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Abstract: Healthcare researchers have been working on mortality prediction for COVID-19 patients
with differing levels of severity. A rapid and reliable clinical evaluation of disease intensity will
assist in the allocation and prioritization of mortality mitigation resources. The novelty of the work
proposed in this paper is an early prediction model of high mortality risk for both COVID-19 and
non-COVID-19 patients, which provides state-of-the-art performance, in an external validation cohort
from a different population. Retrospective research was performed on two separate hospital datasets
from two different countries for model development and validation. In the first dataset, COVID-19
and non-COVID-19 patients were admitted to the emergency department in Boston (24 March 2020
to 30 April 2020), and in the second dataset, 375 COVID-19 patients were admitted to Tongji Hospital
in China (10 January 2020 to 18 February 2020). The key parameters to predict the risk of mortality
for COVID-19 and non-COVID-19 patients were identified and a nomogram-based scoring tech-
nique was developed using the top-ranked five parameters. Age, Lymphocyte count, D-dimer, CRP,
and Creatinine (ALDCC), information acquired at hospital admission, were identified by the lo-
gistic regression model as the primary predictors of hospital death. For the development cohort,
and internal and external validation cohorts, the area under the curves (AUCs) were 0.987, 0.999,
and 0.992, respectively. All the patients are categorized into three groups using ALDCC score
and death probability: Low (probability < 5%), Moderate (5% < probability < 50%), and High
(probability > 50%) risk groups. The prognostic model, nomogram, and ALDCC score will be able to
assist in the early identification of both COVID-19 and non-COVID-19 patients with high mortality
risk, helping physicians to improve patient management.

Keywords: machine learning; D-dimer; biomarkers; COVID-19; coagulopathy

1. Introduction

The Coronavirus Disease 2019 (COVID-19) pandemic continues to strike the globe with
second and third waves of infections, as the emerging variants of Severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) are more transmissible and deadly [1]. Different
countries are vaccinating their population with several vaccines to reduce the disease
burden and mitigate the pandemic, but, in this race, all countries are not at the same
level [2,3]. COVID-19 vaccine production, distribution, and administration have not
reached the needed vaccine coverage globally [2,3]. Therefore, the spread of emerging
SARS-CoV-2 variants is exceeding the speed of vaccination campaigns resulting in a
continuous global burden of COVID-19 disease. As of today, 7 August 2021, there have
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been a total number of approximately 201 million cases worldwide with 4.27 million
deaths [4].

COVID-19 has a spectrum of clinical presentations ranging from asymptomatic pa-
tients to critically ill patients. According to several studies [5–9], the severity of the disease
depends mostly on age and comorbid conditions. Moreover, genetic factors are also being
studied to identify the relationship of COVID-19 with severity [10]. In one particular study,
a link was found between genes encoding blood groups, specifically type A, with serious
clinical manifestations [11,12]. There are many complications associated with COVID-19
and patients may present with symptoms affecting multiple systems including respira-
tory, cardiovascular, and gastrointestinal (GI), in addition to affecting coagulability [13,14].
COVID-19 is known to affect coagulation profile and cardiac biomarkers. The rates of
cardiac injury among COVID-19 patients are between 19.7% and 27.8% of admitted cases
and the associated mortality rates are between 23% and 51.2% [15]. An analysis of coag-
ulopathy, inflammation, and troponin can help to explain the mechanism of myocardial
injury. Notably, raised troponin levels among critically ill patients point to cardiac injury
and are a sign of poor prognosis. It is a clear indication that the cytokine divulgence
syndrome potentially mediates myocardial injury. Longitudinal follow-up insinuates a
notable divergence between critically ill patients who die and those who do not. Lastly,
cardiac injury during admission relates to severe outcomes. On the third day, C-reactive
protein (CRP), a blood marker, measures the level of inflammation. CRP is a protein made
by the liver and sent into the bloodstream in response to inflammation. Interleukin-6
(IL-6) is also an inflammatory marker, which is an indicator of disease severity [16], and
it was found that the IL-6 peak among critically ill survivors falls between the fourth
and seventh days [15]. By contrast, this increases continuously among those who do not
survive. D-dimer, a marker of coagulopathy, remains high in those who do not survive
in contrast to those who do. COVID-19 is also associated with changes in levels of vari-
ous circulatory inflammatory coagulation biomarkers including fibrinogen and D-dimer.
D-dimer levels have been noticed to be within normal ranges or slightly increased in the
early stages of the disease. As the disease and severity progress, levels of D-dimer are
significantly increased [17]. Fibrinogen, a protein produced by the liver, also increases with
inflammation and a coagulation bio-marker. Creatinine, Lactate Dehydrogenase (LDH)
levels, Lymphocyte count, D-Dimer, Troponin, IL-6 and CRP are shown to be important
biomarkers for the severity prognosis of COVID-19. Creatinine is a chemical compound
leftover from energy-producing processes in the muscles, which a healthy kidney filters
out of the blood. LDH is an enzyme involved in energy production, which is found in
almost all cells in the body, used to monitor tissue damage associated with a wide range of
disorders, including liver disease and interstitial lung disease. The increase of LDH reflects
tissue damage, which suggests a viral infection or lung damage, such as the pneumonia
induced by SARS-CoV-2 [18].

Assessing COVID-19 severity and prognosis has been of great importance in clin-
ical patient management. Machine learning has played a noteworthy role in detecting
COVID-19 using clinical data and chest X-ray and computer tomography images in pa-
tients [19–25]. Banerjee et al. in [26] used full blood counts to recognize COVID-positive
cases, instead of the traditional identification of symptoms, and have found that positive
patients exhibit lower amounts of leukocytes, platelets, and lymphocytes. Brinati et al. [27]
used routine blood biomarkers to test a sample of 279 COVID patients using machine
learning models, which results in accuracy ranging between 82% and 86%, and sensitivity
ranging between 92% and 95%. Yang et al. [28] evaluated the use of machine learning in
routine laboratory blood tests to predict COVID-19, which offers an opportunity for early
detection of the illness in areas where RT-PCR tests are not available. Machine learning
was also used to predict mortality and critical events in patients with COVID-19. Rahman
et al. [29] used easily available complete blood count (CBC) parameters to predict the
severity of COVID-19 patients and the developed model was validated on another external
dataset reporting very high classification accuracy. Chowdhury et al. [24] investigated
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demographic and clinical characteristics and patient outcomes using machine learning
tools to identify key biomarkers in order to predict the mortality of the individual patient.
A nomogram was developed for predicting the mortality risk among COVID-19 patients.
Lactate dehydrogenase, neutrophils (%), lymphocyte (%), highly sensitive C-reactive pro-
tein, and age (LNLCA), information acquired at hospital admission, were identified as key
predictors of death by the multi-tree XGBoost model. The area under the curve (AUC) of
the nomogram for the derivation and validation cohort was 0.961 and 0.991, respectively.
An integrated score was calculated with the corresponding death probability. COVID-19
patients were divided into three subgroups: low-, moderate- and high-risk groups. Vaid
et al. in [30] claim that with the XGBoost classifier, such trends as acute kidney injury, ele-
vated LDH, tachypnea, hyperglycemia, higher age, anion gap, and C-reactive protein were
the strongest drivers associated with mortality and critical events. Aladag and Atabey [31]
have attempted to predict mortality risk for critical COVID-19 patients using coagulopathy
markers. Terwangne et al. in [32] showed the predictive accuracy of severity classification
of COVID-19 using a model based on Bayesian network analysis with the help of five
important parameters: acute kidney injury, age, Lactate Dehydrogenase Levels (LDH),
lymphocytes and activated prothrombin time (aPTT).

