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Abstract: The main objective of this study is to propose relatively simple techniques for the auto-
matic diagnosis of electrocardiogram (ECG) signals based on a classical rule-based method and
a convolutional deep learning architecture. The validation task was performed in the framework
of the PhysioNet/Computing in Cardiology Challenge 2020, where seven databases consisting of
66,361 recordings with 12-lead ECGs were considered for training, validation and test sets. A total
of 24 different diagnostic classes are considered in the entire training set. The rule-based method
uses morphological and time-frequency ECG descriptors that are defined for each diagnostic la-
bel. These rules are extracted from the knowledge base of a cardiologist or from a textbook, with
no direct learning procedure in the first phase, whereas a refinement was tested in the second
phase. The deep learning method considers both raw ECG and median beat signals. These data are
processed via continuous wavelet transform analysis, obtaining a time-frequency domain represen-
tation, with the generation of specific images (ECG scalograms). These images are then used for
the training of a convolutional neural network based on GoogLeNet topology for ECG diagnostic
classification. Cross-validation evaluation was performed for testing purposes. A total of 217 teams
submitted 1395 algorithms during the Challenge. The diagnostic accuracy of our algorithm produced
a challenge validation score of 0.325 (CPU time = 35 min) for the rule-based method, and a 0.426
(CPU time = 1664 min) for the deep learning method, which resulted in our team attaining 12th place
in the competition.

Keywords: ECG; arrhythmia; features; rule-based method; convolutional neural network; GoogLeNet
network; wavelet transform; scalogram; PhysioNet/Computing in Cardiology Challenge 2020

1. Introduction

The automatic detection and classification of cardiac abnormalities from 12-lead
ECG signals has been an area of research interest for a long time [1]. Methods have
ranged from medical decision-support systems to statistical approaches, from simple neural
network architectures to more sophisticated methods based on deep neural networks [1–3].
There has been much focus on research employing the use of deep learning with medical
images [4], time series classification [5], and object detection [6]. In [7], a deep recurrent
neural network approach was developed and tested for the classification of four types of
the severity of atrial fibrillation (AF) based on 21 features. The use of continuous wavelet
transforms (CWTs) for ECG signal processing is present in several studies; for example,
in [8] the CWT was considered for multiscale parameter estimation for delineation of the
fiducial points of P-QRS-T waves.

Recent examples of diagnostic 12-lead ECG classification have been reported. They
come from the use of a deep neural network for the classification of six diagnostic classes [3],
whereas the study in [9] considered the analysis of 12-lead ECG signals based on deep
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learning for the classification of four types of arrhythmias. A deep learning neural network
model was tested in a database of 6788 12-lead ECG records for the identification of nine
diagnostic classes [10].

Consequently, many algorithms may be used to identify cardiac abnormalities. How-
ever, most of these methods are trained, tested or developed in relatively small or ho-
mogeneous databases, and most of them focus on identifying a small number of cardiac
arrhythmias that do not represent the full complexity of ECG classifications [11]. After
a long series of interesting annual challenges, the PhysioNet/Computing in Cardiology
Challenge 2020 provided the opportunity to address these problems, considering an ex-
tended set of diagnostic classes and a set of learning/testing ECG records belonging to
different databases [11–13].

The main objective of this study was to test two different techniques for the automatic
classification of ECG signals with active participation in the PhysioNet/Computing in
Cardiology Challenge 2020. In particular, the classical rule-based system method, as well
as a more sophisticated technique based on direct learning from ECG raw data through
deep learning architectures, are explored and compared in the same framework.

2. Materials and Methods
2.1. ECG Database

The PhysioNet/Computing in Cardiology Challenge 2020 provided a training set of
six databases (Table 1) with 43,101 annotated recordings of 12-lead ECGs, lasting from 6 to
60 s [11,14–17]. In addition, the Challenge involved a seventh undisclosed dataset from
an American institution that was geographically distinct from the other datasets, which
was used as a test set. Then, a total of 23,260 ECG records, kept hidden, were used for
validation (6630) and test (16,630) procedures. In Table 1, the heterogeneity of the databases
is evident, considering different sets of diagnostic classes.

Table 1. Composition of the considered learning/test datasets with total and reduced (/24) numbers of classes.

