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Abstract: Artificial intelligence can help physicians improve the accuracy of breast cancer diagnosis.
However, the effectiveness of AI applications is limited by doctors’ adoption of the results recom-
mended by the personalized medical decision support system. Our primary purpose is to study
the impact of external case characteristics (ECC) on the effectiveness of the personalized medical
decision support system for breast cancer assisted diagnosis (PMDSS-BCAD) in making accurate rec-
ommendations. Therefore, we designed a novel comprehensive framework for case-based reasoning
(CBR) that takes the impact of external features of cases into account, made use of the naive Bayes
and k-nearest neighbor (KNN) algorithms (CBR-ECC), and developed a PMDSS-BCAD system by
using the CBR-ECC model and external features as system components. Under the new case-based
reasoning framework, the accuracy of the combined model of naive Bayes and KNN with an optimal
K value of 2 is 99.40%. Moreover, in a real hospital scenario, users rated the PMDSS-BCAD system,
which takes into account the external characteristics of the case, better than the original personalized
system. These results suggest that PMDSS-BCD can not only provide doctors with more personalized
and accurate results for auxiliary diagnosis, but also improve doctors’ trust in the results, so as to
encourage doctors to adopt the results recommended by the personalized system.

Keywords: case-based reasoning; personalized recommendations; machine learning; external fea-
tures of cases; physician adoption

1. Introduction

The International Agency for Research on Cancer of the World Health Organization
has released the latest global cancer data for 2020, and there were about 2.3 million new
cases of breast cancer worldwide in 2020, accounting for nearly 12% of all cancer cases,
surpassing lung cancer as the most prevalent cancer type worldwide for the first time [1].
With the improvement of living standards, the accelerated pace of life, and the increase in
life pressures and stress, the incidence of breast diseases, especially breast cancer, is also
increasing, and the age of affected individuals is getting younger [2]. It is predicted that
by 2030, cancer incidence will affect more than half of the population. Moreover, while
survival rates are 89% in the United States and 76% in Europe, in developing countries
survival rates are dropping [3]. Thus, the management of breast cancer remains one of the
most problematic healthcare issues [4].

In this context, machine learning represents a great opportunity for:
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(1) Supporting physicians, biologists, and medical authorities to develop and significantly
improve big medical data analytics;

(2) Reducing the risk of medical errors;
(3) Better coordinating diagnostic and prognostic options [5,6].

A revolution in medicine driven by artificial intelligence is taking place, with a large
number of new methods being introduced to improve the accuracy of diagnosis in breast
cancer management and to provide new solutions for breast cancer diagnosis [7]. Man-
gasarian et al. used methods such as machine learning to achieve highly accurate diagnosis
and prognosis of breast cancer [8]. Liu et al. developed a support vector machine with
better performance in breast cancer diagnosis [9]. Akay proposed a breast cancer diagnosis
based on a combination of a support vector machine and a feature selection method, and
was able to obtain higher classification accuracy than previous methods [10]. Vanitha et al.
studied five AI methods for managing breast cancer, such as using a support vector ma-
chine, and evaluated their performances [11]. Alaa et al. used large-scale data from cohorts
to develop a breast cancer prognostication and treatment benefit prediction model [12].
Therefore, new strategies for accurate and effective ongoing management using AI are
highly desirable [13].

Decision support systems for disease management using machine learning have been
used to some extent in the medical community [14,15]. However, the personalized-system-
recommended results are often not recognized by the physician community, making
it difficult to exploit the advantages of AI in improving the quality of healthcare and
reducing the burden on medical resources [16–18], a problem that deserves reflection by AI
practitioners. In this regard, medical experts are currently facing two challenging problems:

1. Previous studies focused on improving the diagnostic accuracy, and it was seldom
considered whether the results with high diagnostic accuracy recommended by the
personalized system could be trusted and adopted by doctors.

2. The diagnostic features considered in previous studies are all internal features of the
case itself, and the prior knowledge from case experts, such as the external features
of the case, is rarely considered; these external features are equally important for the
personalized systematic results [19].

Therefore, based on the above research status, this study proposes a novel CBR
framework and establishes a CBR model that considers the effects of external characteristics
(CBR-ECC model) and the personalized medical decision support system for breast cancer
assisted diagnosis (PMDSS-BCAD) system [20]. In this new CBR framework [21,22], naive
Bayes and the KNN model, both used in the retrieval stage, aimed to verify the case
retrieval algorithm to improve the performance of CBR system, and the integration of
the ECC [23,24] is used to improve the trust and adoption of the recommended results
by medical staff. This study provides health care professionals with a technique for
personalized diagnosis of breast cancer that is not only reliable but also credible. It helps
to provide supporters and future researchers with more literature on the impact of global
breast cancer treatment [25].

