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Abstract: Introduction: Many proposed algorithms for tumor detection rely on 2.5/3D convolutional
neural networks (CNNs) and the input of segmentations for training. The purpose of this study is
therefore to assess the performance of tumor detection on single MRI slices containing vestibular
schwannomas (VS) as a computationally inexpensive alternative that does not require the creation of
segmentations. Methods: A total of 2992 T1-weighted contrast-enhanced axial slices containing VS
from the MRIs of 633 patients were labeled according to tumor location, of which 2538 slices from
539 patients were used for training a CNN (ResNet-34) to classify them according to the side of the
tumor as a surrogate for detection and 454 slices from 94 patients were used for internal validation.
The model was then externally validated on contrast-enhanced and non-contrast-enhanced slices
from a different institution. Categorical accuracy was noted, and the results of the predictions
for the validation set are provided with confusion matrices. Results: The model achieved an
accuracy of 0.928 (95% CI: 0.869–0.987) on contrast-enhanced slices and 0.795 (95% CI: 0.702–0.888) on
non-contrast-enhanced slices from the external validation cohorts. The implementation of Gradient-
weighted Class Activation Mapping (Grad-CAM) revealed that the focus of the model was not limited
to the contrast-enhancing tumor but to a larger area of the cerebellum and the cerebellopontine angle.
Conclusions: Single-slice predictions might constitute a computationally inexpensive alternative
to training 2.5/3D-CNNs for certain detection tasks in medical imaging even without the use of
segmentations. Head-to-head comparisons between 2D and more sophisticated architectures could
help to determine the difference in accuracy, especially for more difficult tasks.

Keywords: artificial intelligence; deep learning; machine learning; vestibular; schwannoma; neuro-oncology

1. Introduction

Even though the application of neural networks (NNs) for brain tumor detection on
magnetic resonance imaging (MRI) could have the potential to improve patient safety
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when it serves as an automated second opinion or to increase the efficiency of physicians by
taking over parts of the radiology workflow, there is still no established, or commercially
available, solution that is able to detect and classify different brain tumor entities.

Many proposed detection as well as classification algorithms rely on 3D convolutional
neural networks (CNNs) or 2.5D CNNs that include all or parts of the spatial information
that is present in an MRI [1–3]. Indeed, a variety of publications report good performance
of different 3D architectures, often for segmentation and subsequent feature extraction,
which is used for classification tasks on the publically available Multimodal Brain Tumor
Segmentation Challenge (BraTS) dataset [4–6].

While this has the advantage of improved performance due to the interslice context
that a model can use for its predictions, it increases the computational power that is
required, in particular for training, due to the higher number of weights that need to be
stored and updated simultaneously in the graphical processing unit (GPU) memory [7].

Furthermore, many data augmentation techniques that are well established in the
2D space are less straightforward when the input data have three dimensions, which
also applies to spatial normalization, especially when working with data from different
institutions [8,9].

In addition, many algorithms require the input of segmentations, which supports the
model regarding the area of the image that it needs to focus on but also increases the effort
that is needed to label the training data since the creation of contours or bounding boxes
tends to be more time-consuming than selecting the slices that contain tumor [2,10,11].

The purpose of this study was therefore to assess the feasibility of brain tumor detection
on single slices using advances in transfer learning and data augmentation techniques but
without the support of interslice context or segmentations. To keep the amount of required
training data low, we chose a surrogate approach with limited scope as a first step, assuming
that if the model were to fail on this task, more complex applications would fail as well.

Since vestibular schwannomas (VS) can vary in shape and size but occur consistently
in the cerebellopontine angle (CPA), they can be classified according to the side from
which they arise (right vs. left) and therefore constitute an ideal tumor entity for the
aforementioned approach before assessing it in on real detection tasks or other entities that
can occur in different locations and are therefore likely to require more training data [12].

Herein we evaluate the performance of a 2D CNN that can be trained on small GPUs
in a short time without the use of segmentations for classifying the laterality of vs. and
use advances in explainable artificial intelligence to illustrate what parts of the image the
model is using as a basis for its decision.

