
diagnostics

Article

CSGBBNet: An Explainable Deep Learning Framework for
COVID-19 Detection

Xu-Jing Yao 1 , Zi-Quan Zhu 2, Shui-Hua Wang 1,* and Yu-Dong Zhang 1,*

����������
�������

Citation: Yao, X.-J.; Zhu, Z.-Q.;

Wang, S.-H.; Zhang, Y.-D. CSGBBNet:

An Explainable Deep Learning

Framework for COVID-19 Detection.

Diagnostics 2021, 11, 1712. https://

doi.org/10.3390/diagnostics11091712

Academic Editor: Ayman El-Baz

Received: 17 August 2021

Accepted: 15 September 2021

Published: 18 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Computing and Mathematical Sciences, University of Leicester, Leicester LE1 7RH, UK;
xy147@leicester.ac.uk

2 Department of Civil and Coastal Engineering, University of Florida, Gainesville, FL 32608, USA;
zhu.ziquan@ufl.edu

* Correspondence: shuihuawang@ieee.org (S.-H.W.); yudongzhang@ieee.org (Y.-D.Z.)

Abstract: The COVID-19 virus has swept the world and brought great impact to various fields,
gaining wide attention from all walks of life since the end of 2019. At present, although the global
epidemic situation is leveling off and vaccine doses have been administered in a large amount,
confirmed cases are still emerging around the world. To make up for the missed diagnosis caused by
the uncertainty of nucleic acid polymerase chain reaction (PCR) test, utilizing lung CT examination
as a combined detection method to improve the diagnostic rate becomes a necessity. Our research
considered the time-consuming and labor-intensive characteristics of the traditional CT analyzing
process, and developed an efficient deep learning framework named CSGBBNet to solve the binary
classification task of COVID-19 images based on a COVID-Seg model for image preprocessing and
a GBBNet for classification. The five runs with random seed on the test set showed our novel
framework can rapidly analyze CT scan images and give out effective results for assisting COVID-19
detection, with the mean accuracy of 98.49 ± 1.23%, the sensitivity of 99.00 ± 2.00%, the specificity
of 97.95 ± 2.51%, the precision of 98.10 ± 2.61%, and the F1 score of 98.51 ± 1.22%. Moreover, our
model CSGBBNet performs better when compared with seven previous state-of-the-art methods. In
this research, the aim is to link together biomedical research and artificial intelligence and provide
some insights into the field of COVID-19 detection.

Keywords: COVID-19; machine learning; deep learning; convolutional neural network; Bayesian
Optimization; chest CT

1. Introduction

In February 2020, the World Health Organization (WHO) named the cause of the
Coronavirus Disease 2019 (COVID-19) as SARS-CoV-2 [1], which is a novel coronavirus
that firstly been found in the human body. This virus shares a structural similarity of
87.1% [2] to the SARS-related virus found in bats, and 79.5% [3] to the SARS virus, which
means novel coronavirus and SARS coronavirus belong to the same family of viruses but
are not the same.

According to the latest real-time statistics reported by the WHO in Figure 1, as of
10:37 a.m. Central European Summer Time (CEST) on 9 August 2021, there have been
202,296,216 confirmed cases of COVID-19 and 4,288,134 confirmed deaths over 225 coun-
tries, areas, or territories. Although vaccine doses have been administered in significant
numbers, newly reported confirmed cases and deaths are still emerging every day.

From the current epidemiological investigation for COVID-19 [4], the patient of
latent period and some confirmed patients has no difference in appearance with the
normal person but still has infectivity. Therefore, it is urgent to expand the coverage of
COVID-19 inspection, accelerate the speed of detection, improve the accuracy of detecting
infected persons including the asymptomatic infected persons as early as possible to
avoid secondary transmission [5]. However, at present, based on a variety of practical
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considerations, several countries around the world are trying to relax social restrictions,
which poses great challenges to COVID-19 detection level, especially in places with high
traffic density such as customs, airports, and stations. Thus, to quickly improve the COVID-
19 diagnostic level, scientists and medical institutions worldwide are actively engaged in
in-depth research into the COVID-19 diagnosis.
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At present, the commonly used standard method of COVID-19 detection is the reverse
transcription-polymerase chain reaction (RT-PCR) test. Nevertheless, RT-PCR usually takes
up two days to complete and sometimes needs repetition or some other auxiliary detection
approach in test to exclude potential false negatives [6]. Care also needs to be taken during
testing to prevent environmental contamination of the samples. Therefore, to improve
the efficiency of COVID-19 detection, many medical institutions consider chest computed
tomography (CT) scan as an early diagnostic tool for suspected coronavirus infection.
Chest CT is a common basic diagnostic technique for pneumonia, which uses X-ray CT to
examine the chest [7]. Fang, Zhang [6] compared the sensitivity of chest CT and RT-PCR in
COVID-19 detection. The results indicate that chest CT is an effective method for screening
COVID-19 patients, especially those who are tested negative for RT-PCR.

However, manual labelling and diagnosing of CT images may be time-consuming
and labour-intensive. Human experts may also misdiagnose due to some external in-
terference or subjective factors, especially when the lesion degree is mild. Hence, using
computer-aided technologies to assist expert diagnosis has become a good choice [8,9].
Deep learning technology has also far achieved many contributions in dealing with CT
images. Onishi, Teramoto [10] proposed a novel deep learning system that combined a deep
convolutional neural network and generative adversarial networks for pulmonary-nodule
classification. Wang, Shen [11] presented a raw patch-based convolutional neural network
for the detection of lung nodules. Peng, Kang [12] used a residual convolutional neural
network for predicting the response of transarterial chemoembolization in hepatocellular
carcinoma. As displayed in Table 1, three pieces of the latest research from Wang and
Wong [13], Dey, Rajinikant [14], and Abbas, Abdelsamea [15] provide systematic reviews
of deep learning techniques in detecting COVID-19. These all prove that deep learning
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methods can well approximate expert skills, and at the same time find novel relationships
not already apparent to humans.

Table 1. A survey of latest proposed deep learning techniques in detecting COVID-19.