The rest of this paper is organized as follows. In the next section, we present the
data from the Mozambique dataset and describe the methods and processes for feature
processing, naive Bayes classification, KNN retrieval, and ECC feature fusion of the data.
In Section 3, we show the test results of each phase of the models and methods, and the
evaluation of the application of the decision support system in a real hospital scenario.
Finally, we summarize the critical discussion and conclusions of this paper.

2. Materials and Methods
2.1. Data Description and Model Implementation

The conceptual framework of the PMDSS-BCAD system consists of three main com-
ponents as shown in Figure 1. The first stage is to use naive Bayes to evaluate whether the
patients who begin use of the system have malignant or benign tumors, so as to realize the
classification of positive and negative cases of patients. In the second stage, the k-nearest
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neighbor algorithm (KNN) with the best K value on the base of the corresponding category
of new patients in the first stage is implemented to obtain the retrieval cases with high
similarity. Although KNN was chosen as our improved search process algorithm, the
application of an additional classifier before KNN can further improve the results. This
explains why the first stage of the PMDSS-BCAD system framework is set up. The third
stage is to fuse the diagnostic results achieved by naive Bayes and KNN in the second stage
with the ECC and correct the ranking of similar medical records in order to make the final
results more consistent with the clinical, logical way of thinking that doctors employ, and
to promote the adoption of the results by physicians.

Figure 1. PMDSS-BCAD system framework.

2.1.1. Data Description

The following is the data description. We analyzed the provided data and prepro-
cessed it to fit the experiment. In the study, we used an all-labeled dataset consisting of
about 1200 cases from the database of the Maputo Central Hospital (HCM) in Mozam-
bique, which initially contained 25 attributes (including indicators, demographic attributes,
pathological attributes, and ECC attributes), was used for this study. We decided to test
our algorithm on real datasets to ensure its validity.

The methods used by pathologists to examine fine-needle aspirate (FNA) tissue
specimens of breast cancer are mainly divided into macroscopic and microscopic analysis.
They study the outer appearance of the lesion where the tumor is and pay close attention to
the characteristics of the cells. Cancer, commonly known as a tumor, is usually caused by the
uncontrolled division of cells into distinct masses. Tumors can be benign or malignant, and
the latter is detrimental as it may develop rapidly and spread over the nearby tissues [26].
Our selected sample dataset initially contained 950 benign cases and 264 malignant cases.
The attribute category has two values, “1” for malignant cancer and “0” for benign cancer.
As the data are extensive and some information does not influence patients’ condition or
diagnosis, preprocessing is needed.

Data preprocessing is an important step in data mining. It transforms the original data
into a format more suitable for machine understanding. In the real world, there are always
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some problems with data. In order to get accurate, complete, and consistent data, data
preprocessing is necessary. It is applied to make data more suitable for analysis [27,28].
In our study, we used the following approaches for data preprocessing: dimensionality
reduction (feature subset selection), discretization and binarization, variable transformation,
and feature creation.

Dimensionality Reduction/Feature Subset Selection

Feature subset selection or feature selection is a method of dimensionality reduction
that selects attributes that belong to the subset of a former attribute and makes them
new attributes. We used filter approaches for this feature subset selection and chose
sets of attributes with low pairing correlation. Initially the following attributes were
taken into account: age, gender, macro-analysis, micro-analysis, head (main location of
the tumor), location 1, location 2, doctor’s education and title, doctor’s real name (the
relevant literature has shown that these two doctor-related attributes reflect authoritative
information of the physician, but as privacy is involved, the relevant information will be
used after desensitization [29]), the remarks of the case (including case quality information),
and the final diagnosis. The remaining attributes were discarded.

Discretization and Binarization

The process of transforming continuous attributes into classified attributes is dis-
cretization. The process that converts continuous and discrete attributes into a single or
multiple binary attributes is called binarization. When a categorical attribute contains
big-value numbers, or some values that appear infrequently, discretization and/or bina-
rization can be beneficial to decrease the amount of categories through the combination of
a few values. The attributes mentioned here are binarized. Not all attributes are binarized
because such a conversion can cause hurdles, for instance, undesirable relationships would
be generated in the converted attributes.

Variable Transformation

Standardization or normalization is a common type of variable transformation [28].
In order to achieve a normalized process, redundant data need to be eliminated and
meaningful data dependencies ensured. We normalize all values in a given dataset (except
for the class attribute, if set). In general, the results of normalized data are within the
interval [0, 1]. In special cases, tools such as scale and shift parameters can be used for
processing. For example, when scale = 2.0 and shift = −1.0, values in the range of (−1, +1)
will be achieved.

