki/Confusion _matrix

	Introduction
	Materials and Methods
	Related Work
	Data
	Working Principal and Novelty of Ps-ProtoPNet
	Ps-ProtoPNet Architecture
	The Training of Ps-ProtoPNet
	Optimization of All Layers before the Dense Layer
	Push of Prototypical Parts

	Explanation of Ps-ProtoPNet with an Example

	Results
	The Metrics and Confusion Matrices
	The Performance Comparison of the Models
	The Graphical Comparison of the Accuracies
	The Test of Hypothesis for the Accuracies
	The Impact of Change in the Hyperparameters of the Last Layer

	Discussion
	Conclusions
	References