Huang et al. [5] used nine independent risk factors at admission to the hospital to
quantify the risk score and stratify the patients into various risk groups in a retrospective,
multicenter analysis of 336 confirmed COVID-19 patients and 139 control patients. This
research did not use any external validation. The independent relationship between the
baseline level of four indicators (Neutrophil to Lymphocyte Ratio (NLR), LDH, D-dimer,
and CT score) on admission and the severity of COVID-19 was assessed using logistic
regression. The presence of high levels of NLR and LDH in serum could help in the
early detection of COVID-19 patients who are at high risk. It was shown that the usage
of LDH and NLR together increased detection sensitivity [6]. This model, however, is
based on a CT image-based ranking, which is not available for all patients. In a limited
number of hospitalized patients (84) with COVID-19 pneumonia, Liu et al. [7] suggested
combining the NLR and CRP to predict 7-day disease severity. A retrospective cohort
of 80 COVID-19 patients treated at Beijing You’an Hospital was analyzed to identify
risk factors for serious and even fatal pneumonia and establish a scoring system for
prediction, which was later validated in a group of 22 COVID-19 patients [8]. Age, diabetes,
coronary heart disease (CHD), percentage of lymphocytes (LYM percent), procalcitonin
(PCT), serum urea, CRP, and D-dimer were found to be correlated with mortality by LASSO
binary logistic regression in a total of 2529 COVID-19 patients. The researchers then used
multivariable analysis to determine that old age, CHD, LYM percent, PCT, and D-dimer
independently posed risks for mortality. A COVID-19 scoring system (CSS) was developed
based on the above variables to classify patients into low-risk and high-risk categories with
discrimination of AUC = 0.919 and calibration of p = 0.64 [9].

Although there have been recent works utilizing machine learning approaches for
early mortality prediction of patients using biomarkers [5,7–9,33–38], to the best of the
authors’ knowledge, there has been no work to develop a generalized and reliable model
for both COVID-19 and non-COVID-19 patients, which is the motivation behind this study,
and important to develop during the pandemic situation when medical personnel are
dealing with both types of patient. It is critical for both resource planning and treatment
planning to identify and prioritize the patients at high risk. In addition, it should be
possible for high-risk patients to be constantly tracked during their hospital stay using a
reliable scoring method. The patients at risk, who typically end with ill outcomes, require
treatment in an intensive care unit (ICU), which can be identified by the proposed tool,
helping in saving the lives of a significant number of people during this pandemic. Thus,
the novelty of the work in this paper can be stated as the development of a generalized and
reliable early mortality risk predicting technique for identifying the patients with high risk
among both COVID-19 and non-COVID patients. It also adds to the body of knowledge
for developing a framework of prognostic models using machine-learning approaches.
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This paper not only develops a nomogram-based scoring technique but also validates the
performance on a completely unseen dataset from different countries and populations.

The rest of the paper is organized as follows: Section 2 discusses the methodol-
ogy of the study by describing the datasets used in this paper, the details of data pre-
processing stages for machine learning classifiers, and the nomogram-based scoring tech-
nique. Section 3 discusses the result of the classification models and nomogram-based
scoring techniques. Section 4 discusses the result and validates the performance of the devel-
oped nomogram-based scoring technique and, finally, the article is concluded in Section 5.

2. Methodology

The study consists of two important phases: the model development and model
validation phase using two datasets. Dataset-1 [39] (Day-0 patient’s data) is used for the
prediction model development and Dataset-2 [40] is used for external validation of the
developed model. The code for machine learning pipeline used in this study can be found
in [41]. As further illustrated in the methodology diagram (Figure 1), Day-3 and Day-7
patients’ data from dataset 1 is also used for external validation. Pre-processing, and
feature selection and reduction were important parts of the feature-engineering task. In the
model development phase, the authors have divided the training dataset (Day-0 patients’
data from dataset 1) with the selected features into training, validation and testing data.
The validation dataset is used for the tuning of hyper parameters in the machine learning
process, and the testing dataset is used for model evaluation. The best-trained model is used
to develop the scoring technique to classify the patients into three mortality risk categories:
Low, Medium and High. Finally, the developed model is validated using external datasets
and the results are reported. The remaining part of the section will provide details of the
datasets, pre-processing techniques, performance metrics for machine learning model and
the nomogram based scoring technique.
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2.1. Study Population

In this study, two clinical biomarker datasets from two different countries were used.
The first dataset (Dataset-1) was used to develop and validate an early death prediction
model and the second dataset (Dataset-2) was used as an external validation model. The
first dataset was created from the Emergency Department (ED) of a metropolitan and aca-
demic hospital in Boston during the first wave of the COVID-19 pandemic from 24 March
2020 to 30 April 2020. The study was carried out with institutional ethical approval [39].
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Patients 18 years or older with clinical concern at the time of hospital admission with
acute respiratory illness were included in the study, with at least one of the following
conditions: (1) tachypnea (about 22 breaths per minute), (2) oxygen saturation ≤ 92%
on room air, (3) supplemental oxygen requirement or (4) positive pressure ventilation
requirement. The patients were monitored up to 28 days after registration for the clinical
outcome or discharged if the patient recovered. The dataset consists of the biomarkers
for three separate days (0, 3, and 7 days). There are six groups of patients available in the
enrolled 384 patients. Among them, the first group (Class 1) were the patients with death
outcomes (49 (12.76%) patients) and the other groups (Class 2–6) were the patients in the
survived class (335 (87.24%) patients). Among the 384 patients, 78 (20%) patients tested as
SARS-CoV-2 negative and 306 (80%) patients tested as SARS-CoV-2 positive by RT-PCR.
Table 1 shows the description of the first dataset (Dataset-1).