Feature Creation

New features can be created from existing attributes. This new group of features (that
is, new attributes) can replace the originals and effectively highlight the most important
characteristics in a dataset, which has the advantage of dimensionality reduction by having
fewer attributes. The approach used for feature creation in this study is feature extraction.
The information contained in the macroscopic analysis, namely clump thickness, location,
consistency, set (i.e., mobility of the clump), and the type of FNA material extracted, is all
useful information. Since the combination of all these details would give us a complex
dataset, we performed a feature extraction and analyzed each item one by one, contributing
to a better and well-focused specific analysis. We also made swabs, stained them, and
created a description of cell attributes for the microscopic analysis. In addition to pathology
features, we created features related to ECC (e.g., specialty of doctors, willingness to reveal
real name, case quality scoring) that influenced our final results. The final diagnosis is set
as an attribute. Based on the final diagnosis, the attribute class was created, which divided
the data into two distinct groups: patients with a malign tumor or a benign tumor. Of the
25 attributes in the dataset, the rest of the attributes, namely index, gender, race, bed, and
dates of analysis, were discarded, as they did not apply in any way to the final diagnosis.
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In this section, we present and explain in detail all the approaches used in the study.
All of the steps mentioned helped reduce the number of attributes in our dataset, making
our model more understandable and easier to visualize, and reduced the process time
of the algorithm. Based on the dimensionality reduction approach, we combined some
attributes and removed some to reduce the noise data in our set. The data are abundant,
but not all attributes are needed to achieve the purpose of our study. We retained the
features shown in Table 1; the attribute descriptions are shown in Table 2.

Table 1. Preview of the final dataset used.

No. Age Consistency Clump
Thickness FNA Swabs Class Specialty

of Doctors

Willingness to
Reveal Real

Name

Case
Quality
Scoring

1 59 5 1 1 6 1 5 1 8
2 29 5 6 1 5 1 7 1 7
3 53 1 1 1 9 1 6 1 5

. . . . . . . . . .. . . . .. . . . . . . . . . .. . . . .. . . . .. . . . .. . . . .. . . . ..
90 33 5 3.5 1 3 1 5 1 10
91 22 2 3 2 5 0 5 1 7
92 18 5 2.8 1 3 0 10 1 8

Table 2. Attribute descriptions.

Attribute Description

Age The age of the patient; the older they are, the higher the chance of having cancer. The patients are aged
from 10 to 95.

Consistency The consistency of the tumor, which we grouped in order from soft to hard; we used numbers to
represent each value, namely: (1) soft; (2) elastic; (3) fibro-elastic; (4) fibrous; and (5) hard.

Clump thickness The size of the clump (tumor) found in the breast. It varies from 0 to 22 cm.

FNA The type of material (substance) extracted from fine-needle aspirate (FNA) tissue specimens of breast
cancer. It varies from 1 to 5, according to the different variations of FNA.

Swabs The number of swabs made from the extracted material and displayed on glass blades for analysis. It
varies from 1 to 10.

Class A description of the type of tumor, with 1 for malignant and 0 for benign.

Specialty of doctors
The specialty of the doctors: Factors such as clinical level, patient ratings, and title can be considered and
scored from 1 to 10. This is used to distinguish the degree of expertise of the physician from whom the
case originated.

Willingness to reveal
real name

The willingness of the physician to reveal his or her real name to indicate the credibility of the case
source. Willing to reveal is 1, and unwilling is 0.

Case quality scoring Physician rating of the quality of the recommended cases. It is used to distinguish which case is a better
one to study in similar situations. Scores range from 1 to 10.

2.1.2. Descriptive Model (Phase I)

To build the descriptive model and obtain cases for knowledge representation, three
descriptive models involving naive Bayes, the KNN algorithm, and decision tree classifiers
were constructed and evaluated. Naive Bayes, the adopted classifier, is the focus in this
study. It deals with the following two main tasks: (1) First, to classify the database of cases
using the naive Bayes model, that is, we classify all cases in the initial case database into
malignant and benign case sub-databases, providing the case database of the corresponding
category for KNN retrieval later on. (2) Second, to classify new patients entering the PMDSS-
BCAD system using naive Bayes; that is, whenever a new breast cancer case is analyzed,
an assessment of whether this new breast cancer case has a malignant or benign tumor is
performed to achieve the classification of this patient. The Bayesian theorem frames the
reason for ascertaining the probabilities of theories, the foundation of the Bayes classifier,
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and the premise of algorithms for assessing estimations of imperceptibility factors. The
Bayesian classifier is found to be practically identical in execution with the decision tree and
neural network classifiers. Bayesian classifiers in correlation with others have additionally
shown high exactness and speed when connected to huge databases. These classifiers
expect that the impact of a characteristic incentive on a given class is autonomous of the
estimations of alternate qualities. This suspicion is called class-contingent independence. It
is made to disentangle the calculations included and, in this sense, is viewed as “naive.”

The naive Bayes is a probabilistic model. This classifier assumes that each feature in
the class is strongly independent (naive). It utilizes features that may be a product of the
existence of other features and uses the probability calculation to find out to which class an
instance belongs. The naive Bayes theorem is denoted by Formula (1).