Database Learning Set Val-Test Set Total Classes Classes (/24)

CPSC China Physiol. Signal Challenge 2018 [14] 6877
2926

9 6
CPSC-Extra China 12-Lead ECG Challenge [14] 3453 72 20

INCART St Petersburg 12-lead Arrhythmia [15] 74 37 8
PTB PTB Diagnostic ECG [16] 516 17 4

PTB-XL PTB-XL electrocardiography Database [17] 21,837 50 22
G12EC Georgia 12-Lead ECG Challenge [11] 10,344 10,334 67 22

Und Undisclosed [11] 10,000 ≤24

The initial 111 diagnoses or classes were further reduced to the 27 diagnostic classes
considered in the Challenge scoring system (see Table 2 for a full list of the diagnoses and
codes). They are reduced to 24 when considering three equivalent classes.

The composition and the number of annotated diagnostic classes of the six considered
datasets for the learning phase are reported in Table 1. The collection of this large training
dataset consists of a total of 43,101 ECG recordings and 60,373 diagnostic instances. This
means that in every record of the entire database, there is a mean of 1.4 diagnostic classes.

Table 2 shows the distribution of the 24 different diagnostic classes considered in the
entire learning set. As can be seen in this table, the number of training instances of the
various diagnostic classes is not uniform, with the evident presence of a class imbalance.
For example, the NSR class is present in 20,846 records, whereas the Bradycardia class
consists of only 288 instances. In addition, there are seven (29.1%) diagnostic classes (AFL,
Brady, PR, LPR and RAD, LQRSV, PVC) with a number of records lower than 600 and
16 classes (66.6%) with a number of records higher than 1000. For this reason, a strategy
of under-sampling for a more uniform distribution of the classes was adopted. For the
selection of representative learning subsets, a random selection of ECG records with at
most N_max instances for the considered classes was determined. Three values of N_max
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were considered and tested: 600, 1000 and 1500, obtaining the learning subsets LS_N600,
LS_N1000 and LS_N1500, as described in Table 3. The weighted distribution of the learning
subset LS_N1000, consisting of 16,002 ECG records, is reported in the rightmost column of
Table 2, which shows a slightly more equilibrated distribution for the learning phase. All
ECG data were resampled at 500 Hz (if necessary) for compatibility purposes.

Table 2. Distribution of the 24 diagnostic classes in the entire learning database and in the subset
LS_N1000. * Equivalent classes.

Code Diagnosis Instances
(All)

LS_N1000
(Weighted)

01 IAVB 1st degree AV block 2394 1536

02 AF Atrial Fibrillation 3475 1626

03 AFL Atrial Flutter 314 275

04 Brady Bradycardia 288 269

05
CRBBB * Complete Right Bundle Branch Block

3085 737
RBBB * Right Bundle Branch Block

06 IRBBB Incomplete Right Bundle Branch Block 1611 1022

07 LAnFB Left anterior Fascic Block 1806 972

08 LAD Left Axis Deviation 6086 1477

09 LBBB Left Bundle Branch Block 1041 468

10 LQRSV Low QRS voltage 556 441

11 NSIVCB Nonspec intrav cond disorder 997 575

12 PR Pacing Rhythm 299 286

13
PAC * Premature Atrial Contraction

1944 884
SVPB * Supraventricular prem beats

14
PVC * Premature Ventr Contraction

553 333
VEB * Ventricular ectopic beats

15 LQT Long QT 1513 713

16 LPR Long PR 340 140

17 QAb Q wave abnormal 1013 523

18 RAD Right axis deviation 427 207

19 SA Sinus Arrhythmia 1240 641

20 SB Sinus Bradycardia 2359 568

21 NSR Normal Sinus Rhythm 20,846 1000

22 STach Sinus Tachycardia 2402 640

23 Tab T wave abnormal 4673 455

24 TInv T inverted 1112 214

TOTAL 60,373 16,002

Table 3. Characteristics of the 3 subsets of the learning databases obtained with under-sampling.