2. Methods

In this retrospective study, 2992 patients containing VS were created from the MRIs
of 633 patients provided by the European Cyberknife Center in Munich (Germany) and
labeled according to the tumor location (right: 1415 images from 301 patients vs. left:
1577 images from 332 patients).

A ResNet-34 pretrained on ImageNet was retrained as part of a transfer learning
approach to classify the slices according to the tumor location [13]. The architecture was
chosen for its demonstrated ability in image classification as well as due to the fact that a
variety of ResNet architectures with different complexities were all pretrained on ImageNet
are available to be imported in several popular deep learning libraries [14].

A total of 2538 slices from 539 patients were used as training data (right: 1231 slices
from 261 patients; left: 1307 slices from 278 patients), and 454 slices from 94 patients
were used for internal validation (right: 184 slices from 40 patients; left: 270 slices from
54 patients). To prevent data leakage, the slices of the training and the internal validation
cohort were created from different patients.

In a subsequent step, we conducted an external validation using 74 T1-weighted contrast-
enhanced axial slices from 74 patients provided by the cantonal hospital St. Gallen (Switzer-
land) to assess the performance of the network and the possible presence of overfitting.
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We implemented Grad-CAM to identify regions that the predictions of the network
were based on [15].

To assess if the network was able to generalize to slices without contrast enhancement,
we conducted a second external validation with 73 T1-weighted axial slices without contrast
enhancement from 73 patients provided by the same institution. Since the two types of
slices (with and without contrast enhancement) were not available for all patients, the total
number of patients analyzed in the external validation cohorts of this study is actually 82
(65 patients were used to create contrast-enhanced as well as non-contrast-enhanced slices,
9 patients were only used to create contrast-enhanced slices, and 8 patients were only used
to create non-contrast-enhanced slices).

Labeling of the slices used as training and internal validation data was done by a
radiation oncology resident as well as a medical student from MRIs of patients who were
diagnosed with vestibular schwannoma by a board-certified radiologist and referred for
stereotactic radiotherapy by an interdisciplinary tumor board. The external validation
data, both contrast-enhanced and non-contrast-enhanced, were sampled consecutively
from the database of the radiology department of the cantonal hospital St. Gallen and
either labeled or reviewed by two board-certified radiologists. Only tumors that had not
received any kind of pretreatment were allowed in the external validation cohort so that
the network could not use treatment-associated changes, such as postoperative scarring,
for its predictions. However, patients with a history of radiotherapy (18 patients = 2.8%)
or surgery to the tumor (112 patients = 17.7%) were allowed in the training as well as the
internal validation cohort as long as the macroscopic tumor was visible on the slices.

All slices were created randomly, sometimes containing only very small amounts of
tumor while others contained the maximum diameter.

Programming was done using python (version 3.6) and the fastai (version 2) as well
as PyTorch (version 1.7) libraries. All code that was used for training and validating the
networks is provided as a supplemental file [16,17].

Data augmentation was performed with the fastai RandomResizedCrop (minimum
scale = 0.9) and aug_transforms (max_lighting = 0.1, max_rotate = 15.0, do_flip = False)
functions, with the latter providing rotation, zoom, and changes to brightness as well
as contrast. All images were resized to 224 × 224 pixels prior to inputting them to the
ResNet as a compromise between providing sufficient detail for the network and ensuring
fast computations.

Training was performed using the fastai fine_tune method for a total of 20 epochs with
a variable learning rate and training for the first 5 epochs while frozen while monitoring
the training and validation loss to ensure that the training was neither ended prematurely
nor done too long to avoid overfitting. Flattened cross-entropy loss was used as the loss
function and Adam as the optimizer [18].

All imaging data were handled in accordance with institutional policies, and approval
by an institutional review board was obtained for the training as well as the internal
validation cohort from the Ludwig Maximilian University of Munich (project 20-437,
22 June 2020) for a project on outcome modeling after radiosurgery of which this study is
a subproject. Ethical approval for the images in the validation cohort was waived by the
Ethics Committee of Eastern Switzerland (EKOS 21/041, 9 March 2021) due to the fact that
using single MRI slices constitutes sufficient anonymization.

Written informed consent for the analysis of anonymized clinical and imaging data
was obtained from all patients.