Reference Number of Scans in the Dataset Method(s) Reported Accuracy

Wang et al. [13]
• COVID-19 (358)
• Non-COVID19 Pneumonia (5538)
• Normal (8066)

COVID-Net 93.3%

ResNet-50 90.6%

VGG-19 83%

Dey et al. [14] • COVID-19 (200)
• Normal (200)

Feature fusion + KNN 87.75%

Feature fusion + SVM-RBF 87.25%

Feature fusion + RF 86.75%

Feature fusion + DT 86.50%

Abbas et al. [15]
• COVID-19 (105)
• SARS (11)
• Normal (80)

DeTraC + ResNet 93.10%

DeTraC + VGG19 93.10%

DeTraC + GoogLeNet 89.65%

DeTraC + AlexNet 89.10%

DeTraC + SqueezeNet 82.75%

(The best methods and results on each dataset are shown in bold).

GoogLeNet is a classic deep learning structure proposed by Szegedy, Ioffe [16]. Our
novel model was proposed based on transfer learning from GoogLeNet. In addition, to
prevent gradient explosion or dispersion and keep most activation functions away from
their saturated region, more batch normalization relevant blocks were added into the newly
designed layers. In this way, the robustness of the model to different hyperparameters
during training will be improved and the optimization process will become smoother. This
smoothness makes the behavior of the gradient more predictable and stable, allowing for
faster training [17].

When dealing with deep neural networks, the selection of hyperparameters is always
a problem. Manual parameter tuning is time-consuming and may not achieve optimal
results. The advantage of Bayesian Optimization (BO) in parameter tuning is sample
efficiency. In other words, if we consider one step as training the neural network with a set
of hyperparameters, BO can find a better choice of hyperparameters with very few steps.
In addition, BO does not ask for the gradient, which is difficult to be obtained from the
hyperparameter of the neural network under general circumstances. These two benefits
make BO become the algorithm we chose to tune the neural network in this experiment.

In this study, we linked biomedical research and artificial intelligence together to
propose a novel, rapid, stable deep learning framework called CSGBBNet with excel-
lent accuracy for distinguishing between COVID-19 patients and healthy people. There
are four main improvements in our study. The first is we proposed a novel image pre-
processing model—COVID-Seg based on the Maximum entropy threshold segmentation
method, which can accurately outline the lung area. The ‘COVID’ here stands for ‘COVID-
19 detection’, and the ‘Seg’ signifies ‘Segmentation process’. The second is, in this COVID-
Seg model, we introduced an ‘erosion and dilation’ based process to refine the output
segmented image. This is the first time this combination of techniques being applied to
the COVID-19 detection field, and the results show that this COVID-Seg model has a very
significant effect on improving the model performance. Thirdly, we presented a novel
GBBNet through restructuring, retraining the GoogLeNet model, and adding more batch
normalization relevant blocks into it. The fourth is, in our GBBNet, we used Bayesian
Optimization as the hyperparameter tuning algorithm to find a better choice of hyperpa-
rameters rapidly. In the name ‘GBBNet’, the ‘G’ represents ‘GoogLeNet’; the first ‘B’ stands
for ‘Batch normalization relevant blocks’; the second ‘B’ stands for ‘Bayesian Optimization’.
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These four improvements can help enrich the performance of our model specially built for
COVID-19 detection. Sections 2–5 will introduce the dataset, methodology, experimental
results, and conclusions of our study, respectively.

2. Dataset

The dataset named ‘COVID Academic’ is from [18]. It consists of 196 slice images
and have been carefully labelled by human experts from the Fourth People’s Hospital of
Huai’an City. It can be divided into two parts: one part of 98 CT scan images from patients
with novel coronavirus pneumonia and the other part of 98 CT scan images from healthy
control (HC). The example images are displayed in Figure 2. The instrument and settings
for the CT acquisition are Philips Ingenuity 64 row spiral CT machine, Mas: 240, KV: 120,
layer spacing 3 mm, layer thickness 3mm, Mediastinum window (Width, Level: 350, 60
in Hounsfield units), thin layer reconstruction according to the lesion display. The slice
images using the agreed slice level selection (SLS) method: (i) selecting the slice with the
largest size and number of lesions for the patients with COVID-19 and (ii) for the normal
cases, any level of the slice can be chosen. Through utilizing this SLS method, 196 slice
images were extracted with a resolution of 1024 × 1024 from COVID-19 patients and
healthy people.
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3. Methodology

The abbreviation list and symbol list for this section are shown in Tables 2 and 3.

3.1. Preprocessing

Preprocessing has shown many benefits in medical image analysis [9,19]. We presented
a novel model—COVID-Seg for segmenting lung regions in each CT image. Tissues regions
other than the lung regions, such as the regions of heart, ribs, and thoracic vertebrae, were
removed because no changes in the CT image will appear if these regions were infected by
the COVID-19 virus. Taking the Figure 2 images as input examples, the general process of
the COVID-Seg model is illustrated in Figure 3.

Table 2. Abbreviation list.

Abbreviation Representation

FCL fully connected layer
BN batch normalization
AC acquisition function

UCB upper confidence bound
PI probability of improvement
EI expected improvement

CDF cumulative distribution function
PTN pre-trained network
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Table 3. Symbol list.

Symbol Meaning

Fresize function of resizing the images to a same size
Fmets function of utilizing Maximum entropy threshold segmentation-based method
Fed function of ‘erosion and dilation-based process’
Fcrwc function of choosing and retaining the wanted connectivity areas

Fcomb
function of conducting element-wise multiplication process between the final
refined mask and the raw image to get the final segmented image

Frl function of removing layers
Fandl function of adding newly designed layers
lr learning rate
Frn function of retraining the network
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In this model, we first utilized the maximum entropy threshold segmentation method
to obtain the preliminary mask of lung regions by classifying each pixel in the image [20,21],
which will be discussed later in Section 3.1.1. After that, we refined the mask via some
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appropriate image processing techniques such as ‘erosion and dilation-based process’,
which will be discussed later in Section 3.1.2.

In this study, the COVID-Seg model can help remove the background interference
factors such as the regions of the heart, ribs, and thoracic vertebrae, and thus improves the
classification performance [22]. The basic steps for the COVID-Seg model are as follows:

Step 1: Import the raw image set and store them into variable TR.
Step 2: Resize the images to the same size. Since the neural network receives inputs

of the same size [23], all images need to be resized to a fixed size before inputting them
into the neural network. 224 × 224 is a very suitable choice for the pre-trained model in
our research.

T1 = Fresize(TR) (1)

where Fresize refers to a function of resizing the images to the same size.
Step 3: Use the Maximum entropy threshold segmentation-based method to obtain

the preliminary mask set.
T2 = Fmets(T1) (2)

where Fmets refers to a function of utilizing the Maximum entropy threshold segmentation-
based method.