Table 1. Description of different variables in the Dataset-1.

Variable/Features Description

COVID COVID status (tested positive prior to enrollment or during hospitalization):
0 = negative, 1 = positive

Age Age: 1 = 20–34, 2 = 36–49, 3 = 50–64, 4 = 65–79, 5 = 80+

BMI Body mass index: 0 = <18.5 (underweight), 1 = 18.5–24.9 (normal), 2 = 25.0–29.9 (overweight),
3 = 30.0–39.9 (obese), 4 = ≥40 (severely obese), 5 = Unknown

Heart Pre-existing heart disease—HEART-(coronary artery disease, congestive heart failure, valvular
disease): 0 = No, 1 = Yes

Lung Pre-existing lung disease—LUNG-(asthma, COPD, requiring home O, any chronic lung
condition): 0 = No, 1 = Yes

Kidney Pre-existing kidney disease—KIDNEY-(chronic kidney disease, baseline creatinine > 1.5, ESRD),
0 = No, 1 = Yes

Diabetes Pre-existing diabetes—DIABETES- (pre-diabetes, insulin and non-insulin dependent diabetes):
0 = No, 1 = Yes

HTN Pre-existing hypertension—HTN: 0 = No, 1 = Yes

Immunocompromised Pre-existing immunocompromised condition—IMMUNO (active cancer, chemotherapy,
transplant, immunosuppressant agents, aspenic): 0 = No, 1 = Yes

Resp_Symp Respiratory symptoms—Symp_Resp (sore throat, congestion, productive or dry cough,
shortness of breath or hypoxia, or chest pain): 0 = No, 1 = Yes

Fever_Sympt Febrile symptom

GI_Symp Any GI-related symptoms at presentation (abdominal pain, nausea, vomiting, diarrhea)

abs_neut Absolute neutrophil count: 1 = 0–0.99, 2 = 1.0–3.99, 3 = 4.0–7.99, 4 = 8.0–11.99, 5 = 12+

abs_lymph Absolute lymphocyte count Day-0: 1 = 0–0.49, 2 = 0.50–0.99, 3 = 1.00–1.49, 4 = 1.50–1.99, 5 = 2+

abs_mono Absolute monocyte Day-0: 1 = 0–0.24, 2 = 0.25–0.49, 3 = 0.50–0.74, 4 = 0.75–0.99, 5 = 1.0+

Creatinine Creatinine: 1 = 0–0.79, 2 = 0.80–1.19, 3 = 1.20–1.79, 4 = 1.80–2.99, 5 = 3+

CRP C-reactive protein: 1 = 0–19.9, 2 = 20–59.0, 3 = 60–99.9, 4 = 100–179, 5 = 180+

D-dimer D-dimer: 1 = 0–499, 2 = 500–999, 3 = 1000–1999, 4 = 2000–3999, 5 = 4000+

LDH Lactate dehydrogenase: 1 = 0–200, 2 = 200–299, 3 = 300–399, 4 = 400–499, 5 = 500+

Outcome

Outcome at 28 days: 1 = Death within 28 days; 2 = Intubated, ventilated, survived to 28 days;
3 = Non-invasive ventilation or high-flow nasal cannula; 4 = Hospitalized, supplementary O2

required; 5 = Hospitalized, no supplementary O2 required; 6 = Not hospitalized.Note: this
study used ‘1′ for dead patients and ‘0′ for survived patients, which are created from, class 2–6.

The second dataset (Dataset-2) was collected retrospectively from 375 patients in
Wuhan, China between 10 January and 18 February 2020 to find valid and relevant clinical
markers of mortality risk. Standard case report forms were used to collect medical records,
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which included information on epidemiological, demographic, clinical, laboratory, and
mortality results. Yan et al. [18] have published the dataset along with their article, and
the original study was approved by the Tongji Hospital Ethics Committee. 187 (49.9%)
patients had fever symptoms among 375 patients, while cough, weariness, dyspnea, chest
discomfort, and muscular pain were reported for 52 (13.9%), 14 (3.7%), 8 (2.1%), 7 (1.9%),
and 2 (0.5%) patients, respectively. Among 375 COVID-19 positive patients, 174 and
201 patients were classified as (‘1′) for those who died and (‘0′) for those who survived
respectively. Patients’ outcomes with the condition of COVID-19 positive and negative
are summarized in Figure 2. There are 76 parameters present in the dataset; the common
parameters of Dataset-1, 2 were used for this study, and the parameters from Dataset-2
were normalized in the same way as they appear in Dataset-1, as shown in Table 1, so that
Dataset-2 can be used as an external validation set.
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2.2. Statistical Analysis

Python 3.7 and Stata/MP 13.0 were used to conduct the statistical analysis. Continuous
variables, age, and other biomarkers were reported with the number of missing data, and
frequency for each biomarker in death and survival groups. Chi-square univariate test
was conducted to identify the statistically significant different features among the dead
and survived group and the difference is considered significant if the p-value is <0.05.
There were 20 features present in the original dataset; the top five features using the
feature selection method were identified as promising (reported in the later section) and
are summarized in Table 2A,B for Dataset-1, and Dataset-2, respectively. The ranked five
features were Age, Lymphocyte count, D-dimer, Creatinine, and CRP.

Table 2. Statistical Analysis of the Characteristic of the subjects’ data for (A) Dataset-1 and (B) Dataset-2.

(A)

Features Survived (%) Death (%) Total Method Statistic p-Value

Age (Year) 335 (missing-0) 49 (missing-0) 384 (missing-0)

Chi-square test X2 = 13.45 <0.0001

1 (<34) 36 (10.75%) 0 (0%) 36 (9.38%)
2 (34–49) 72 (21.49%) 1 (2.04%) 73 (19%)
3 (50–64) 105 (31.34%) 6 (12.24%) 111 (28.9%)
4 (65–79) 82 (24.48%) 17 (34.69%) 99 (25.78%)

5 (above 80) 40 (11.94%) 25 (51.02%) 65 (16.94%)

Lymphocyte count
(lymphocyte/mcL) 332 (missing-3) 47 (missing-2) 379 (missing-5)

Chi-square test X2 = 12.34 <0.0001
1 (0–0.49) 38 (11.45%) 16 (34.04%) 54 (14.24%)

2 (0.50–0.99) 111 (33.43%) 22 (46.81%) 133 (35.09%)
3 (1.00–1.49) 103 (31.02%) 5 (10.64%) 108 (28.5%)
4 (1.50–1.99) 52 (15.66%) 3 (6.38%) 55 (14.51%)
5 (above 2) 28 (8.43%) 1 (2.13%) 29 (7.66%)
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Table 2. Cont.