Identification N_Max Number of ECG Records

LS_N600 600 11,210
LS_N1000 1000 16,002
LS_N1500 1500 20,044
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2.2. Preprocessing

The ECG recordings were filtered to suppress the power-line interference, the drift of
the isoelectric line and the electromyographic noise. QRS detection was performed via the
identification of significant peaks of spatial velocity (absolute value of the first derivative of
one or more leads), using combined thresholds, with the subsequent identification of the R
waves and the computation of the heart rate [18]. Then, a robust average beat is calculated,
with reference to the positive (R), or negative (S) peaks with the highest amplitude, through
the signal-averaging of the sustained beats in the record. The rejected outliers are suspected
to be artefacts or abnormal beats with non-sustained amplitudes.

2.3. Rule-Based Classifier

Manual interpretation of the electrocardiogram is time-consuming and requires skilled
personnel with a high degree of training [11]. Although the knowledge of an expert is
complex to formalize, we tried to develop a rule-based method to mimic some simple rules.
This method uses morphological and time-frequency ECG descriptors, characterizing each
diagnostic label. These rules have been extracted from the knowledge-base of a physician
or from a textbook [19], with no direct learning procedure in the first phase, although a
refinement was tested in the second phase.

After QRS detection and computation of the median of all beats, the next step con-
sidered the delineation of QRS-onsets and QRS-offsets, and the identification of T_end
and heartbeat classification [20,21]. In addition, some parameters were computed in the
derived vectorcardiographic (VCG) signal [22,23].

The main parameters, computed using classical algorithms, are reported in Table 4.
Figure 1 reports some components of the signal processing for the detection AF/AFL, with
the identification of zero-line crossing of the first derivative. Figure 2 reports two examples
of QRS segmentation that resemble an ‘M’ shaped QRS, which is a particular step for the
detection of RBBB.

Figure 1. Signal processing for the detection of AF/AFL (file A02430, AF annotation, Lead II).
Markers denote: detected QRS (o-black), zero-line crossing of the first derivative (o-red).
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Table 4. Definitions of the main ECG parameters, computed with classical algorithms.

max_QRS_ampl Maximal amplitude of the detected QRS complexes

min_QRS_ampl Minimal amplitude of the detected QRS complexes

mean_QRS_ampl Mean value of all QRS amplitudes

mean_RR Mean value of all RR intervals

std_RR Standard deviation of of all RR intervals

n_cross_inside_QRS Number of zero crossing of the first derivative inside QRS

n_cross_outside_QRS Number of zero crossing of the first derivative outside QRS
(illustrated in Figure 1).

positive/negative_P_wave
Positive/negative_P_wave in presence of a positive/negative
wave in the interval [QRS_onset-400 ms, QRSonset-40 ms] with a
significant peak of 20 uV within an interval of ±40 ms.

no_Q_wave Absence of Q wave

no/yes_P_wave Binary tests for absence/presence of a positive/negative P_wave

QRS_dur Mean QRS duration

pred_R_wave Presence of a predominant R wave with at least 95% of the entire
QRS area in leads I or V6

opp_ST_T Displacement of ST-T wave in opposition to major deflection of
QRS complex in V5.

MW_shaped_QRS QRS segmentation that looks like an ‘M’ or ‘W’ (illustrated in
Figure 2) in any of leads V1, V2, V3 or V4

frontal_QRS_angle QRS angle in the frontal plane computed as the max deviation of
QRS in the frontal plane

ratio_Q_R Ratio of Q_amplitude/R_amplitude in lead I

ratio_R_S Maximal ratio of R_aplitude/S_amplitude in II and III

slope_ini_QRS Slope of the first 30 ms of QRS complex

T_neg Binary test if the amplitude of T wave is negative

Figure 2. Signal processing for the detection of RBBB (file H03947, RBBB annotation, leads V2-left
and V3-right). Markers denote: QRSon and QRSoff (o-black), QRS segmentation that resembles an
‘M’ shaped QRS (blue trace).
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From these parameters, the considered diagnostic rules are represented and described
in the following “if–then” format:

PAC if std_RR in [35 ms–46 ms] then PAC = 0.7
if std_RR > 0.46 ms then PAC = 1

PVC if max_QRS_ampl > 2 * mean_QRS_ampl then PVC = 1
if min_QRS_ampl < 0.5 * mean_QRS_ampl then VC = 1