P(Y|X ) =
P(X|Y )P(Y)

P(X)
(1)

2.1.3. KNN Retrieval (Phase II)

KNN retrieval is the best approach to select highly similar cases according to their
attributes and assigned weight. The second phase of the experiment includes KNN retrieval
based on a case-based reasoning system on a Bayesian classification dataset. This phase is
the primary phase of the experiment, as shown in Figure 2.

Figure 2. Diagram of KNN retrieval phase.
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Case Retrieval

The KNN retrieval is subdivided into two parts [30]: (1) Selection step: the similarity
of patients is computed and sorted, p′ ∈ PL, followed by selecting the K similar instances
p′. (2) Fusion step: a numeric value is calculated that determines the similarity between
the new case and a set of probable classes within the training set CL. This step quantifies
the probable outcome of a patient’s (p ∈ PU) decision making, Sp, which is computed as
follows in Formula (2):

Sp =
∑p′∈P∗K wp′d(p, p′)−1yp′

∑p′∈P∗K wp′d(p, p′)−1 (2)

where P ∗ K refers to the optimal KNN and the formula contains the labels assigned to
the set stored in PL, which refers to a considered set in CL. PL has the biggest similarity
measure with respect to the currently analyzed patient p ∈ PU. The rest of the variables
represent the following: p, new patient; p′, similar patients; and p′ ∈ PL, sorting similar
patients.

The set of patients’ weights is represented by
{

wp′
}

p′∈PL
, which is designed to

validate ∑p′∈PL
wp′ and

{
yp′

}
p′∈PL

.

The nearest neighbor retrieval computes the similarity among previously stored
cases and new cases based on weight features. The similarity is computed as follows in
Formula (3):

similarity(CaseI, CaseR) =
∑n

i=1 wi × sim
(

fI
i , fR

i

)
∑n

i=1 wi
(3)

This formula shows an effortless computation of nearest neighbor matching, where wi
is the importance of the feature weight. Sim represents the similarity function of features,
fI
i is the value of feature I in the input, and fR

i is the value for feature i in the retrieval.
An illustration of how nearest neighbor works is shown in Figure 3. In the following
two-dimensional space, case3 is chosen as the nearest neighbor since similarity (NC, case3)
> similarity (NC, case1) and similarity (NC, case3) > similarity (NC, case2).

Figure 3. How to find the nearest neighbor of the new case (NC).

2.1.4. The Fusion of ECC (Phase III)

The cases retrieved according to KNN may be more in line with the needs of the
machine, especially in terms of retrieval accuracy, but the decision-making behavior of
physicians in real-world application scenarios often involves many practical factors which
are based on the KNN case retrieval process. The results of machine-learning-based
retrieval may not be suitable for the final clinical diagnosis. Therefore, it is necessary to
introduce the prior knowledge of ECC in order to obtain a sequence of retrieved cases that
is more in line with the logic of the clinical auxiliary diagnosis of breast cancer.

Experts experienced in clinical diagnosis usually consider more practical factors
affecting breast cancer diagnosis, such as the content, source, and physician assessment
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of other similar cases. The aggregation of ECC information can not only compensate for
the shortcomings of machine learning models, but also provide some diagnostic assistance
to physicians. This will bring informative benefits to our findings and help us discover
cases with searches that physicians will trust and that are more in line with their diagnostic
habits.

The ECC mentioned in this study include the authority of the source of the case and
the evaluation of the case by the doctor. In this paper, the authority of the source of the
cases refers to the fact that historical cases come from doctors with different specialties,
and these doctors with different specialties result in differences in quality between cases,
which specifically include physician’s professionalism and willingness to reveal their real
name. The doctor’s evaluation of the cases refers to the scoring and evaluation made by a
doctor after using a historical case, and represents the quality of the case.

In order to integrate the ECC features, weights were assigned to the physician’s
professionalism, willingness to reveal their real name and case quality score. The method
used to determine the weights in this paper is the expert scoring method, which objectively
combines the experience of most experts with subjective judgement to provide a reasonable
estimation of factors that are difficult to analyse quantitatively. However, each expert
has a different background and may score differently, so it is necessary to consider the
consistency of the scores graded by experts to compare the consistency of the results
obtained by different methods. There are many methods to test for consistency, such as the
Kappa test, the ICC intra-group correlation coefficient, and the Kendall’s W coordination
coefficient. In this paper, the Kendall’s W coefficient of concordance is used because it
is suitable for comparing the consistency of data from multiple groups of doctors on a
particular indicator. Therefore, this paper uses the Kendall’s W coefficient of concordance
in SPSS software to test the consistency of expert scores for later integration of ECC.