(A)

Features Survived (%) Death (%) Total Method Statistic p-Value

D-dimer (ng/mL) 312 (missing-23) 46 (missing-3) 358 (missing-26)

Chi-square test X2 = 6.7 <0.0001

1 (0–499) 50 (16.03%) 1 (2.17%) 51 (14.24%)
2 (500–999) 107 (34.29%) 12 (26.09%) 119 (33.24%)

3 (1000–1999) 93 (29.81%) 14 (30.43%) 107 (29.88%)
4 (2000–3999) 34 (10.90%) 9 (19.57%) 43 (12.08%)
5 (above 4000) 28 (8.97%) 10 (21.74%) 38 (10.56%)

Creatinine (mg/dL) 334 (missing-1) 47 (missing-2) 381 (missing-3)

Chi-square test X2 = 11.65 <0.0001

1 (0–0.79) 113 (33.83%) 11 (23.40%) 124 (32.54%)
2 (0.80–1.19) 155 (46.41%) 13 (27.66%) 168 (44.09%)
3 (1.20–1.79) 36 (10.78%) 8 (17.02%) 44 (11.54%)
4 (1.80–2.99) 16 (4.79%) 7 (14.89%) 23 (6.03%)
5 (above 3) 14 (4.19%) 8 (17.02%) 22 (5.8%)

CRP (mg/L) 321 (missing-14) 45 (missing-4) 366 (missing-18)

Chi-square test X2 = 7.86 <0.0001

1 (0–19.9) 68 (21.18%) 4 (8.89%) 72 (19.67%)
2 (20–59) 60 (18.69%) 5 (11.11%) 65 (17.76%)

3 (60–99.9) 64 (19.94%) 8 (17.78%) 72 (19.67%)
4 (100–179) 69 (21.50%) 17 (37.78%) 86 (23.5%)

5 (above 180) 60 (18.69%) 11 (24.44%) 71 (19.4%)

(B)

Features
Survived Death

Total Method Statistic p-Value
Frequency (%) Frequency (%)

Age (Year) 201 (missing-0) 174 (missing-0) 375 (missing-0)

Chi-square test X2 = 1.89 <0.0001

1 (<34) 36 (17.91%) 2 (1.15%) 38 (10.13%)
2 (34–49) 59 (29.35%) 7 (4.02%) 66 (17.60%)
3 (50–64) 63 (31.34%) 47 (27.01%) 110 (29.33%)
4 (65–79) 39 (19.40%) 86 (49.43%) 125 (33.33%)

5 (above 80) 4 (1.99%) 32 (18.39%) 36 (9.60%)

Lymphocyte count
(lymphocytes/mcL) 194 (missing-7) 162 (missing-12) 356 (missing-19)

Chi-square test X2 = 8.23 <0.0001
1 (0–0.49) 8 (4.12%) 66 (40.74%) 74 (20.79%)

2 (0.50–0.99) 81 (41.75%) 78 (48.15%) 159 (44.66%)
3 (1.00–1.49) 61 (31.44%) 15 (9.26%) 76 (21.35%)
4 (1.50–1.99) 30 (15.46%) 2 (1.23%) 32 (8.99%)
5 (above 2) 14 (14%) 1 (0.62%) 15 (4.21%)

D-dimer (ng/mL) 182 (missing-19) 160 (missing-14) 342 (missing-33)

Chi-square test X2 = 7.22 <0.0001

1 (0–499) 79 (43.41%) 7 (4.38%) 86 (25.15%)
2 (500–999) 49 (26.92%) 16 (10%) 65 (19.01%)

3 (1000–1999) 36 (19.78%) 19 (11.88%) 55 (16.08%)
4 (2000–3999) 10 (5.49%) 27 (16.88%) 37 (10.82%)
5 (above 4000) 8 (4.40%) 91 (56.88%) 99 (28.95%)

Creatinine (mg/dL) 193 (missing-8) 163 (missing-11) 356 (missing-19)

Chi-square test X2 = 11.89 <0.0001

1 (0–0.79) 134 (69.43%) 61 (37.42%) 195 (54.78%)
2 (0.80–1.19) 44 (22.80%) 67 (41.10%) 111 (31.18%)
3 (1.20–1.79) 11 (5.70%) 19 (11.66%) 30 (8.43%)
4 (1.80–2.99) 0 (0%) 10 (6.13%) 10 (2.81%)
5 (above 3) 4 (2.07%) 6 (3.68%) 10 (2.81%)

CRP (mg/L) 194 (missing-7) 159 (missing-15) 353 (missing-22)

Chi-square test X2 = 7.01 <0.0001

1 (0–19.9) 100 (51.55%) 5 (3.14%) 105 (29.75%)
2 (20–59) 58 (29.90%) 32 (20.13%) 90 (25.50%)

3 (60–99.9) 17 (8.76%) 30 (18.87%) 47 (13.31%)
4 (100–179) 17 (8.76%) 52 (32.70%) 69 (19.55%)

5 (above 180) 2 (1.03%) 40 (25.16%) 42 (11.9%)
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2.3. Data Preprocessing

While patient’s blood sample data were available for multiple days, the study used
first-day data (from Dataset-1) for model training and validation to identify the primary pre-
dictors of the severity of the disease. The model also helps to differentiate between patients
who need urgent medical support. Clinical data always suffer from missing data problems
that contribute to either biased models or degradation in model performance. This problem
can be tackled by deleting the corresponding rows of data for further investigation, but it is
stated in [38] that this easy method of removing missing data rows can often lead to the loss
of important data that would have been useful in the study, and can also lead to skewed
estimates. To fix the missing data, many standard data imputation techniques are available.
The most common technique for clinical data imputation is multiple imputations using the
chained equations (MICE) data imputation technique [42]. Based on the other variables
present in the dataset, the missing data is estimated using multiple regression models. The
technique often takes into account the data form of the missing variables before imputing
them. Using logistic regression, binary variables are predicted, while continuous variables
are predicted using statistical mean matching [38]. Supplementary Figure S1 shows the
number of missing values in different features in Dataset-1. Most of the features appear to
be completely populated, while Lymphocyte count, d-dimer, creatinine, LDH, monocyte,
CRP, and neutrophils seem spottier. The spark-line at right summarizes the general shape
of the data completeness in the dataset. The imbalanced data can result in a biased model
and, therefore, the dataset needs to be balanced. The synthetic minority oversampling
technique (SMOTE) is a powerful approach to tackle the imbalance problem [43]. In this
study, alive patients are about seven times more frequent than dead patients, so SMOTE
was used for balancing the data.