STach if PVC = 0 and PAC =0 and mean_RR< 600 ms then STach = 1
Brady if PVC = 0 and PAC = 0 and mean_RR > 1000 ms then Brady = 1
SA if PAC = 1 and PVC = 0 then SA = 1
SNR if PAC = 0 & PVC = 0 then SNR = 1
SB if Brady = 1 and SNR = 1 then SB = 1
AFL if PAC > 0.7 and n_cross_outside_QRS > 9 then AFL = 1 and AF = 0
AF if PAC > 0.7 and n_cross_outside_QRS > 15 then AF = 1 and AFL = 0

LBBB if QRS_dur > 120 ms and no_Q_wave in I, V6 and pred_R_wave in I, V6, and opp_ST_T
in V5 then LBBB = 1

RBBB if QRS_dur > 100 ms and MW_shaped_QRS in any of V1,V2,V3,V4 and
n_cross_inside_QRS ≥ 5 then RBBB = 1

IRBBB if RBBB = 1 and QRS_dur < 120 ms then IRBBB = 1
RAD if QRS_angle is in the range [90◦,180◦] then RAD = 1
LAD if QRS_angle in the range [270◦,330◦] then LAD = 1
LAnFB if RAD = 1 or LAD = 1 and (ratio_Q_R < 1/9 or ratio_R_S < 1/9) then LAnFB = 1
PR if no_P_wave and (RAD = 1 or LAD = 1) and slope_ini_QRS > 0.7 mV/ms then PR = 1
LQT if QT_int > 340 ms then LQT = 1
LQRSV if max_QRS_ampl in I, II, III < 0.25 mV then LQRSV = 1
I_AVB if yes_P_wave and PR_interval > 130 ms then I_AVB = 1
LPR if yes_P_wave and PR_interval > 110 ms then LPR = 1
Tinv if T_neg in V1 and T_neg in V2 and T_neg in V3 then Tinv = 1

2.4. Deep Learning Network Classifier

The deep learning method considers both raw ECG signals and previously computed
median beat signals. It is composed of continuous wavelet transforms (CWTs), followed by
a convolutional neural network (CNN). The input data of the CWTs are the concatenation
of two components of raw ECG signals:

• Concatenation of 10 s of the ECG signals of eight independent leads;
• Concatenation of average beats computed previously using the rule-based method.

These data are processed by the CWTs, obtaining a time-frequency domain representa-
tion, with the generation of specific 2D images. These images are then used for the training
of a CNN network for ECG diagnostic classification. A pretrained image CNN classification
network that has already learned to extract powerful and informative features from natural
images has been used as a starting point to train the specific classifier for 24 classes [24].

The CWT transforms the selected window of ECG signals into time-frequency rep-
resentations, which compose a 2D image. In particular, the absolute values of the CWT
coefficients of the considered ECG signal have been considered, obtaining the so-called
scalogram [24]. The Matlab function cwtfilterbank was used to create the continuous
wavelet transform filter bank, using a family of exactly analytic wavelets (Morse wavelet),
with symmetry = 3, and time-bandwidth product = 60. In addition, CWT scales are dis-
cretized using 12 voices per octave. Two examples of scalograms are shown in Figure 3a
(Atrial Fibrillation AF) and in Figure 3b (Normal Sinus Rhythm NSR), where the x-axis
represents the time, the y-axis the frequency and the color map is the magnitude.

These models were pretrained on a subset of the ImageNet database (www.ImageNet.org,
accessed on 1 August 2021), which was used in the ImageNet Large-Scale Visual Recognition
Challenge (ILSVRC) [24,25]. Both networks, trained on ImageNet, are able to classify images
into thousands of object categories, learning rich feature representations for a wide range of
images. Thanks to the generalization property common to the neural network approach, it is
possible to develop an appropriate learning procedure to force the networks to classify images of
a different domain produced by the CWT block into 24 diagnostic classes. Both networks were

www.ImageNet.org
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tested in the first phase of the Challenge: the SqueezeNet showed a faster training procedure,
whereas the GoogLeNet presented a better performance, and thus the latter was used in the
official phase.

Figure 3. Example of ECG scalograms: (a) A0442—Atrial Fibrillation, (b) A0453—Normal Sinus Rhythm, (c) A0764—Left
Bundle Branch Block, (d) A0627—Premature Atrial Contraction.

GoogLeNet is a CNN, including 22 layers, pretrained to classify images into 1000 object
categories. Each layer can be considered as a filter; consequently, the first ones characterize
more common features, whereas the deeper ones characterize more specific features in
order to differentiate between the considered diagnostic classes.