The ECC are integrated into the results of the first stage through the binary harmonic
mean method. In contrast to the experimental results that consider the fusion of ECC and
the experimental results that do not consider the standard fusion of ECC, we analyze the
influence of the ECC on the retrieval results. We then discuss the use of this influence in
medical decision making, meaning in management of disease.

The binary harmonic mean method used in this phase refers to the arithmetic average
of the reciprocal of n numbers, which has a special penalty mechanism to obtain reasonable
averages closer to the smaller values (i.e., valuing the smaller values) among the evalua-
tion scores of different dimensions. In this paper, we want to pay more attention to the
characteristics of the case content itself and properly integrate the characteristics of the
case sources, so we use the binary harmonic mean method to enable the results to converge
more closely to the results we want and thus make the evaluation more accurate. The
Formulas (4) and (5) for the specific fusion are shown below.

Pt= wi ∗ xi (4)

SPt =
2 ∗ St ∗ Pt

St + Pt
(5)

where wi represents the weight value of the i th feature in the ECC, xi represents the value
of the i th feature in the ECC, Pt represents the weighted sum of all features of the ECC of
the t th case, St represents the similarity value of the t th case, and SPt represents the final
fusion value of the similarity value of the t th case itself and the weighted sum of the ECC
features of the t th case.

Figure 4 shows the ECC integration process.

2.1.5. Case Adoption

Case adoption consists of merely editing the obtained case solution to address a
problem of a new case. Adaption is implemented by exclusion, inclusion, replacement, or
even alteration of an output (i.e., case solution). After adoption is completed, new cases
are updated to the case database, thus providing a possible potential solution option for a
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new case problem. The assumptions adopted in the phase I experiments contributed to the
similarity improvement. Some of the assumptions are linked to breast cancer’s common
risk factors, such as the age feature in our datasets.

Figure 4. The case solution integration process considering ECC.

3. Results

In this study, we propose a CBR-ECC model under a new case retrieval framework.
This model adopts an algorithm model combining naive Bayes and KNN to search for
similar cases, and integrates ECC to gain information. Real datasets are then used to
evaluate the performance of this model. Finally, this model is integrated into the PMDSS-
BCAD system [31]. We performed a full comparative study of each phase. We compared
J48, KNN, and naive Bayes in the first phase, in the second phase we compared KNN with
different K values based on a naive Bayes classification, and in the third phase we designed
the whole method as a system and compared it with the CDSS system commonly used in
hospitals, so our results for both the comparison of each phase and the whole system all
have good accuracy and stability.

3.1. Phase I

The first phase of the experiments includes classifying the dataset for purposes of
labeling. The dataset was divided into a training set and a testing set. The pre-selected
classification methods were then implemented. The training data were used to assemble the
model, and the testing data were used to examine the performance. A third of the dataset
was used for model testing, and the rest is used for training the model. The purpose of
applying a classifier is to group two different categories. Accordingly, class one represents
patients with breast cancer (malignant breast tumor) and class zero represents patients
without cancer (benign breast tumor). The evaluation includes precision, recall, F-measure,
and accuracy.

We set four standard metrics: true positive (TP), true negative (TN), false positive (FP),
and false negative (FN). TP represents the number of malicious records. TN represents the
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number of benign cancers, correctly classified. FP represents the number of benign tumors
incorrectly diagnosed as malignant tumors. FN represents the number of benign tumors
incorrectly classified as malignant tumors.

To build the descriptive model and obtain cases for knowledge representation, three
classification models including a J48 decision tree, KNN, and naive Bayes were constructed
and evaluated. The classifier with the best overall performance was naive Bayes, as shown
in Table 3. From these results, it is clear that naive Bayes has the best overall performance
in comparison to the other classifiers, with its accuracy of 95.87%, precision of 94.45%,
recall rate of 95.82%, and F-measure of 95.79%.

Table 3. Comparative performance analysis of the classifiers.

Evaluation J48 KNN Naive Bayes

Accuracy 93.02% 93.19% 95.87%
Precision 95.43% 91.94% 94.45%

Recall 93.23% 93.78% 95.82%
F-measure 94.22% 92.27% 95.79%

The results were also evaluated using the receiver operating characteristic (ROC)
curve. This is a visual tool for effectively comparing two or more binary classification
models. It compares the sensitivity and false-positive rate of the models. Each point
represents a sensitivity/specificity pair that matches a different decision threshold. The
area under the ROC curve is the index and basis for comparing model accuracy. It shows
how well or badly a parameter distinguishes between two different groups [32]. Generally
speaking, a model with a large area is a model with higher accuracy, that is, the model to be
selected. In addition, a diagonal orientation is also a good reference method. The closer the
ROC curve is to the diagonal, the lower the model accuracy will be. On the contrary, the
closer the model is to the upper-left corner of the plot, the more accurate the model is. The
naive Bayes classifier proved to be the one with the lowest error rates, as we can clearly see
in the ROC curves illustrated in Figure 5. The performance of the J48 decision tree classifier
is near the naive Bayes curve. Both of these classifiers clearly outshined the KNN classifier.