Step 4: To refine the preliminary mask, we set the different sizes of erosion and dilation
squares and apply ‘erosion and dilation-based process’ to the mask.

T3 = Fed(T2) (3)

where Fed refers to a function of ‘erosion and dilation-based process’.
Step 5: Remove unwanted connectivity areas of the mask and then make an inversion

of the values in the mask (change all the ‘0’ into ‘1’ and all the ‘1’ into ‘0’) to obtain the final
refined mask set. This inversion needs to be taken for letting the areas we are interested in
and want to retain in the mask be set to ‘1’ and the areas we want to remove in the mask be
set to ‘0’.

T4 = Fcrwc(T3) (4)

where Fcrwc refers to a function of choosing and retaining the wanted connectivity areas.
Step 6: Conduct element-wise multiplication between the final refined mask set and

the original image set to output the segmented image set.

TSeg = Fcomb(T4, TR) (5)

where Fcomb refers to a function of conducting an element-wise multiplication process (.*)
between the final refined mask and the original image to get the final segmented image.

For easier understanding, the pseudocode of our proposed COVID-Seg model is listed
in Algorithm 1.

Algorithm 1 Pseudocode of our proposed COVID-Seg model

Input: Original Image set TR
Phase I: Resize Resize the images to 224 × 224: T1 = Fresize(TR);
Phase II: Apply Segmentation
Apply Maximum entropy threshold segmentation-based method to obtain the preliminary mask
set: T2 = Fmets(T1);
Phase III: Refine
Erode and dilate the mask: T3 = Fed(T2);
Remove unwanted connectivity areas of the mask and make an inversion of the values in the
mask to obtain the final refined mask set: T4 = Fcrwc(T3);
Phase IV: Combine
Combine the final refined mask set and the original image set together to obtain the segmented
image set: TSeg = Fcom(T4, TR).
Output: The segmented image set TSeg
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3.1.1. Improvement 1: Using Maximum Entropy Threshold Segmentation-Based Method to
Get the Preliminary Mask

Maximum entropy threshold segmentation [21] was utilized to help classify each pixel
in the given image and remove the background interference factors, and thus improves the
classification performance. An illustration of the histogram graph for Figure 1a is shown in
Figure 4.
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Assuming an image I contains N pixels, the probability p(i) of the occurrence of the
pixel value equals i in the image can be defined as:

p(i) =
h(i)
N

s.t. 0 ≤ i < k , ∑k−1
i=0 h(i) = N (6)

where h(i) is the y-axis value in Figure 4 and refers to the frequency of the pixel value
equals i in the image; i stands for the x-axis value in Figure 4 and typically takes integer
values from 0 to 255; k stands for the limited range of pixel value (e.g., 256).

The cumulative distribution function P() can be defined as:

P(i) =
H(i)

H(k− 1)
=

H(i)
N

=
i

∑
j=0

h(j)
N

=
i

∑
j=0

p(j) s.t.0 ≤ i < k (7)

where H stands for the cumulative histogram corresponding to the cumulative probability.
The probability of the occurrence of each gray level x (with the abscissa value of I as u,

and the ordinate value of I as v) can be expressed as:

p(x) = p(I(u, v) = x) (8)

Because all probabilities need to be known in advance, these probabilities are also
called prior probabilities which can be estimated by observing the frequency of the corre-
sponding gray value in one image or more images. The probability vectors for k different
gray values, x = 0, . . . , k − 1 can be expressed as: p(0), p(1), . . . , p(k− 1). According to
Equation (6), the probability distribution p(x) of the image is:

p(x) =
h(x)

N
s.t. 0 ≤ x < k, 0 < p(x) < 1 (9)

According to Equation (7), the corresponding cumulative probability distribution
function is:

P(x) =
x

∑
i=0

h(x)
N

=
x

∑
i=0

p(i) s.t. P(0) = p(0), P(k− 1) = 1 (10)
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Given an estimated probability density function p(x) in the digital image, the entropy
in the digital image can be defined as:

H(I) = ∑
u,v

p(I(u, v)) · logb

{
1

p(I(u, v))

}
= −∑

u,v
p(x) · logb (p(x)) (11)

Given a specific threshold y (0 ≤ y < k − 1), for the two image regions Y0 and Y1
segmented by this threshold, the estimated probability density function can be expressed as:

Y0 : (
p(0)

P0(y)
p(1)

P0(y)
. . .

p(y)
P0(y)

0 0 . . . 0), Y1 : (0 0 . . . 0
p(y + 1)

P1(y)
p(y + 2)

P1(y)
. . .

p(k− 1)
P1(y)

) (12)

P0(y) =
y

∑
i=0

p(i) = P(y), P1(y) =
k−1

∑
i=y+1

p(i) = 1− P(y) (13)

where P0(y) and P1(y) respectively represent the cumulative probability of background
and foreground pixels segmented by y threshold, and the sum of them is 1.

The corresponding entropy of background and foreground are shown as follows:

H0(y) = −
y

∑
j=0

p(i)
P0(y)

log (
p(i)

P0(y)
) , H1(y) = −

k−1

∑
i=y−1

p(i)
P1(y)

log (
p(i)

P1(y)
) (14)

Under this threshold, the total entropy of the image is:

H(y) = H0(y) + H1(y) (15)

Subsequently, we calculated the total entropy of the image under all the segmentation
thresholds and then found out the maximum entropy. The final threshold should be the
segmentation threshold corresponding to the maximum entropy. The pixel in the image
whose gray value is larger than this threshold would act as the foreground, and the pixel
whose gray value is smaller than the threshold would act as the background [24].

3.1.2. Improvement 2: Using Erosion and Dilation-Based Technique to Refine the Mask

However, in the mask set produced by entropy threshold segmentation, there is
a severe problem that some lesion regions that contain useful information have been
eliminated together with the heart, ribs, and thoracic vertebrae. Hence, to refine the mask,
we utilized a method based on the Erosion and Dilation processing technique, which
is a collection of nonlinear operations related to the morphology of objects in an image.
This method relies only on the relative ordering, rather than the numerical values of
pixel values, and thus is especially suited to the processing of binary images—the mask
images [25,26]. Through utilizing this technique, we probed each mask by positioning a
small structuring element at all possible locations in the mask, then compared that element
with the corresponding neighborhood of pixels, and finally conducted the refining process.