The learning procedure is characterized by the initial learning rate = 0.0001, a mini-
batch size in the interval [30:50] as the minimum factor of the number of elements in the
learning set, a variable number of iterations in the various experiments, and the use of the
stochastic gradient descent optimization algorithm with momentum (=0.9).

Specific techniques have been implemented and developed during the training phase
of the GoogLeNet CNN in order to cope with the particular aspects of multi-label, multi-
class characteristics/features. Among different techniques related to class imbalance [26],
in the present study, two data-level methods were used: a random under-sampling for
reducing the size of the learning sets, and a random over-sampling for duplicating random
samples from the minority group.
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A schematic representation of the architecture of the GoogLeNet network is shown in
Figure 4, where the input is a 2D jpeg image (224 × 224 × 3), and the output is represented
by the scores or probabilities of the 24 considered ECG classes. An example of a trained
CNN GoogLeNet is available at https://github.com/giovanni-ivaylo/cinc20.git (accessed
on 1 August 2021) for a complete analysis of its structure.

Figure 4. Schematic architecture of the GoogLeNet CNN.

3. Results and Discussion

The score indices of the first and second phase of the Challenge (validation scores) are
defined and reported in [11]. In particular, based on the indices of true positive (TP), true
negative (TN), false positive (FP), and false negative (FN), precision (TP/(TP + FP)) and
recall (TP/(TP + FN)) the following indices were considered:

F1 is a F-measure, which is the harmonic mean of precision and recall:

F1 = 2 * TP/(2 * TP + FP + FN)

F2, a more general F-measure which weighs recall more highly than precision:

F2 = ((1 + 22) * TP)/((1 + 22) * TP + FP + 22 * FN)

G2, a general G-measure:
G2 = TP/(TP + FP + 2 * FN)

AUROC: area under the receiver operating characteristic (ROC) curve
AUPRC: area under the precision-recall curve.
Our team, named ‘Gio_Ivo’, participated successfully in the unofficial and official phases
of the Challenge.

In a preliminary phase, the learning process was based only on the CPSC database,
consisting of 6877 ECG records with only nine possible diagnostic classes, with a consequent
simplification both of the rule-based method and the architecture of the CNN. Table 5
displays the cross-validation indices of the tested algorithms in this preliminary dataset.

In the official Challenge phase, the entire learning set of 43,101 ECG records was
considered, and the number of diagnostic classes increased to 110. The challenge scoring
system was essentially concentrated on a subset of 27 classes, considering the relevant
diagnostic classes of clinical interest. A particular scoring system was defined by the
Challenge for coping with the fact that not all misdiagnosed results are equally bad. In
addition, a subset of 24 classes was activated in the identification process, considering
three equivalent classes (CRBBB and RBBB, PAC and SVPB and PVC and VEB). During

https://github.com/giovanni-ivaylo/cinc20.git
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this official phase, the submissions were tested on the validation set of 6630(1463 + 5167)
records. To increase the efficiency of the learning process, the learning subsets LS_N1000
(16,002 records), LS_N600 (11,210 records), and LS_N1500 (20,044 records) were used in the
testing procedures (Table 3). Table 2 shows the weighted distribution of the learning set
LS_N1000 in the 24 diagnostic classes considered.

Table 5. Cross-validation results in the CPSC learning database (6887 records), considering 9 diag-
nostic classes.

Method F1 F2 G2 Learning Set

Rule-based RB1 0.461 0.5110 0.269 CPSC
GoogLeNet_1 0.623 0.636 0.386 CPSC
GoogLeNet_2 0.614 0.632 0.381 CPSC
GoogLeNet_3 0.618 0.634 0.390 CPSC

The deep learning process was performed and tested using three-fold cross-validation
techniques. This choice was mainly due to the CPU time required for the training. For
example, for a one-fold training iteration, the execution took from 15 to 24 h of CPU time.
However, in the submitted algorithms, the presence of several platform-related problems
slowed the training process, and consequently, the learning was performed one-fold to ensure
an acceptable duration of the learning process and a more convenient feedback phase.