Twenty different features present in Dataset-1 were checked to identify the correla-
tion among different features. Feature reduction, with the help of the removal of highly
correlated features, has always helped in improving the classifier performance [44]. Sup-
plementary Figure S2 shows the heat map of correlation and it is found that most of them
are not correlated with each other. The maximum correlation found between creatinine
and kidney parameters is 0.56. Therefore, no feature can be removed based on correlation;
rather feature ranking and identifying the best feature combination for stratifying the dead
and survived group is required.

2.4. Development and Validation of Classification Model

The authors have investigated different machine learning classifiers: Random For-
est [45], Support Vector Machine (SVM) [46], K-nearest neighbor (KNN) [47], XGBoost [48],
Extra-tree [49] and Logistic regression [50]. Logistic regression was the best performing
machine learning classifier and has been used in this study (Table 3). Logistic Regression
is also a commonly used model for clinical investigation and is a supervised machine
learning method for classification tasks [50]. When we want to estimate the likelihood of
a binary classification problem (i.e., survival or death of a patient), this technique is very
popular [51]. The logistic function is a sigmoid function and shrinks continuous inputs into
a probability value. The logistic regression classifier is used to classify the data into two
classes: Death and Survived using the ranked features, and the best feature combination is
identified for both COVID and NON-COVID data and COVID data alone.



Diagnostics 2021, 11, 1582 9 of 21

Table 3. Performance Comparison between different Machine Learning Classifiers.

Machine Learning Classifier
Weighted Average (95% Confidence Interval)

Overall Accuracy
Precision Sensitivity F1-Score Specificity

KNN 0.88 ± 0.10 0.87 ± 0.16 0.88 ± 0.13 0.77 ± 0.08 0.88 ± 0.07
Random Forest 0.89 ± 0.11 0.88 ± 0.12 0.88 ± 0.12 0.77 ± 0.11 0.89 ± 0.05

XGBoost 0.87 ± 0.64 0.87 ± 0.42 0.86 ± 0.7 0.87 ± 0.2 0.87 ± 0.11
SVM 0.86 ± 0.03 0.85 ± 0.13 86 ± 0.03 0.86 ± 0.5 0.86 ± 0.07

Extra-tree 0.90 ± 0.024 0.89 ± 0.015 0.90 ± 0.01 0.90 ± 0.025 0.89 ± 0.012
Logistic Regression 0.92 ± 0.03 0.91 ± 0.03 0.92 ± 0.03 0.78 ± 0.04 0.91 ± 0.03

Dataset-1 was divided into training and validation sets (80% of the data) and testing
sets (20%). Different machine learning models were investigated using five-fold cross-
validation. The performance of different models was evaluated on the test dataset using
several performance metrics, including sensitivity, specificity, precision, accuracy, and
F1-score as shown in Equations (1)–(5). The receiver operating characteristic curve, or
ROC curve, is used to measure the area under the curve (AUC) separately for single
predictors as well as for a combination of them. To determine the performance of various
top-ranked parameters in stratifying dead and survived patients, the AUC values for
different individual features and their combinations’ contributions were evaluated. The
performance of unseen (test) folds was combined to create the overall confusion matrix for
the five-fold.

Accuracy =
(TP + TN)

(TP + FN) + (FP + TN)
. (1)

Sensitivity =
(TP)

(TP + FN)
. (2)

Specificity =
(TN)

(FP + TN)
. (3)

Precision =
(TP)

(TP + FP)
. (4)

F1 Score =
(2× TP)

(2× TP + FN + FP)
. (5)

The number of patients with death outcome classified as death, the number of sur-
vived patients identified as survivors, the number of survived patients incorrectly iden-
tified as death, and the number of death patients incorrectly identified as survivors, re-
spectively, are denoted by the true positive (TP), true negative (TN), false positive (FP),
and false-negative (FN).

2.5. Development and Validation of Logistic Regression-Based Nomogram

The study proposed a diagnosis nomogram based on multivariate logistic regression
analysis and Stata/MP software version 13.0, which was developed using Alexander Zlot-
nik’s Nomolog [52]. Nomograms are graphic representations of complicated mathematical
formulas. Medical nomograms graphically represent a statistical prognostic model that
predicts a likelihood of a clinical event, such as cancer recurrence or death, for a specific
individual, using biologic and clinical data such as tumor grade and patient age. Each vari-
able is listed separately in a nomogram, with a corresponding number of points allocated
to each variable’s magnitude. The total point score for all factors is then matched to an
outcome scale [53]. A binary regression is used in logistic (logit) regression to estimate the
parameter. The dependent variable, generally labeled ‘0′ and ‘1′, is the response variable.
Those that survived are marked with a ‘0′, while those who died are marked with a ‘1′.
Equation (6) shows the odds, which shows the ratio of probability (Pr) of occurring death
and not occurring death (1 − Pr). While the probability can vary from 0 to 1, the odds can
vary from 0 to ∞. The logarithm of odds is a linear combination of one or more independent
variables (predictors) in the logistic regression. The independent variables can be a binary
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variable (e.g., gender) and a continuous variable (e.g., age). The log of odds can be termed
as linear prediction (LP), as seen in Equation (7), and can be related to the probability of a
particular outcome (e.g., death). Equations (6)–(9) are used to create a relationship between
death probability and the key predictors using logistic regression.

odds =
Pr

1− Pr
. (6)

Linear Prediction = ln(odds) = ln
(

Pr
1− Pr

)
= b0 + b1x1 + b2x2 + · · ·+ bnxn. (7)

Pr
1− Pr

= eb0+b1x1+b2x2+···+bnxn = eLinear Prediction. (8)

P =
eLinear Prediction

1 + eLinear Prediction =
1

1 + e−Linear Prediction . (9)

The logistic regression-based nomogram was created using the top-ranked indepen-
dent variables with the best performance. The clinical parameters from Dataset-1′s Day-0
data were utilized for model creation, while day-3, day-7, and data upon hospital admis-
sion from Dataset-2 were used for model validation. Internal calibration curves, with the
first dataset, and external calibration curves, with the second dataset, are used to compare
the performance of the developed model. To determine the threshold values at which
nomograms will be clinically relevant, the study used Decision Curve Analysis (DCA).