Erosion with small (e.g., 2× 2–5× 5) square structuring elements can shrink the object
by stripping away a layer of pixels from both the inner and outer boundaries of regions.
Through utilizing erosion, we can let the holes and gaps between different regions become
larger to eliminate some useless small details in the mask. While dilation has the opposite
effect to erosion—it adds a layer of pixels to both the inner and outer boundaries of regions.
Through utilizing dilation, we can make the holes enclosed by a single region, the gaps
between different regions become smaller, and let the small intrusions into boundaries of
a region be filled in [27,28]. Results of dilation or erosion are influenced by both the size
and iterated utilization times of a structuring element: A larger structuring element and
more times of utilization would bring a more pronounced effect. Furthermore, the result of
erosion or dilation with a larger structuring element will be similar to the result obtained
by iterated erosion or dilation using a smaller structuring element of the same shape. In
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other words, if s1 and s2 are a pair of structuring elements identical in shape, with s2 twice
the size of s1, then

f 	 s2 ≈ ( f 	 s1)	 s1 (16)

where f 	 s denotes a new binary image produced from the erosion of a binary image f by
a structuring element s.

We worked on adjusting the size and utilization times of the structuring element to
achieve our desired refined mask. For ‘COVID Academic’, after many attempts, we found
that the most suitable refining method is:

r = (p	 s1)	 s1 	 s1 	 s1 (17)

where r represents the refined mask, p represents the preliminary mask.
Since the dilation and erosion are dual operations that have opposite effects, when we

found the mask have been excessively eroded, we added the dilation step to recover the
useful information in the image through recovering the mask:

r = (p	 s1)	 s1 	 s1 	 s1 ⊕ sq (18)

where q is the size of square structuring element which would be decided according to
different degrees of excessive erosion; f ⊕ s denotes a new binary image produced from
the dilation of a binary image f by a structuring element s.

In the following steps, we repeatedly used the algorithm of selecting the largest
connected areas and made an inversion of the values in the mask to retain the areas
we are interested in. A series of sample significant output we got from the erosion and
dilation-based process is as displayed in Figure 5.
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3.2. Transfer Learning Model 
Many neural networks increase the depth to achieve better training performance. 

However, deepen the network will meanwhile bring several negative effects, e.g., overfit-
ting, gradient disappearance, and gradient explosion. Unlike them, GoogLeNet improves 
the training results by making more efficient usage of computing resources [29,30]. 

We restructured and retrained the GoogLeNet by replacing the layers after Inception 
Block 5b with our newly designed layers containing the Conv Block and incorporated the 
framework with Bayesian Optimization algorithm to propose a new network named GBB-
Net for the COVID-19 classification task. 

The basic structure of GBBNet is illustrated in Figure 6. The numbers in the convolu-
tional layer block and the max-pooling layer block represent the exact information of the 
layer. For instance, Conv 1 × 1 + 1 (V) represents a convolutional layer with 1 × 1 filter size, 

Figure 5. Sample significant output results during the process of using Erosion and Dilation-based technique to refine the
mask for image lung regions: (a) Original Image. (b) Apply Maximum entropy threshold segmentation-based method to
obtain the mask (T2). (c) Erode and dilate the mask (T3). (d) Remove unwanted connectivity areas of the mask. (e) Make an
inversion of the values in the mask to achieve the final refined mask (T4).

3.2. Transfer Learning Model

Many neural networks increase the depth to achieve better training performance.
However, deepen the network will meanwhile bring several negative effects, e.g., overfit-
ting, gradient disappearance, and gradient explosion. Unlike them, GoogLeNet improves
the training results by making more efficient usage of computing resources [29,30].

We restructured and retrained the GoogLeNet by replacing the layers after Inception
Block 5b with our newly designed layers containing the Conv Block and incorporated
the framework with Bayesian Optimization algorithm to propose a new network named
GBBNet for the COVID-19 classification task.

The basic structure of GBBNet is illustrated in Figure 6. The numbers in the convolu-
tional layer block and the max-pooling layer block represent the exact information of the
layer. For instance, Conv 1 × 1 + 1 (V) represents a convolutional layer with 1 × 1 filter
size, stride 1, and ‘valid’ padding; MaxPool 3 × 3 + 2 (S) represents a max-pooling layer
with 3 × 3 filter size, stride 2, and ‘same’ padding.
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cognate learning factor of specified layers to zero for freezing those layers and then calcu-
lated the activation maps at the last frozen layer, ‘inception_5b-output’ for all the images. 

Figure 6. The structure of our proposed GBBNet.

The Inception Block structure, which can be seen in Figure 7a, is reserved for two ad-
vantages. On the one hand, utilizing a 1 × 1 convolution block can raise and lower the
dimension. On the other hand, convolution and reintegration on multiple scales can be
conducted at the same time, which saves much time [16,31]. After the inception structure,
two new Conv Blocks with batch normalization layers as illustrated in Figure 7b were
added. The reason would be discussed in Section 3.2.1.

Diagnostics 2021, 11, x FOR PEER REVIEW 10 of 25 
 

 

stride 1, and ‘valid’ padding; MaxPool 3 × 3 + 2 (S) represents a max-pooling layer with 3 
× 3 filter size, stride 2, and ‘same’ padding. 

 
Figure 6. The structure of our proposed GBBNet. 

The Inception Block structure, which can be seen in Figure 7a, is reserved for two 
advantages. On the one hand, utilizing a 1 × 1 convolution block can raise and lower the 
dimension. On the other hand, convolution and reintegration on multiple scales can be 
conducted at the same time, which saves much time [16,31]. After the inception structure, 
two new Conv Blocks with batch normalization layers as illustrated in Figure 7b were 
added. The reason would be discussed in Section 3.2.1. 

  
(a) Inception Block (b) Conv Block 

Figure 7. The basic structures of blocks used in GBBNet. 

Global average pooling then undertook the process of feature map reduction to con-
vert a feature map of w × w × c to 1 × 1 × c. Subsequently, the original fully connected layer 
(FCL) was altered to a new randomly initialized FCL of two neurons since the original 
one was used to conduct 1000 categories classification for ImageNet. And the classes in 
that 1000 categories are not associated with the main classification task for our research. 
The new classification layer also only has two classes. (COVID-19 patient and healthy 
people). Next, we utilized a precomputation strategy for retraining [32]. We firstly set the 
cognate learning factor of specified layers to zero for freezing those layers and then calcu-
lated the activation maps at the last frozen layer, ‘inception_5b-output’ for all the images. 