Table 6 reports the official Challenge Validation score of the submitted algorithms
tested in the validation set of 6630 records. The rule-based method RB1 essentially did
not use any learning process from the database LS_N1000 and the score was in agreement
with the behavior of the first phase, whereas the second version (RB2) tried to extract some
information from LS_N1000. For example, it tried to differentiate AF from AFL on the
basis of the AF-waves’ frequency and amplitude, but the consequent improvement was
not significant.

Table 6. Challenge validation phase: submissions trained in the learning set of 43,101 records and
tested in the validation set of 6630 records.

Submission Name Score CPU-Time (Min) #Iterations Learning Subset

GoogLeNet_6 0.426 1664 2 (+10) LS_N1000
GoogLeNet_8 0.420 3714 20 LS_N1000
GoogLeNet_7 0.400 2680 10 LS_N1000
GoogLeNet_9 0.422 4029 20 LS_N600

GoogLeNet_10 0.415 2875 18 LS_N1500
rule-based RB2 0.325 33 - - - -
rule-based RB1 0.324 62 - - - -

Different deep learning algorithms were submitted, with different learning subsets
(LS_N1000, LS_N600, LS_N1500) and a different number of iterations, but the scores
(Table 6) were all in the range of [0.400, 0.426], indicating that all these algorithms showed
similar behavior. In particular, GoogLeNet_6 resumed the training from a previously saved
pretrained network, which comes from a 3-fold cross-validation technique on LS_N1000
and 10 iterations.

Table 7 displays the cross-validation indices trained and tested in the learning databases
LS_N1000 and LS_N1500. It is interesting to note that the reported indices F_2, G_2 and
the normalized score are in agreement with the official results, with some more optimistic
results, probably depending on the composition of the unknown test set.
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Table 7. Cross-validation (3-fold) results of the main submissions trained and tested in the learning
subsets LS_N1000 or LS_N1500.

Submission Name Score F1 F2 G2 AUROC AUPRC Training Set

GoogLeNet _6 * 0.497 0.343 0.470 0.199 0.858 0.440 LS_N1000
GoogLeNet _8 0.499 0.382 0.50 0.222 0.867 0.459 LS_N1000
GoogLeNet _7 0.497 0.343 0.470 0.199 0.858 0.440 LS_N1000

GoogLeNet_10 * 0.480 0.335 0.466 0.194 0.864 0.438 LS_N1500
rule-based RB2 0.348 0.285 0.333 0.151 0.659 0.203 LS_N1000
rule-based RB1 0.337 0.263 0.317 0.139 0.648 0.179 LS_N1000

* With a shorter learning process.

The final official results were announced considering the test set of 16,630 ECG records.
Our team, named ‘Gio_Ivo’, submitted the deep learning method GoogLeNet_6, and
achieved a challenge validation score of 0.426 and a full test score of 0.298, thus placing
us 12th out of 41 in the official ranking. In particular, Table 8 reports the various official
validation score performance indices in the different hidden test/validation sets. The
presence of a hidden undisclosed set (10,000 ECG records) from an American institution
geographically distinct from the other datasets caused a significant decrease in the Chal-
lenge score. This critical point is significant, showing the importance of the composition of
the learning/testing sets.

Table 8. Official final results obtained using GoogLeNet_6.

Dataset ECG Records Official Score AUROC AUPRC F1

Validation Set 6630 0.426 0.830 0.314 0.296
Test set—Hidden

CPSC Set 1463 0.452 0.882 0.619 0.116

Test set—Hidden
G12EC Set 5167 0.421 0.799 0.312 0.304

Test set—Hidden
Undisclosed Set 10,000 0.205 0.810 0.376 0.244

Test Set—total 16,630 0.298 0.777 0.302 0.266

Table 9 shows the AUROC, AUPRC and the F1 scores for the considered diagnostic
classes. In this table, we can observe the weak points of the classifier. Three diagnostic
classes had very low F1 scores: Bradycardia (0.0), PR (0.05) and RAD (0.053), which
corresponded to the three classes with the lowest numbers of examples (288, 340 and
427, respectively), and also correspondingly low AUPRC values (0.001, 0.019 and 0.025,
respectively). These results confirm the critical point of the problem of class imbalance and
show the limits of the random over-sampling technique.

The results clearly show that the deep learning architecture that directly examines raw
ECG data and time-frequency images is able to produce satisfactory results.