Confidence intervals of the performance on the test set were computed as
CI = 1.96 × sqrt((accuracy × (1 − accuracy))/n), where n is the size of the respective test set.

The workflow is depicted in Figure 1.
Training and validation losses for the network during the training process are depicted

in Figure 2.
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Figure 2. Confusion matrices for the performance of the network during external validation on axial T1-weighted slices
with (left) and without (right) contrast-enhancement.

3. Results

The ResNet-34 achieved an accuracy of 0.974 (95% CI: 0.960–0.988) on the internal
validation cohort during retraining.

On the contrast-enhanced slices of the external validation cohort, the network achieved
an accuracy of 0.928 (95% CI: 0.869–0.987). A confusion matrix for the results is depicted
in Figure 3.

All the slices that were part of the contrast-enhanced external validation cohort are
depicted in Figure 4, including whether they were classified correctly or incorrectly.

All incorrectly classified slices contained only a very small amount of tumor.
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The application of Grad-CAM to visualize the areas of an image that the predictions
of the network were based on, is shown for ten sample images in Figure 5.
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Figure 5. Correctly (top) and incorrectly (bottom) classified sample images from the contrast-enhanced validation cohort
with and without Grad-CAM. For correctly classified images, the network did not seem to focus only on the tumor but on
a larger part of the cerebellum and the cerebellopontine angle (#1–#5). For the incorrectly classified images, the network
seemed to focus either on areas of the brain that contained blood vessels (patients #6–#8) or focused on larger areas of the
image (patients #9, #10).

For correctly classified images, the network did not seem to focus only on the tumor
but on a larger part of the cerebellum and the cerebellopontine angle (#1–#5).

For the incorrectly classified images, the network seemed to focus either on areas of
the brain that contained blood vessels (patients #6–#8) or focused on larger areas of the
image (patients #9, #10).

Since the focus of the network was not limited to the contrast-enhancing tumor, we
hypothesized that the network might be able to recognize the shapes that indicate the
presence of a tumor and not be entirely reliant on the contrast enhancement. We there-
fore conducted another external validation on T1-weighted axial slices without contrast
enhancement where the network, although being trained only on images with contrast
enhancement, achieved an accuracy of 0.795 (95% CI: 0.702–0.888).
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All the slices that were part of the non-contrast-enhanced external validation cohort
are depicted in Figure 6, including whether they were classified correctly or incorrectly.

Notably, the incorrectly classified images were more heterogeneous in the non-contrast-
enhanced cohort with both smaller and larger tumors being present.
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4. Discussion

In this study, an NN was able to classify contrast-enhanced slices of VS according to
the side of the tumor with a high accuracy that could be sustained when deploying the
network to slices from a different institution with only a slightly reduced accuracy.

Data to compare the achieved accuracy to are limited. Searching PubMed on 7 March 2021
using a broad query (“((vestibular schwannoma[Title]) OR (vestibular schwannomas[Title]))
AND ((deep[Title]) OR (network[Title]) OR (networks[Title]) OR (artificial intelligence[Title]))”)
yielded only nine results, all of which were published between 2014 and 2021. Four of
those results were unrelated to radiology [19–22]. One publication used an NN to predict
vs. recurrence following surgery from clinical parameters in tabular format [23]. The
remaining four publications used NNs to segment VS for either radiotherapy planning or
response assessment [24–27].

The high accuracy of the validation data can likely be attributed to a combination
of both the heterogenous training data that, while being provided from one institution,
contained studies acquired on a variety of different scanners and the variety of data
augmentation techniques that were used. The fact that the network failed only on slices
that showed a very small amount of tumor can be considered encouraging as well. Most
modern MRIs acquire fairly thin slices < 2 mm for T1-weighted sequences so that there will
almost always be slices containing larger parts of the tumor that can be correctly classified
with higher confidence except for possibly the smallest cases of VS.

In addition, the confusion matrices indicate that the network did not seem biased
towards one side for T1-weighted contrast-enhanced slices but was slightly more inclined
to incorrectly predict left-sided tumors as being right-sided than vice versa, though it is
unknown whether this would also be the case in a larger external validation set (Figure 3).