Figure 5. ROC curves of the classfiers used.

3.2. Phase II

We then moved to the next phase, which is crucial to the study: the retrieval phase
using KNN. The retrieval phase is the most important phase of the PMDSS-BCAD system,
and KNN was implemented in the previously classified dataset for purposes of improving
the retrieval results. There are two distinct categories in the datasets: class one, representing
cases (patients) with a malignant tumor, and class zero, representing patients with a benign
tumor. KNN will aid in retrieval by indicating which category the tumor belongs to,
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whether it is malignant or benign. The KNN algorithm will enable the most optimal
selection of similar cases by selecting only cases with the highest similarity rates.

3.2.1. Evaluation of the Performance of KNN

The selection of the optimal value of K for the evaluation performance of KNN
completely depends on the data. The chosen value of K directly influences the classifier
performance. A large value of K makes the classification boundaries less obvious, decreas-
ing the classifier performance. If the value of K is very small, it may cause over-fitting due
to noise within the training set. To single out the most optimal value of K, we performed a
cross-fold validation test on the dataset [33].

The right model complexity is the one that generates the minimum generalization
error. The estimation of the error is helpful for the algorithm to select the model and find
the model with the correct complexity, rather than over-fitting. After assembling the model,
it is then implemented to the test set for the prediction of the class label of never-seen
records. Generally, it is practical to gauge the execution of a model on its test set since it
gives a fair measurement of its speculative error. The precision or error rate registered from
the test set can likewise be utilized to analyze the relative execution of various classifiers
on a similar domain. Nevertheless, for this to be done, the class names of the test records
must be distinguished.

There are four common approaches used to evaluate the performance of a classifier:
the holdout method, random sampling, bootstrap, and cross-validation. In our study,
cross-validation is used. Data are partitioned into two sets. Parts of the subsets are changed.
The training set turns into the test set, and the test set turns into the training set. We call this
a twofold cross-validation. The total error is obtained by adding the errors of the two runs.
Here, every record is utilized precisely once for training, as well as one time for testing.

The K-fold cross-validation technique sums up this approach by sectioning the infor-
mation into K parallel estimated partitions. Throughout each run, one of the segments is
selected for testing, while whatever is left in the other segments is utilized for training.
The method is reused K times, so each parcel is utilized for testing precisely once. The
aggregate error is found by adding up the errors for all K runs.

We conducted cross-validation tests to determine the optimal K value of our model.
The results show that, as described in Figure 6, the optimal value of K is 2, with a cross-
validation accuracy of 99%.

Figure 6. Optimal value of K.

The KNN results are also evaluated in terms of accuracy, precision, recall, and F-
measure, as described in Table 4. The results of this analysis prove the efficiency of the
KNN classifier when choosing the optimal value of K = 2.
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Table 4. Analysis of the best value of K.

Evaluation Percentage

Accuracy 99.40%
Precision 98.65%

Recall 98.89%
F-measure 98.90%

3.2.2. KNN Retrieval Results

KNN is a commonly used CBR retrieval method. It improves the CBR retrieval phase,
aiding experts in finding the most similar cases. Below are the cases that will be input into
KNN for retrieval after naive Bayes classification. As shown in Table 5, the new case is the
case with index 1.

Table 5. New case.

Index Gender Age Consistency Clump Thickness FNA Set Swabs Cells Class

1 0 29 5 6 1 1 5 1 1

Table 6 shows the similar cases from most similar to least similar, according to the
value of similarity in the first row. The results show that the two most similar cases to
the new case have the index numbers 1135 and 433, according to the similarity values
displayed in the top row.

Table 6. Most similar retrieved cases.

Index 1135 433 393 683 87 85 616 149 610 1070

Similarity 0.86942889 0.82831559 0.79152888 0.77630098 0.76520699 0.75567393 0.73879154 0.72252997 0.71857019 0.71366795
Gender 0 0 0 0 0 0 0 0 0 0

Age 19 18 45 23 36 20 18 18 37 43
Consistency 3 3 5 2 5 1 2 2 5 2

Clump
Thickness 1 3 22 1 3.5 3 1 4 1 5

FNA 1 1 1 1 1 1 1 1 1 1
Set 0 0 1 0 1 1 0 0 1 0

Swabs 3 2 3 5 3 9 3 5 2 2
Cells 4 4 1 4 1 9 9 4 9 1
Class 0 0 1 0 1 0 0 0 0 1

The KNN retrieval implemented on a previously classified dataset with naive Bayes
shows favorable results, and its ROC curve is clearly the one closest to the upper-left corner.
By simply implementing a Bayesian classification prior to proceeding with the traditional
method, we can obtain good results. However, combining naive Bayes with KNN yields
even better results.