Figure 7. The basic structures of blocks used in GBBNet.

Global average pooling then undertook the process of feature map reduction to convert
a feature map of w × w × c to 1 × 1 × c. Subsequently, the original fully connected layer
(FCL) was altered to a new randomly initialized FCL of two neurons since the original
one was used to conduct 1000 categories classification for ImageNet. And the classes in
that 1000 categories are not associated with the main classification task for our research.
The new classification layer also only has two classes. (COVID-19 patient and healthy
people). Next, we utilized a precomputation strategy for retraining [32]. We firstly set
the cognate learning factor of specified layers to zero for freezing those layers and then
calculated the activation maps at the last frozen layer, ‘inception_5b-output’ for all the
images. Finally, we saved the feature maps to local disk and used them as input for training
the trainable layers.
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3.2.1. Improvement 3: Adding More Batch Normalization Relevant Blocks to Offset the
Impact of Different Scales

In our research, if we tolerate the existence of covariate shift- the difference of charac-
teristic distribution between different parts of the dataset, then the different distribution of
input values would lead to the difference in input feature values. After multiplying the
matrix with the weight, difference values with large deviation would be generated. Due
to the reason that our deep learning network needs to be updated and improved through
training, little changes in the difference value will have a deep impact on the back layer.
The greater the deviation, the more obvious the impact will be. Therefore, to avoid these
phenomena causing gradient divergence during backpropagation, we decided to add more
batch normalization relevant blocks in the network to offset the impact of different scales
and, at the same time improve the performance of our framework. BN can standardize the
input values and reducing the scale differences to the same range, which brings two main
benefits. On the one hand, this improves the convergence degree of gradient and speeds
up the training speed. On the other hand, each layer can face the input value of the same
characteristic distribution as far as possible, which reduces the uncertainty brought by
changes and also reduces the influence on the back-end network, leading the network of
each layer becomes relatively independent [33,34].

Assume BN is used to normalize the layer’s input X = {x1, x2, . . . , xn } to guarantee
the output Y = {y1, y2, . . . , yn} to have a uniform distribution [35]. The mini-batch mean
µ can be calculated as

µX =
1
n
(

n

∑
i=1

xi) (19)

The mini-batch variance σ2 can be calculated as

σ2
X =

1
n

n

∑
i=1

(xi − µX)
2 (20)

The input xi ∈ X would be normalized to x̌i according to

x̌i =
(xi − µX)√
(σ2

X + ϕ)
(21)

where ϕ is a constant added to the mini-batch variance to improve numerical stability and
is set to 10−4 in our experiment.

And the transformation for achieving yi ∈ Y would be as

yi = ξ x̌i + λ (22)

where ξ and λ are two parameters going to be learned during training.
Afterwards, the output yi would be sent to the next layer and the normalized x̌i

remains internal to the current layer.

3.2.2. Improvement 4: Incorporating Bayesian Optimization in Network

Tuning parameters is an essential step that has a significant impact on model per-
formance in machine learning. Traditional manual tuning is time-consuming and may
not obtain optimal results especially when the network is complex and decided by many
hyperparameters. The subsequent emerging tuning methods such as Grid Search and
Random Search, though free of manpower, still take a long time and are prone to local
optimal situations when dealing with non-convex functions [36–39].

In this research, we incorporated Bayesian Optimization for two main reasons. Firstly,
it saves more time because they have fewer iterations. Secondly, it is also robust when deal-
ing with non-convex problems. Figure 8 portrays the pipeline for Bayesian Optimization
in our experiment.
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In our experiment, the acquisition (AC) function we chose is the Expected Improve-
ment (EI) function, as it solves the problem of PI by considering how much larger the
unknown point is than the known maximum point. The equation [40] is as below:

EI(x) =

{
(µ(x)− f (x+))Φ(z) + σ(x)φ(z) σ > 0

0 σ = 0
(23)

z =
µ(x)− f (x+)

σ
(24)

where x is an observed point; µ is the mean of all the observation points; f (x+) represents
the current maximum value; σ is the standard deviation of all observation points; Φ() and
φ() denote the cumulative distribution function (CDF) and probability density function
(PDF) of the standard normal distribution respectively.

Besides, we set the range of the following hyperparameters as displayed in Table 4 to
fine-tune the model.

Table 4. Bayesian Optimized Variable Setting.

Name of Optimized Hyperparameter Range

InitialLearnRate (1 × 10−5, 1)
Momentum (0.8, 0.98)

L2Regularization (1 × 10−10, 1 × 10−2)
LearnRateDropFactor (0, 1)

The best learning rate and learning drop factor would depend on their based dataset
and the network. Momentum adds inertia to the parameter updates by having the cur-
rent update contain a contribution proportional to the update in the previous iteration.
L2Regulization is usually used to prevent the circumstance of overfitting. Thus, they are
all good choices of variables for us to search the space for finding a suitable value.
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3.3. K-Fold Cross-Validation

The main reason for adopting K-fold in this experiment is it performs well in process-
ing small datasets. The original dataset needs to be grouped, with one part as a training set
and one part as a testing set. In the traditional machine learning process, the testing set
will not participate in the training process, which wastes some parts of the data. This limits
the optimization of the model, especially when dealing with a small dataset because data
determines the upper limit of program performance [41–44].

Thus, it is significant to make good use of data sets, especially for this experiment.
K-fold cross-validation will randomly divide the training data into K folds, do K times
of training, and get K testing results, which reports unbiased performances. In this way,
all data sets can be well utilized, and finally, the model performance can be expressed
reasonably utilizing averaging [45]. Considering the factor of overfitting and running time,
we intended to choose five as the K value for our experiment. An illustration of fivefold
cross-validation is shown in Figure 9. The D in the figure represents ‘Dataset’.
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3.4. Implementation of Our Proposed CSGBBNet

We proposed the framework of CSGBBNet by combining the COVID-Seg model and
the GBBNet. The basic steps for implementation are as followed.

Step 1: Import the original Image set TR and its ground truth label Gt. Conduct the
image pre-processing using COVID-Seg.

Step 2: Load the PTN model VGG16 [40], VGG19 [40], and GoogLeNet, and then store
them into variables MVGG16, Mvgg19 and MGoogLeNet, respectively.