2.6. Nomogram-Based Scoring System

Nomograms are widely used for clinical prognosis as they can help in simplifying
statistical predictive models into probability of an event, i.e., mortality in this study. They
are preferred by clinicians due to their user-friendly graphical interfaces [54]. The nomo-
gram represents many independent variables as a numerated horizontal axis scale, with the
patient’s values placed on that scale. From the many parameters numerated and arranged
scales, a vertical line was traced down to a horizontal score axis. On the score axis, all of
the scores from the independent variables were combined to create a total score, which
was then linked to a death probability, which was a horizontal axis scaled from 0 to 1. It
should be emphasized that, according to the nomogram, a greater score indicates a higher
risk of mortality. The model was created using the patients’ Day-0 data. However, it can be
used to longitudinally validate the model to predict death probability using biomarkers
acquired later during the patients’ hospital stay.

3. Results

This section discusses the following results: (i) identification of the best feature combi-
nations using logistic regression classifier, (ii) developed and validation of the proposed
nomogram-based model in predicting death outcomes for the best feature combinations,
and finally (iii) a detailed prognostic evaluation of the nomogram.

3.1. Univariate and Multivariate Analysis Using Logistic Regression

Univariate logistic regression analysis with individual features was used to identify
the independent variables related to death, and then the Top-1, Top-2, and up to Top-10
features were identified based on AUC values for Day-0 data from Dataset-1 as can be seen
from Table 4A. Figure 3A represents the ROC curve for all the features individually and
the corresponding AUC value is mentioned. Figure 3B presents the ROC curve for the
combinations of the top ranked features and it is found that the combination of top ranked
five features had a maximum AUC of 0.94. Overall accuracies and weighted average
performance matrices for different models using Top-1 to 10 features individually and in
combination using five-fold cross-validation for the logistic regression classifier are shown
in Table 4A,B respectively. Each of the cases is reported with the confusion matrices so that
the false positive and negative cases can be reported.
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The top-ranked five independent variables: Age, Lymphocyte count, D-dimer, CRP,
and Creatinine (in short ALDCC) have exhibited the best performance. Therefore, in
the rest of the study, these five variables were used for nomogram creation and scoring
technique development and validation.

Table 4. Comparison of the average performance matrix and confusion matrix from five-fold cross-validation for (A)
Individual top 10 feature, (B) Combined top 1 to 10 features.

(A)

Features AUC Accuracy Precision Recall F1 Score Specificity

Age 0.81 0.85 ± 0.04 0.86 ± 0.03 0.85 ± 0.04 0.85 ± 0.04 0.56 ± 0.05

Lymphocyte count 0.71 0.72 ± 0.10 0.75 ± 0.08 0.72 ± 0.06 0.72 ± 0.07 0.55 ± 0.17

D-Dimer 0.65 0.66 ± 0.08 0.67 ± 0.13 0.66 ± 0.04 0.65 ± 0.07 0.80 ± 0.14

Creatinine 064 0.62 ± 0.02 0.64 ± 0.02 0.62 ± 0.08 0.61 ± 0.06 0.80 ± 0.04

CRP 0.61 0.57 ± 0.05 0.57 ± 0.05 0.57 ± 0.04 0.57 ± 0.04 0.59 ± 0.09

HTN 0.61 0.65 ± 0.04 0.65 ± 0.04 0.65 ± 0.13 0.65 ± 0.07 0.66 ± 0.10

Kidney 0.60 0.54 ± 0.09 0.54 ± 0.08 0.54 ± 0.11 0.54 ± 0.09 0.50 ± 0.10

Heart 0.60 0.61 ± 0.09 0.69 ± 0.06 0.61 ± 0.06 0.56 ± 0.06 0.28 ± 0.14

Abs Neutrophil 0.59 0.61 ± 0.011 0.62 ± 0.09) 0.61 ± 0.014 0.60 ± 0.10 0.48 ± 0.14

GI_Symp 0.58 0.57 ± 0.03 0.57 ± 0.03 0.57 ± 0.05 0.56 ± 0.04 0.71 ± 0.03

(B)

Features Overall
Accuracy

Weighted Performance with 95% CI
Confusion Matrix

Death Alive

Precision Recall F1 Score Specificity TP FP FN TN

Top 1 feature 0.85 ± 0.04 0.86 ± 0.03 0.85 ± 0.04 0.85 ± 0.04 0.56 ± 0.05 25 24 34 301

Top 2 features 0.91 ± 0.03 0.92 ± 0.03 0.91 ± 0.03 0.91 ± 0.03 0.76 ± 0.04 36 13 22 313

Top 3 features 0.91 ± 0.03 0.92 ± 0.03 0.91 ± 0.03 0.91 ± 0.03 0.78 ± 0.04 37 12 22 313

Top 4 features 0.9 ± 0.03 0.91 ± 0.03 0.9 ± 0.03 0.9 ± 0.03 0.74 ± 0.04 35 14 24 311

Top 5 features 0.92 ± 0.03 0.93 ± 0.02 0.92 ± 0.03 0.93 ± 0.03 0.83 ± 0.04 40 9 20 315

Top 6 features 0.92 ± 0.03 0.93 ± 0.03 0.92 ± 0.03 0.92 ± 0.03 0.81 ± 0.04 39 10 21 314

Top 7 features 0.91 ± 0.03 0.92 ± 0.03 0.91 ± 0.03 0.91 ± 0.03 0.78 ± 0.04 37 12 23 312

Top 8 features 0.91 ± 0.03 0.92 ± 0.03 0.91 ± 0.03 0.92 ± 0.03 0.8 ± 0.04 38 11 22 313

Top 9 features 0.92 ± 0.03 0.93 ± 0.03 0.92 ± 0.03 0.92 ± 0.03 0.8 ± 0.04 38 11 20 315

Top 10 features 0.91 ± 0.03 0.92 ± 0.03 0.91 ± 0.03 0.92 ± 0.03 0.78 ± 0.04 37 12 21 314
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3.2. Nomogram-Based Scoring System