This method delivers significantly better results due to the fact that naive Bayes allows
a better-structured set capable of easily and efficiently dividing the distinct classes (in our
case, the database), allowing a smoother retrieval phase that is further enhanced by KNN,
a commonly used retrieval method that has repeatedly proved to be exceptional, and this
is particularly true when paired with naive Bayes.

3.3. Phase III

In this paper, 10 doctors specializing in breast cancer were separately searched to
score the ECC attributes (1–10), and the weight of the mean score obtained for each feature
attribute versus the sum of the mean scores of all attributes was used as the weight
of that attribute. To ensure the reasonableness of the scoring, this paper conducted a
consistency test on the data by SPSS software. Among them, the Kendall’s W = 0.840
for the consistency test, with p < 0.001, indicating that the data had good consistency
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and could be used for experimental analysis. The corresponding wi values were finally
obtained: physician professionalism = 0.4, willingness to reveal real name = 0.1, and case
quality score = 0.5. After incorporating ECC, the ranking of some similar cases changed,
as shown in Table 7. In previous experience, when the personalized recommendation
system recommends similar cases to physicians, the primary similarity is ranked by order
of magnitude, and the physician may choose the first case or one of the first few similar
cases for the proposed solution to assist in the decision-making process. The significance
of the integration of ECC in this paper is that the addition of expert empirical knowledge
makes the ranking evaluation index more comprehensive, enabling similar cases with
lower similarity rankings to be highlighted, cases that might be more important for the
doctor’s decision making.

Table 7. Recommended sorting of similar cases.

Sorting of Recommended Similar Cases
When Not Considering ECC

Sorting of Recommended Similar Cases
When Considering ECC

Index Sorting Value Index Sorting Value

1135 0.86942889 683 0.85843290
433 0.82831559 433 0.82911822
393 0.79152888 87 0.79628764
683 0.77630098 1135 0.78769023
87 0.76520699 393 0.73728556

As shown in Table 7, this study initially demonstrates that the incorporation of ECC
has a certain influence on the ranking of similar cases. Compared with the previous
ranking based on similarity alone, this paper takes into account not only the influence
of objective factors (internal attributes of cases), but also the influence of ECC (physician
evaluation and case authority), which makes the ranking index more comprehensive and
the recommendation results more reasonable.

According to the survey results of 10 breast cancer physicians, we found that the
right-hand system in Table 7 (with ECC) was better than the left-hand system (without
ECC) in several aspects of user evaluation of the system. The results are shown in Table 8.

Table 8. The user evaluation results.

Item of Evaluation, Not
Considering ECC

Percentage of Participants
Answering “Yes”

Item of Evaluation,
Considering ECC

Percentage of Participants
Answering “Yes”

Adoption of knowledge 75.56% Adoption of knowledge 91.11%
Ease of use 47.78% Ease of use 75.00%

Participation of physician 26.67% Participation of physician 86.67%
Usefulness to improve

medical quality 72.22% Usefulness to improve
medical quality 96.11%

Satisfaction of use 61.11% Satisfaction of use 80.00%
Intention of continued use 48.89% Intention of continued use 90.56%

3.4. Case Adoption

Case adoption refers to the case solution recommended by the system being adopted
by the system users, which is the result of the system users reworking the system output
according to the recommended system output. It is the process by which the personalized
system interacts with physicians and patients. Therefore, whether a case is adopted or
not reflects the quality of the personalized system recommendation to a certain extent. To
quantitatively reflect the quality of the personalized system recommendations, this paper
has designed several variables to evaluate the quality of the personalized recommendation
system output from the perspective of doctors and patients: adoption of knowledge, ease
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of use, participation of physician, usefulness to improve medical quality, satisfaction of
use, and intention of continued use [34].

In this paper, 10 breast cancer doctors were asked to rate the above attributes (1–10),
and the mean score of each attribute was used as the percentage of participants who
said “yes” relative to the total score of the attribute. To ensure the rationality of the
scoring, the highest score and the lowest score were removed, and then the data were
tested for consistency by SPSS software. The Kendall’s W = 0.743, with p < 0.001, for
the consistency test of the system assessment scoring without considering ECC, and the
Kendall’s W = 0.735, with p < 0.001, for the consistency test of the system assessment
scoring considering ECC, indicating that the data were highly consistent and can be used
for experimental analysis. The corresponding user evaluation results were obtained, as
shown in Table 8.

As shown in Table 8, the indicators of the personalized recommendation system
changed for both physicians and patients after incorporating ECC. The percentage of par-
ticipants responding positively to the indicators increased significantly after the integration
of ECC.