Various teams that participated in the Physionet/Challenge considered the deep
learning approach [27–30], showing a particular interest in this methodology. For example,
the team with the highest score [27] considered both raw ECG data and ECG features
extracted from ECG signals, including age and gender. A deep neural network with a
modified residual neural network architecture was considered in [28], in which the scatter
blocks processed the 12 leads separately. In [29], wavelet analysis and a convolutional
network were used for each single lead, and a single output label was obtained, reducing
the diagnostic categories to the individual and the most frequent combinations. In [30], the
authors combined a rule-based model and a squeeze-and-excitation network.

Over recent years, there has been a rapid development of machine learning techniques,
with a growing number of ECG classifiers [3,31]. These algorithms consider different sets of
cardiac arrhythmias and small or relatively homogeneous datasets, reducing the possibility
of a real comparison [11]. For example, in [31] the authors consider 12 classes, in [3] they
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consider six cardiac abnormalities, whereas the present work considers a set of 24 relevant
diagnostic classes of clinical interest, making a direct comparison complex.

Table 9. Complete results for the official Challenge Validation phase: AUROC, AUPRC and F1 scores
of the diagnostic classes for the submitted method, GoogLeNet_6, in the official test set. No results
for LPR.

Diagnostic Code AUROC AUPRC F1

IAVB 0.769 0.254 0.297
AF 0.931 0.751 0.64

AFL 0.836 0.215 0.184
Brady 0.798 0.001 0.0

CRBBB 0.913 0.642 0.51
IRBBB 0.814 0.125 0.162
LAnFB 0.862 0.143 0.172
LAD 0.821 0.257 0.325
LBBB 0.975 0.667 0.397

LQRSV 0.819 0.126 0.144
NSIVCB 0.749 0.049 0.064

PR 0.698 0.019 0.05
PAC 0.847 0.394 0.378
PVC 0.793 0.132 0.231
LQT 0.775 0.276 0.329
QAb 0.724 0.078 0.112
RAD 0.842 0.025 0.053
SA 0.93 0.47 0.425
SB 0.979 0.918 0.799

NSR 0.834 0.521 0.543
STach 0.976 0.77 0.731
Tab 0.709 0.268 0.379

TInv 0.692 0.121 0.176

Some of the characteristics of the proposed methods can be outlined. The RBM method
mimics the classification process of an expert physician, and it obtain the classification in a
very short time. However, the accuracy and the mimicking property could be improved
with significant effort, considering, for example, some active tuning from the learning
database, with more modular rules and fuzzy thresholds. The deep learning method is
characterized by the use of a linear architecture fed only with raw ECG data, in which all
the leads are examined simultaneously, considering a multi-label classifier with a large
number of diagnostic classes, with a positive behavior in the presence of a significant
class imbalance. This method has the drawback of complexity and a long training time.
The use of pre-trained CNNs has simplified the training process; however, more specific
architectures of deep learning could improve the classification accuracy.

4. Conclusions

In the present study, we have explored the potential of a classical rule-based method
and a deep learning architecture for the automatic classification of ECG signals. The two
methods were tested and validated in the framework of the PhysioNet/Computing in
Cardiology Challenge 2020, in which six annotated databases of 43,101 ECG records were
considered for the training set. The training and validation databases contained a set of
27 relevant diagnostic classes of clinical interest, which represents the complexity and
difficulty of ECG interpretation. A particular scoring system was defined by the Challenge
judges because not all misdiagnosed classifications are equally bad.

The results of the two different techniques showed that deep learning methods which
directly examine raw ECG data and images are able to produce very satisfactory results. In
addition, this technique, which is quite a simple methodology but with a high consumption
of computation capacity, performs better than the classical rule-based system.
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The reported results showed that our team was able to complete the challenge steps
with two different methods. The final official results of our team, performed using the deep
learning GoogLeNet_6 approach, achieved a challenge validation score of 0.426 and a full
test score of 0.298, resulting in our team placing 12th out of 41 in the official rankings. The
PhysioNet/Computing in Cardiology Challenge 2020 has provided the opportunity for
unbiased and comparable research for testing the complexity of 12-lead ECG classifiers
with a large public training set, as well as undisclosed validation and test sets.

Among the topics open for future investigations are the development of class-imbalance
analysis, multi-label datasets and unequal sample sizes, in addition to the combination of
the two proposed methods.
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