The top-ranked five biomarkers were found to be statistically significant using an
ML-based classifier to develop a multivariate logistic regression-based nomogram for
predicting mortality. Table 5 shows the multivariable logistic regression analysis of the
correlation between linear death prediction and biomarkers with the regression coefficient,
z-value, standard error, and statistical significance, as well as the 95% confidence interval.
The ratio of the regression coefficient to its standard error is known as the z-value. In
logistic regression, the z-value typically identifies strong and weak contributors, with a
high z-value indicating a strong relationship between the dependent and independent
variables and a z-value near to zero indicating a weak relationship. Creatinine is not a
particularly powerful predictor from the five variables, while age and Lymphocyte count
are. A null hypothesis for a certain regression coefficient can be used to calculate the
p-value, which is used to identify the significance of a specific X-variable in relation to the
Y-variable. The X-variables with a strong correlation to the Y-variables are those with a
p < 0.05. The p-value also shows that Creatinine is only weakly connected to the Y-variable.
However, the logistic regression classifier in Table 4B shows that the five variable model
outperforms the four variable models. As a consequence, no variable from these five
variables was deleted when developing the nomogram.

Table 5. The logistic regression model.

Outcome Coef. Std. Err. z p > |z| [95% Conf. Interval]

Age 1.90473 0.49970 3.81 0.000 0.92533 2.88412
Lymphocyte count −1.96463 0.47123 −4.17 0.000 −2.88822 −1.04103

D-Dimer −1.50833 0.57196 −2.64 0.008 −2.62936 −0.38732
CRP 0.70930 0.44818 1.58 0.114 −0.169129 1.58772

Creatinine −0.24677 0.40469 −0.61 0.542 −1.03995 0.54641
_cons −0.76069 2.53057 −0.30 0.764 −5.72051 4.19914

According to Figure 4A–C, both for internal and external validation, the calibration
curve matches closely with the diagonal line which is representative of the ideal model.
Supplementary Figure S3 shows that the net gain of single Age and Lymphocyte count
predictor models are positive, once the threshold of 0.85 is reached. This means that they
both contributed the most to the prediction of the results. Interestingly, the complete
model showed the best results, which also reinforced the need to combine the model with
five predictors.

Figure 5 shows a nomogram with eight rows with different colors so that they are
distinguishable, with rows 1–5 representing independent variables. Each variable was
assigned a score by drawing a downward vertical line from the value on the variable axis
to the ‘points’ axis using patient data. The score (row 6) corresponds to the points of the
five variables, and the scores are added to the overall score (row 8). A line could then be
drawn from the ‘Total Score’ axis to the ‘Prob’ axis to calculate the death risk of patients
(row 7). However, the mathematical equations explaining the total score, linear prediction,
and death probability based on which the ALDCC score is produced can be derived
using the corresponding equations found earlier in Equations (5)–(8). The ALDCC score
cut-off values of 16.6 and 19.8 correspond to 5% and 50% of the probability of mortality,
respectively. This can be used to categorize all patients into three groups: low, moderate,
and high-risk. The death probability was less than 5%, between 5% and 50%, and more than
50% for the low-risk group (ALDCC < 16.6), moderate risk group (16.6 ≤ ALDCC ≤ 19.8),
and high-risk group (ALDCC > 19.8), respectively.

Linear prediction = −0.7606855 + 1.904726 × age − 1.964625 × lymphocyte
count − 1.508334 × d-dimer + 0.709297 × CRP + 0.2467726 × creatinine

(10)

Death probability = 1/(1 + exp (−Linear Prediction)) (11)
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3.3. Performance Evaluation of the ALDCC Scoring Technique

This nomogram-based scoring technique can be used to anticipate patient outcomes
early by categorizing them into low, moderate, and high-risk categories. The thresholds for
ALDCC score, which can be used to find the death probability using Equation (11), for the
different categories are illustrated in Figure 6, prioritizing patients in the moderate and
high-risk groups. We have categorized the patients from internal (Dataset-1, Day-3′ and
Day-7 data) and external validation (Dataset-2, data on admission) into three subgroups
(low, moderate, and high-risk) by associating actual outcome with the predicted outcome
using the ALDCC score. For internal validation (Dataset-1 at Day-3), the proportions of
death were 2.38% (8/336) (p < 0.001) for low-risk group, 53.33% (8/15) (p-value = 0.0025)
for moderate-risk group and 100% (33/33) (p < 0.001) for high-risk group. For Dataset-1 at
Day-7, the proportions of death were 2.35% (8/341) (p < 0.001) for low-risk group, 71.43%
(5/7) (p < 0.001) for moderate-risk group and 100% (36/36) (p < 0.001) for high-risk group,
while for external validation from different hospital (Dataset-2), the proportions of death
were 5.5% (10/172) (p < 0.001) for low-risk group, 57.15% (20/35) (p < 0.001) for moderate-
risk group and 91.14% (144/158) (p < 0.001) for high-risk group as shown in Figure 7. The
actual death rates among the three categories were found to differ significantly (p < 0.001).
Figure 8 illustrates a nomogram-based scoring system for a COVID-19 patient with admis-
sion variables. Individual scores for each predictor were calculated and added together
to create a total score, with a death probability of 99%. This can be done as early as three
weeks before the patient’s actual outcome.
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Figure 8. An example of nomogram-based ALDCC score to predict the probability of death of a patient from the test set (3
weeks before the actual outcome).

4. Discussion

The association between the severity of the disease and the clinical evidence was
explored in the current analysis. Based on the data acquired at hospital admission time,
ten predictors were defined by the logistic regression algorithm as death probability pre-
dictors. Ten different classification models were trained, validated, and evaluated using
this technique for the Top 1 to 10 features. The AUC and performance matrices for the
top five features with the highest AUC of 0.94 were observed. A logistic regression-based
nomogram was then developed utilizing these five variables. An overall score known
as ALDCC has been proposed for early categorization of death severity. Moreover, the
results obtained in the paper are better than in some recent similar works, as can be seen
from Table 6.

Table 6. Performance comparison with similar recent works.

Paper Patient Count Patient Condition Methodology in the Paper Reported Performance

Weng et al. [55] 301 patients Confirmed COVID-19

A nomogram was
constructed to predict the

death probability of
COVID-19 patients. Age,

neutrophil-to-lymphocyte
ratio, d-dimer and

C-reactive protein obtained
on admission were

identified as predictors of
mortality for COVID-19

patients by LASSO.

The nomogram
demonstrated good

calibration and
discrimination with the

area under the curve
(AUC) of 0.921 and

0.975 for the derivation
and validation cohort,

respectively.