Step 3: Pre-train each model and make a comparison on their testing accuracy results
to select the optimum one with maximum accuracy and then store the model into variable
M0. Suppose L0 as its number of learnable layers.

Step 4: Remove the last L learnable layers from M0 to get a new M1,

M1 = Frl(M0, L) (25)

where Frl refers to a function of removing layers, and L refers to the number of specific last
layers to be removed.

Step 5: Add five new designed layers/blocks into M1 to get a new M2,

M2 = Fandl(M1, 5) (26)

where Fandl refers to a function of adding newly designed layers, and the constant 5 refers
to the number of newly designed layers/blocks that would be appended to M1. Suppose
L2 as the number of learnable layers of M2.

Step 6: Freeze the specific early layers by setting their learning rate to 0,

→
lr [M2(1 : L0 − L)]← 0 (27)
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where lr refers to the learning rate, and M(m, n) refers to the layers from m to n in the
network model M.

Step 7: Get the new added five layers/blocks retrainable by setting their learning rate
to 1,

→
lr [M2(L2 − 4 : L2)]← 1 (28)

Step 8: Import the segmented image set TSeg.
Step 9: Retrain the whole neural network with input Ttrain, i

seg , Bayesian Optimization
training algorithm, and get the new network GBBNeti,

GBBNeti = Frn(M2, Ttrain, i
seg ) (29)

where Frn refers to a function of retraining the network and Ttrain, i
seg refers to the input

training dataset.
Step 10: Output the test performances of GBBNet.
Finally, the pseudocode for the CSGBBNet is listed in Algorithm 2.

Algorithm 2 Pseudocode of our proposed CSGBBNet.

Input: Original Image set TR and its ground truth label Gt
Phase I: Pre-processing TR → TSeg , see Algorithm 1.
Phase II: Choose the pre-trained model
Load the raw PTN model: MVGG16 Mvgg19 MGoogLeNet;
Pre-train on them and make a comparison on their testing accuracy achieved, then choose the
best one:

M0 = Max
[

Testing Accuracy(MVGG16, Mvgg19, MGoogLeNet)
]
;

Phase III: Five-fold cross-validation on the Training set
Split TSeg into training set and testing set: TSeg →

{
Ttrain

seg , Ttest
seg

}
for i = 1:5 % Ttrain, i

seg is the training set, Ttest, i
seg is the testing set.

Remove the last L learnable layers from M0 to get a new M1, see Equation (25).
Add 5 new designed layers/blocks (containing Batch Normalization layers), see Equation (26).
Freeze the specific early layers, see Equation (27).
Get the new added layers retrainable, see Equation (28).
Retrain the whole neural network with input Ttrain, i

seg and Bayesian Optimization training
algorithm. Get a new network, see Equation (29).

end
Phase IV: Report the test performance of our proposed framework
The Training set is Ttrain

seg and its labels Gt(Ttrain
seg )

The Testing set is Ttest
seg and its labels Gt(Ttest

seg )

for i = 1:5
Prediction: Pred(i) = predict (GBBNeti, Ttest,i

seg )

Test Confusion matrix: Con fTest = compare
[

Pred(i), Gt(Ttest,i
seg )

]
Calculate Indicators: accuracy, sensitivity, specificity, precision, F1 score, see Equation (30).
end
Output: The best model GBBNet and its test performances.

All in all, our experiment used a novel model COVID-Seg for image preprocessing,
GBBNet for classification, and five-fold as a validation method that reports unbiased
performances. We named the whole framework as CSGBBNet. Considering the factor of
overfitting and running time, we intended to choose five as the K value for our experiment.
A simplified method diagram for the running process of our proposed CSGBBNet is
displayed in Figure 10. The detailed structures of ‘Frozen layers’ and ‘New layers’ are
defined in Figure 6.
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Figure 10. A simplified method diagram for our proposed CSGBBNet. The feature representation of each image is extracted
by several convolutional operations and then be mapped into the FCL to reduce the dimension, and finally the prediction
probabilities for classes are output. (M0: The optimal selection of pre-trained models. M1: The model achieved by removing
the last L learnable layers from M0. M2: The model achieved by adding five new designed layers/blocks into M1).

4. Experiments, Results, and Discussion
4.1. Data Splits

All the experiments were conducted on a laptop with GTX1060. The majority of
experiments were written using MATLAB 2020a. To verify the robustness of our framework,
we introduced a new benchmark dataset ‘COVID-CT’ with 539 CT scan images. In our
experiment, we consider COVID-19 patient images as positive samples and healthy control
images as negative samples on both datasets. Due to the reason that we utilized a fivefold
cross-validation method, we would have five times of running, and in each running, images
are divided into 80% for training, 20% for testing. A clear table for data splits for both the
COVID Academic dataset and the new benchmark dataset can be found in Table 5.

Table 5. Data Splits.

Dataset Label Range of Number of
Training Frames

Range of Number of
Testing Frames Overall

COVID Academic
COVID-19 (positive) 78–79 19–20 98
Healthy (negative) 78–79 19–20 98

Overall 156–158 38–40 196

COVID-CT
COVID-19 (positive) 280–281 68–69 349
Healthy (negative) 151–152 38–39 190

Overall 431–433 106–108 539

(‘COVID Academic’ is referenced from [18]. ‘COVID-CT’ is referenced from [46]).
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Besides, to comprehensively evaluate the performance of the classifier, we added an
evaluation criterion of harmonic average F1 score [47–50], which considers the value of
both precision and recall according to the equation:

F1 score =
2·Precision·Rcall
Precision + Rcall

(30)

4.2. Statistical Results

From the test performance and the confusion matrix results displayed in Table 6 and
Figure 11, on the COVID Academic dataset, CSGBBNet predicted 193 correctly among all
the 196 samples. While on the COVID-CT dataset, CSGBBNet achieves a mean accuracy
of 95.17 ± 1.22%, and a mean F1 score of 96.21 ± 0.98%, which are higher than the best
accuracy (89.1%) and the best F1 score (89.6%) reported in [46]. This verifies that our
framework has excellent robustness when encountered different datasets.

Table 6. Test performance based on CSGBBNet.