The correctly and incorrectly classified slices in Figure 4 indicate that the model mainly
failed when confronted with slices where very little tumor is present, which can be the case
with very small tumors or on the edge of a tumor.

However, one has to acknowledge that classifying slices according to the tumor location
is only a surrogate for classifying slices according to whether or not they contain tumor,
which is the real clinical use case. It would have been more optimal to train and test the
network on slices containing VS in contrast to healthy slices from the cerebellopontine angle,
but this would have required access to an equally large as well as heterogeneous dataset of
patients without VS or another pathology. More information on whether classifying laterality
is a viable surrogate for detection in case of VS could be obtained by splitting each image used
for training and validation into a “healthy” and a “VS” hemisphere and trying to classify the
newly created images accordingly, which will be a follow-up project to this study.

The main question for future studies will be whether predictions on 2D slices will be
able to achieve accuracies comparable to 3D-CNNs when deployed on whole MRIs for
detection tasks.

While 3D-CNNs are likely to always remain somewhat better due to the additional
information provided by the interslice context, using predictions on 2D slices might im-
prove to a point where a slight reduction in accuracy is outweighed by the reduction in
computational power that is required. While the inference time of 2D- and 3D-CNNs might
not differ all that much, simultaneously updating all the weights of a 3D-CNN during
training requires a more powerful GPU, which may be an obstacle especially when trying
to conduct a series of experiments.

Labeling data by simply selecting the appropriate slices instead of creating segmenta-
tions could shorten the development process of new models as well, though techniques
such as semi-automatic segmentations are also contributing to decreasing the time that is
required for the latter [28].

Labeling without supporting segmentations or bounding boxes is of course more likely
to be successful for simpler tasks such as the detection of VS as compared, for example,
to the detection of brain metastases that can vary significantly with regard to location
and appearance.
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In addition, one might also implement a very basic as well as computationally inex-
pensive way to benefit from interslice context for an architecture using 2D predictions, e.g.,
by using similar predictions on adjacent slices to obtain the prediction for the whole MRI.

However, there are studies indicating that for some tasks, 3D CNNs, in particular
ensembles of different 3D CNNs, may sustain superior performance compared to 2D
CNNs [29].

Another interesting question is whether the performance of the network would have
been better by using only slices of previously untreated VS for training. While this would
have reduced the number of training data available to the model, the images themselves
would have been more similar to the images that the model was then tested on.

The fact that the performance of the model could partly be sustained on non-contrast-
enhanced slices from a different institution is another interesting finding of this study and
could serve as a foundation for other studies to explore to what extent networks trained
on slices from one acquisition sequence are able to generalize to slices from another one
as well as how well the sequences perform when trying to classify the laterality of VS.
However, it cannot be excluded that a weak contrast enhancement on some slices from the
training data might have helped the model’s performance on the non-contrast-enhanced
validation cohort.

The use of Grad-CAM in this study provided important information and led us to
evaluate the performance of the model on non-contrast-enhanced slices. Explainable AI
has seen increased use in machine learning in general as well as machine learning in
medicine in particular and has been shown to benefit the development of models in various
ways [30]. Furthermore, understanding the decisions of a model is important to enable the
adoption of a model by clinicians as they are less likely to use something that is deemed a
“black box” [31].

Limitations of this study include the aforementioned use of classifying location as a
surrogate for detection and the fact that no data on the performance 3D-CNNs for the same
task are available. In addition, no quantitative assessment of the Grad-CAM images has
been performed. Strengths include the independent validation cohorts with a significant
number of patients as well as the heterogeneous training data.

5. Conclusions

This study shows that classifying the laterality of vestibular schwannomas on single
MRI slices without the use of segmentations is feasible and achieved an accuracy of
0.928 with the data and training procedure that was described. Single slice predictions
might constitute a computationally inexpensive alternative to training 2.5/3D-CNNs for
certain detection tasks in medical imaging even without the use of segmentations, possibly
enabling more efficient data labeling and model training. Head-to-head comparisons
between 2D and more sophisticated architectures could help to determine the difference in
accuracy, especially for more difficult tasks. In addition, the validity of classifying laterality
as a surrogate for detection needs to be investigated.
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