Jianfeng Xie et al. [56]
299 patients and

external validation
with 145 patient

Confirmed COVID-19
Logistic regression analysis
with the outcome variable

defined as mortality.

Discrimination of the
model was excellent in
both internal (c = 0.89)
and external (c = 0.98)

validation.
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Table 6. Cont.

Paper Patient Count Patient Condition Methodology in the Paper Reported Performance

Yan et al. [18] 485 patients Confirmed COVID-19

Logistic regression-based
machine learning tools

selected three biomarkers
that predict the mortality

of individual patients

90% accuracy for
mortality prediction.

Zhang et al. [57] 82 Patients Confirmed COVID-19

The association between
the different clinical

variables and the time from
initial symptom to death

was evaluated using
Spearman’s rank

correlation coefficient.

Most of the death cases
were male (65.9%).

More than half of dead
patients were older

than 60 years (80.5%)
and the median age

was 72.5 years.

Youha et al. [58] 752 patients Confirmed COVID-19

Association of scores with
documented hard

endpoints (ICU admission
or death) were assessed

using binary logistic
regression.

The area under the
curve was equal to

90.4%

Proposed Study

384 patients for
Internal validation
and 375 patients for
external validation

Confirmed COVID-19
and Non-COVID-19

Different ML classifier and
developed a nomogram
with the best performed

model.

For the internal (Day-3
and Day-7) and

external validation
cohort, the area under

the curves (AUCs)
were 0.987, 0.999, and

0.992, respectively.

Age has been identified as a primary predictor of death in earlier research on the
coronavirus family, including SARS [59], Middle East respiratory disease (MERS) [60] and
COVID-19 [61]. Immuno-senescence and/or various medical problems appear to make
individuals more sensitive to significant COVID-19 disease with older age [55]. Increased
Lymphocytes, according to Liu et al. [62], can aid in the early detection of COVID-19
disease severity. Lymphocytes, a type of immune cell, play a critical role in host defense
and infection clearance. Lymphopenia, defined as a decrease in the number of blood
lymphocytes, is a common biologic finding in COVID-19 patients and may play a role in
disease progression and death [63]. Patients with community-acquired pneumonia have
considerable immune system activation and/or immunological malfunction, leading to
alterations in their levels, according to earlier studies. It has been observed [64,65] that re-
ducing creatinine levels, due to kidney problems occurring due to COVID-19 is an indicator
of COVID-19 severity and mortality. It was observed in this study that Lymphocytes and
creatinine parameters were small for high-risk patients. CRP testing at the time of admis-
sion, according to Lu et al. in [66], can help to predict COVID-19-associated mortality. CRP
is an acute-phase protein generated by hepatocytes in response to infection, inflammation,
or tissue damage-induced cytokines from leukocytes [63,66–70]. This study found similar
findings, with higher CRP rates estimated upon admission for COVID-19/Non-COVID
individuals with high mortality risk. This indicated that these patients had severe lung
inflammation or, more likely, a subsequent bacterial infection [61]. Weng et al. [55] recently
indicated that individual primary predictors associated with death probability were age,
Lymphocyte count, D-dimer, and CRP. A nomogram for death prediction was developed
using these key predictors. In this study, a logistic regression model, using the selected five
key predictors reported at admission, was used to construct a nomogram-based prognostic
model that exhibits excellent calibration and discrimination in predicting the probability
of death of patients with COVID-19 and non-COVID-19. An unseen external cohort was
used for validation and the model also showed an outstanding performance on the exter-
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nal dataset. Additionally, several blood sample data obtained from patients during their
hospital stay were analyzed, and the model outperformed the competition on longitudinal
data. To the best of our knowledge, the AUC values for the development, internal, and
external validation cohorts were 0.987, 0.999, and 0.992, respectively, which is superior to
all previous nomogram-based mortality prediction methods.

Furthermore, this nomogram-derived ALDCC score provided a simple, easy-to-
understand, and interpretable early warning method for stratifying and thus assisting
clinical management of high-risk patients at admission. Using the ALDCC score assessed
and determined at admission, all patients were grouped into three risk groups. The patients
who are in the low-risk category can be isolated and handled in an isolation unit, while the
isolation ward could be treated as a specialized facility with moderate-risk patients. On
the other hand, patients in the high-risk community should be closely monitored and, if
possible, transferred to vital care facilities or ICU for emergency treatment.

This research has scope for improvement in future. Firstly, the article suggests that
clinical data on both COVID-19 and non-COVID-19 could be used to aid in the estimation
of early mortality. The model can be improved much more with the help of a larger dataset.
Secondly, unlike the first dataset where a limited number of parameters are present, if
we have access to large features set (like Dataset-2), the machine learning model can be
used to identify the best features in multi-center and multi-country data to create a more
generalized model that can be used in any country.

Being able to predict the risk of mortality for patients is needed for allocating the right
resources during a crisis. Indeed, very high mortality patients might not be the target for
receiving the highest level of support and might need comfort care in a situation of crisis,
as we have seen during the first period of the pandemic in many countries.

On the contrary, the low risk mortality patients should not be directed to demanding
resources units such as ICU and can be treated outside the hospital, easing the strong
pressure on the healthcare facilities. This tool might be used too in research to evaluate
its ability to predict in a prospective manner the death of COVID-19 patients and refine
this by including other parameters. The limitation of this kind of tool is that it takes into
consideration clinical and biological parameters and does not integrate treatments, and is
obviously exposed to bias.

5. Conclusions

In summary, the developed nomogram can be deployed for rapid and reliable mor-
tality prediction of patients with both COVID-19 and non-COVID-19, based on multiple
risk factors, such as Age, Lymphocyte count, D-dimer, CRP, and Creatinine. The model
can predict the patient’s prognosis with a high accuracy, well in advance of the actual
clinical outcomes. As a result, the use of ALDCC can assist physicians in developing
an effective and optimized patient management strategy without overloading healthcare
resources, as well as minimizing death, through an increased and expected response. The
authors have also created a webpage as App [71] to assist healthcare personnel in predicting
early mortality using the developed model and easily accessible ALDCC scoring results
(Supplementary Figure S4). We hope to improve the model’s performance even more with
the help of a larger dataset comprising data from other centers and countries.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/diagnostics11091582/s1, Figure S1: The number of missing fata for different features in
Dataset-1. Figure S2: Heatmap of correlation among different features. Figure S3: Decision curves
analysis stating the performance of the individual parameters and the developed model. Figure S4:
Mortality risk prediction App.
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