Dataset Test Set Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1 Score (%)

COVID
Academic

1 100.00 100.00 100.00 100.00 100.00
2 97.44 100.00 94.74 95.24 97.56
3 100.00 100.00 100.00 100.00 100.00
4 97.50 95.00 100.00 100.00 97.44
5 97.50 100.00 95.00 95.24 97.56

Mean + SD 98.49 ± 1.23 99.00 ± 2.00 97.95 ± 2.51 98.10 ± 2.61 98.51 ± 1.22

COVID-CT

1 95.37 97.10 92.31 95.71 96.40
2 94.44 92.75 97.44 98.46 95.52
3 94.39 95.59 92.31 95.59 95.59
4 94.44 97.10 89.74 94.37 95.71
5 97.22 98.55 94.87 97.14 97.84

Mean + SD 95.17 ± 1.22 96.22 ± 2.20 93.33 ± 2.92 96.25 ± 1.58 96.21 ± 0.98

(SD = standard deviation).

Taking the overall confusion matrix on the COVID Academic dataset as an illustration,
the classifier correctly recognized 97 images of ‘COVID-19’ as ‘COVID-19’, 96 images of
‘Healthy Control’ as ‘Healthy Control’ but misidentified two images of ‘Healthy Control’
as ‘COVID-19’ 1 image of ‘COVID-19’ as ‘Healthy Control’. In the upper-left box of the
confusion matrix, the value 98.0% means 98.0% of the ‘samples’ predicted as ‘COVID-19’
were classified right and the value 99.0% means 99.0% of the real ‘COVID-19’ samples were
classified right. Meanwhile, in the lower-right box, the value 99.0% means 99.0% of the
‘samples’ predicted as ‘Healthy’ were classified right, and the value 98.0% represents 98.0%
of the real ‘Healthy’ samples were classified right. In a medical sense, our approach has a
very low misdiagnosis rate, especially when the target is a real COVID-19 patient. This
is very helpful for practical applications because the high rate of diagnosis of COVID-19
patients can effectively prevent them from the second transmission of the epidemic.

The graphs of minimum objective vs. number of function evaluations achieved during
the Bayesian Optimization process on Test Sets in both datasets are shown in Figure 12,
where different combinations of hyperparameter such as ‘initial learning rate’, ‘momentum’,
etc. were attempted in the training process to achieve an optimum result. In the next section,
we will implement an ablation study to conduct a full analysis of our results.
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4.3. Ablation Study

To more explicit verify the effectiveness of different proposed modules in our experi-
ment, we named the framework without utilizing the COVID-Seg model as ‘GBBNet Only’,
the model only without newly added designed layers as ‘CSGBBNet no BN’, the model
only without Bayesian Optimization module as ‘CSGBBNet no BO’. In this section, all the
experiments were conducted on ‘COVID Academic’.

As displayed in Table 7 and Figure 13, firstly, after introducing the COVID-Seg model,
the results in the testing set were significantly improved with the accuracy of 6.68%, the
sensitivity of 7.26%, the specificity of 6.21%, the precision of 5.44%, the F1 score of 6.56%,
and the standard deviation in a range of 3.36–7.25%. This means our segmentation was
very successful and effective. Second, after adding newly designed layers, the accuracy in
the testing set improved 2.07%, the sensitivity improved 3.05%, the specificity improved
1.06%, the precision improved 1.10%, the F1 score improved 2.13%, and the stability of
results also slightly improved. Third, utilizing Bayesian Optimization can help to find the
optimum hyperparameters for the model because all the evaluated criteria have different
degrees of improvements: the accuracy improved with 4.11%, the sensitivity improved
with 7.32%, the specificity improved with 0.95%, the precision improved with 1.21%, the
F1 score improved with 4.48% and the stability improved with 0.16–5.19% revealed by
standard deviation. Finally, according to the Receiver operating characteristic (ROC) curve
in Figure 14, the illustrated diagnostic ability of the CSGBBNet classifier system is also
superior to those without complete modules.
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Table 7. Results of our ablation study.

Approach Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1 Score (%)

GBBNet Only 91.81 ± 5.49 91.74 ± 5.36 91.74 ± 9.76 92.66 ± 8.00 91.95 ± 4.99
CSGBBNet no BN 96.42 ± 1.27 95.95 ± 3.76 96.89 ± 2.54 97.00 ± 2.46 96.38 ± 1.34
CSGBBNet no BO 94.38 ± 1.39 91.68 ± 7.19 97.00 ± 4.00 96.89 ± 4.19 94.03 ± 4.53

CSGBBNet 98.49 ± 1.23 99.00 ± 2.00 97.95 ± 2.51 98.10 ± 2.61 98.51 ± 1.22

(Our methods and results are shown in bold).
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To sum up, the results above indicate the modules: COVID-Seg model, Bayesian
Optimization training algorithm, and newly added layers are all effective in our framework.

4.4. Comparison between CSGBBNet and Other State-of-the-Art Approaches

We compared the proposed CSGBBNet with seven state-of-the-art approaches: WE-
BO [51], GLCM-SVM [52], GoogLeNet [29], ResNet18 [53], DenseNet201 [54], VGG16 [40],
VGG19 [40].
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In Table 8, when compared with seven state-of-the-art methods on the COVID Aca-
demic dataset, CSGBBNet has advantages in terms of most of the performance metrics.
The results show excellent stability according to the values provided by standard deviation.
And it is clear in Figure 15 that CSGBBNet presents very good computational efficiency
as it performs faster than most other approaches, except the comparative performance
with GoogLeNet and VGG16. However, it can be easily observed that the speed difference
among them is not significant, and our framework shows a much higher diagnostic rate
when compared with GoogLeNet and VGG16.

Table 8. Comparison with state-of-the-art approaches on the test set.