This further proves that the integration of ECC influences the adoption of similar cases.
In this paper, we not only consider the accuracy of the algorithm output, but also take into
account the participants’ evaluation of the system, so that the recommended results are
more in line with doctors’ habits and better meet the needs of both doctors and patients.

4. Discussion

We developed and validated a combined CBR-ECC model in a new case retrieval
framework using a dataset from the Maputo Central Hospital in Mozambique. The com-
bined model was integrated into the PMDSS-BCAD system and the capabilities of the
system were tested in a real hospital scenario. We conducted this study and evaluated the
machine learning algorithm using ROC curves and clinical diagnostic efficiency as criteria.
Our preliminary results show that the combined CBR-ECC model has superior diagnostic
performance and good confidence. This is reflected in the better performance of our naive
Bayes algorithm compared to KNN and J48 decision tree classifiers with an accuracy of
95.87%. Based on the positive and negative case dataset classified by naive Bayes in the
initial stage, we selected the KNN model with the best K value to retrieve similar cases and
the results showed an accuracy of 99.40%. In addition, we found that the similarity between
retrieved cases in the proposed new CBR framework was high after the implementation of
KNN, with the minimum distance decreasing all the way down to 0.13. When we fused the
diagnostic results obtained by naive Bayes and KNN with ECC, we found that the ranking
of similar cases changed, providing preliminary evidence that the addition of ECC had an
impact on the ranking of similar cases. Our findings have higher predictive accuracy and
higher trustworthiness. Furthermore, the prediction and trustworthiness of our system
was improved as new cases were added to the case base. Thus, the proposed case-based
breast cancer diagnosis system, which integrates internal and external characteristics of
cases, ECC, can help patients through early disease screening, help clinicians select highly
accurate and credible treatment strategies, reduce cancer risk in women with extensive
demographic information, and improve the quality of medical interventions, making the
proposed system a potential tool for breast cancer management in clinical settings.

Breast cancer management requires the combined efforts of medical and nursing
professionals as well as technical staff. However, traditional diagnostic methods rely solely
on the clinical experience of physicians and are highly susceptible to misdiagnosis. With the
continuous development of machine learning in medical research, the diagnostic tools for
breast cancer have made a great leap forward. Al et al. [35] reported an accuracy of 93.75%
and 88.75% for SVM and KNN on breast cancer diagnostic classification tasks, respectively.
Hoque et al. [36] proposed an improved KNN-DK algorithm that was able to achieve 94.9%
classification accuracy on a breast cancer database. The design of classifications using KNN,
a KNN-improved algorithm, or SVM directly, although it has performed well in terms of
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performance, may not be logically more appropriate than two more refined classifications,
because as far as the seriousness of medical treatment is concerned, we are not committed
to a significant improvement in accuracy; we care more about a further reduction in error
rate, which represents a reduction. This idea corroborates our first innovation point, which
is to use a combined CBR-ECC model, which first uses naive Bayes to separate positive
and negative cases and then uses KNN to retrieve more similar cases. Our final detection
combination model achieves an accuracy of 99.40%, which is a significant improvement in
performance compared to methods in the latest literature.

In addition, traditional breast cancer diagnosis methods only consider the characteris-
tics of the cases themselves, and neglect the impact of external characteristics of the cases
on the recommendation results from the perspective of physicians’ trustworthiness within
the system. Based on the diagnostic logic of similar reasoning based on previous medical
records, we believe that doctors will consider not only the characteristics of breast cancer
itself, but also the credibility and assertions from higher authority experts, which will also
play a role in the diagnosis process. Therefore, another innovation of this study is that we
propose an innovative ECC feature and verify the enhanced effect of the fusion of ECC
features on physicians’ adoption of the results.

5. Conclusions

In this paper, we developed a combined model of naive Bayes and KNN algorithms
taking ECC into account (the CBR-ECC model) and a PMDSS-BCAD system under the
framework of new case retrieval. The model and system combine the internal and external
characteristics of the case and can provide results with greater similarity rates and a more
physician-appropriate outcome, making the adoption process easier for health practitioners
when diagnosing breast cancer cases.

Our research is of great significance in both theory and practice. In theory, we imple-
mented naive Bayes, the KNN classifiers, and the ECC fusion method under the new case
retrieval framework, which improved the retrieval efficiency of the intelligent diagnosis
system for breast cancer. This framework can contribute to setting up an alternative breast
cancer diagnosis system based on improvement of KNN case retrieval. In practice, this
study will help assess the cognition, attitudes, and practices of the local communities in
understanding breast cancer.

However, the proposed approach also has limitations. For example, since having
ECC features is an innovative aspect, as presented in our article, we have not found any
publicly available dataset with similar properties at this time. There is, therefore, currently
no opportunity to test our method on other databases. For future research we will try to
collaborate with some hospitals to further focus on the organization of cross-hospital case
knowledge and human–machine collaboration.
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