Approach Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1 Score (%) Per-Epoch Training
Time (ms)

WE-BO [51] 73.95 ± 0.98 72.97 ± 2.96 74.93 ± 2.39 74.48 ± 1.34 73.66 ± 1.33 38.67
GLCM-SVM [52] 75.03 ± 1.12 72.03 ± 2.94 78.04 ± 1.72 76.66 ± 1.07 74.24 ± 1.57 33.33
GoogLeNet [29] 88.27 ± 2.04 83.63 ± 3.95 92.84 ± 5.15 92.61 ± 4.81 87.72 ± 1.98 17.33
ResNet18 [53] 88.78 ± 2.58 81.68 ± 2.06 95.84 ± 3.93 95.43 ± 4.19 87.98 ± 2.45 24.00

DenseNet201 [54] 89.24 ± 6.58 82.58 ± 9.12 95.89 ± 5.03 95.11 ± 6.03 88.29 ± 7.46 30.67
VGG16 [40] 89.28 ± 1.95 87.74 ± 6.83 90.89 ± 9.18 91.67 ± 7.58 89.13 ± 1.72 18.67
VGG19 [40] 90.37 ± 5.12 86.84 ± 4.96 93.84 ± 6.08 93.67 ± 5.98 90.08 ± 5.13 24.00

CSGBBNet (ours) 98.49 ± 1.23 99.00 ± 2.00 97.95 ± 2.51 98.10 ± 2.61 98.51 ± 1.22 21.33

(Our methods and results are shown in bold).
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To conclude for this section, CSGBBNet achieves excellent performance with the mean
accuracy of 98.49 ± 1.23%, the sensitivity of 99.00 ± 2.00%, the specificity of 97.95 ± 2.51%,
the precision of 98.10± 2.61%, and the F1 score of 98.51± 1.22%. It is worth mentioning that,
as illustrated in Figure 16, it performs better than seven other state-of-the-art methods in
accuracy, specificity, precision, F1 score, and especially the sensitivity criterion of the model.
The sensitivity of CSGBBNet is 12.64% higher than the approach ranked second in the table.
The reason is we effectively removed the factors in the image that would affect the judgment
of the model, such as the regions of the heart, ribs, and thoracic vertebrae. Moreover,
our proposed model shows excellent stability, robustness, and very good computational
efficiency when compared with other state-of-the-art machine learning approaches and
the traditional RT-PCR test methods. In all, CSGBBNet has a low misdiagnosis rate, high
stability, and can successfully diagnose multiple slice images within one second, which is
of great significance in the practical application of COVID-19 detection.
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To further verify if CSGBBNet provides an explainable and promising way to detect
COVID-19, gradient-weighted class activation mapping (Grad-CAM) is employed in the
next section.

4.5. Explainability of Proposed CSGBBNet

We take samples from the COVID-19 and HC class respectively and display the rel-
evant heatmaps in Figure 17a–d to verify the explainability of CSGBBNet. The manual
delineations of lesion area for them are shown in Figure 17e–h. These heatmaps were
generated utilizing the ‘Inception 5b output’ feature map in GBBNet with the help of
the Grad-CAM approach. The red area in the heatmap is the part with strong attention
in the model, and the deep blue area is the part with little attention in the model. Ac-
cording to these heatmaps, we can confirm that, for the COVID-19 image (Figure 17a,b),
our framework is paying more attention to the lesion areas and meanwhile paying little
attention to the non-lesion areas. While for the HC image (Figure 17c,d), the attention
of the model is not focused on any particular area because there is no lesion area in the
healthy control category.

Diagnostics 2021, 11, x FOR PEER REVIEW 22 of 25 
 

 

4.5. Explainability of Proposed CSGBBNet 
We take samples from the COVID-19 and HC class respectively and display the rel-

evant heatmaps in Figure 17a–d to verify the explainability of CSGBBNet. The manual 
delineations of lesion area for them are shown in Figure 17e–h. These heatmaps were gen-
erated utilizing the ‘Inception 5b output’ feature map in GBBNet with the help of the 
Grad-CAM approach. The red area in the heatmap is the part with strong attention in the 
model, and the deep blue area is the part with little attention in the model. According to 
these heatmaps, we can confirm that, for the COVID-19 image (Figure 17a,b), our frame-
work is paying more attention to the lesion areas and meanwhile paying little attention to 
the non-lesion areas. While for the HC image (Figure 17c,d), the attention of the model is 
not focused on any particular area because there is no lesion area in the healthy control 
category. 

    

(a) Heatmap of COVID-19 I (b) Heatmap of COVID-19 II (c) Heatmap of HC (d) Heatmap of HC 

    

(e) Lesion of COVID-19 I (f) Lesion of COVID-19 II (g) No lesion for HC (h) No lesion for HC 

Figure 17. Delineation of COVID-19 samples. The lesion area in (e,f) is circled in red. 

To sum up, the heatmaps provide a clear and understandable interpretation of how 
our CSGBBNet predicts COVID-19 images from healthy control images. In other words, 
the concerns of our model are very similar to the standard already approved in the med-
ical community, which adds confidence that it is capable of assisting the diagnosis of doc-
tors, radiologists, and inspectors at each epidemic prevention site in the real world. 

5. Conclusions 
Chest CT is a rapid, non-invasive method for screening COVID-19. Our proposed 

deep learning framework CSGBBNet using the COVID-Seg model as an image prepro-
cessing method, GBBNet as a classification method is also an explainable framework to 
accomplish the classification task. CSGBBNet not only shows advantages in diagnostic 
rate, stability, and computational efficiency when compared with other state-of-the-art 
machine learning approaches and traditional RT-PCR tests, but also shares similar con-
cerns with the standard approved in the medical community. Moreover, it shows excel-
lent robustness when encountered with different datasets. To conclude, combining these 
two techniques can help to realize rapid, effective, stable, and safe detection of COVID-
19, which is of great significance to clinical medicine and society. 

Figure 17. Delineation of COVID-19 samples. The lesion area in (e,f) is circled in red.



Diagnostics 2021, 11, 1712 22 of 24

To sum up, the heatmaps provide a clear and understandable interpretation of how
our CSGBBNet predicts COVID-19 images from healthy control images. In other words,
the concerns of our model are very similar to the standard already approved in the medical
community, which adds confidence that it is capable of assisting the diagnosis of doctors,
radiologists, and inspectors at each epidemic prevention site in the real world.

5. Conclusions

Chest CT is a rapid, non-invasive method for screening COVID-19. Our proposed deep
learning framework CSGBBNet using the COVID-Seg model as an image preprocessing
method, GBBNet as a classification method is also an explainable framework to accomplish
the classification task. CSGBBNet not only shows advantages in diagnostic rate, stability,
and computational efficiency when compared with other state-of-the-art machine learning
approaches and traditional RT-PCR tests, but also shares similar concerns with the standard
approved in the medical community. Moreover, it shows excellent robustness when
encountered with different datasets. To conclude, combining these two techniques can
help to realize rapid, effective, stable, and safe detection of COVID-19, which is of great
significance to clinical medicine and society.

In the future, we plan to incorporate or learn from more advanced deep learning
techniques and revise the model to improve classification efficiency.
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