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Abstract: Hepatocellular carcinoma (HCC) is considered as a complex liver disease and ranked as
the eighth-highest mortality rate with a prevalence of 2.4% in Malaysia. Magnetic resonance imaging
(MRI) has been acknowledged for its advantages, a gold technique for diagnosing HCC, and yet
the false-negative diagnosis from the examinations is inevitable. In this study, 30 MR images from
patients diagnosed with HCC is used to evaluate the robustness of semi-automatic segmentation
using the flood fill algorithm for quantitative features extraction. The relevant features were extracted
from the segmented MR images of HCC. Four types of features extraction were used for this study,
which are tumour intensity, shape feature, textural feature and wavelet feature. A total of 662 radiomic
features were extracted from manual and semi-automatic segmentation and compared using intra-
class relation coefficient (ICC). Radiomic features extracted using semi-automatic segmentation
utilized flood filling algorithm from 3D-slicer had significantly higher reproducibility (average
ICC = 0.952 ± 0.009, p < 0.05) compared with features extracted from manual segmentation (average
ICC = 0.897 ± 0.011, p > 0.05). Moreover, features extracted from semi-automatic segmentation were
more robust compared to manual segmentation. This study shows that semi-automatic segmentation
from 3D-Slicer is a better alternative to the manual segmentation, as they can produce more robust
and reproducible radiomic features.

Keywords: HCC; MRI; radiomics; manual segmentation; semi-automatic segmentation

1. Introduction

Hepatocellular carcinoma (HCC) is of the common type of malignant tumour of the
liver and its incidence has increased in recent years. In Malaysia, HCC is one of the top
five cancers with 4.4% new cases in 2018, and it ranks fourth in leading causes of cancer
death [1]. HCC known to have a poor survival rate despite availability varieties of clinical
treatments [2]. Medical imaging techniques such as computed tomography (CT) and
magnetic resonance imaging (MRI) are vital procedures in oncological treatment. Both CT
scans and MRI have higher spatial resolution that has advantage in the early detection of
tissues’ abnormality in patients [2]. Imaging is extensively used in detection, diagnosis, and
staging of cancer. Several studies have been conducted to improve the tumour diagnosis
through proposed methods [3–6]. Although MRI is acknowledged for its advantages, the
false-negative diagnosis from the examinations is inevitable, although several quantitative
techniques have been introduced which are mostly pertaining to MR study. It is crucial
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for optimizing quantitative imaging feature extraction through computational approaches
and developing decision support systems to accurately estimate the cancer stage. Hence,
radiomics study are introduced and used to extract high number of quantitative image
features [7].

Feature extraction is essential to obtain relevant information on input images and
represents data in lower dimensionality space [8]. These features are extracted by using
advanced mathematical algorithm which describes phenotypes of tumour that might
not be able to perceive by naked eye. Previous studies have shown the importance of
quantitative feature extraction in classifying the cancer stage of various types of cancer,
including HCC [9–12]. In 2016, investigation of extraction of radiomics data was performed
to predict the pathological response after chemotherapy [13]. Incorporations of radiomics
and machine learning are essential for information extraction to aid in better prognosis.
From shape, statistics, and texture features, 20 features were selected based on stability
and variance.

Recently, uses of radiomics in cancer related field shows significant progress. Ra-
diomics application is said to be one of the fundamental methods for machine learning
development in the medical imaging field [14,15]. Extraction of radiomic features from
various sources of medical images also overcomes the limitation of visual image inter-
pretation [16]. Several literature reviews show data mining and predictive analysis have
widened the scope of medical imaging [17–20]. This can facilitate prognostic models used in
oncology. However, the poor reliability of radiomic features could affect research outcomes
and become an obstacle for further use in models [21].

It is important to ensure the accuracy of quantitative features extracted from medical
images. The process of tumour segmentation is one of the main obstacles for radiomics.
Conventional manual segmentation is considered quite tedious and time consuming where
quick and reliable segmentation techniques are required. Previous studies show that semi-
automatic segmentation methods are preferred, as they are better alternatives to manual
segmentation [22–24]. Comparative analysis of different types of image segmentation had
been done for mammographic images in 2019. This study concludes flood filling algorithm
has the best segmentation result compared to the watershed algorithm, the mean-shift
algorithm, and the k-means algorithm [25]. Recently, a study was done for non-small cell
lung cancer, radiomic features extracted for semi-automatic segmentation using a grow-cut
algorithm implemented in 3D-Slicer, has high reproducibility and is more robust compared
to manual segmentation [26]. Studies on CT and MR images prove that semi-automatic
segmentation is robust, which indicates its ability to produce reliable and reproducible
radiomic models [27,28]. Hence, in this study, we aim to evaluate the reproducibility and
robustness of various segmentation techniques of MR HCC images based on the extract
radiomic features.

2. Materials and Methods

In this study, we analysed robustness of features extracted from 30 patients (median
age: 63 y/o) diagnosed with HCC by two different methods of segmentations, manual
and semi-automatic. We extracted 662 features using 3D Slicer (Boston, MA, USA) soft-
ware for both segmentations [29]. Features extractions for manual and semi-automatic
segmentations were compared and analyzed. Despite having small samples size (n = 30),
numbers of sets for observations were examined to find the pattern on features extracted.
Briefly, a total of 240 segmentations (120 manual segmentations and 120 semi-automatic
segmentations) were analyzed in this study.

2.1. Magnetic Resonance Imaging (MRI) of HCC Patients

The image data was obtained from open archive for medical images of cancer, The
Cancer Imaging Archive (TCIA) (Arkansas, USA) [30]. Ninety-seven patients verified
with hepatocellular carcinoma, Stages I–IV, were retrieved. After reviewing the data
images, patients who underwent CT scans were excluded, and only non-contrast enhanced
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T1-weighted (T1W) images (TR/TE = 210/1.1 ms) were chosen. A total of 30 patients
diagnosed using MRI were included in this study. For the final study, 17 male (median
age: 64 years; range 23–77 years) and 13 females (median age: 62 years; range 45–77 years).
Stages of HCC are divided into two groups, Stages I–II and Stages III–IV, respectively.

2.2. Semi-Automatic Segmentation in 3D-Slicer

For the semi-automatic segmentation, the flood fill algorithm from 3D Slicer software
was applied on the subject MR images. Prior to the installation, the Segment Editor
Extra Effects extension was installed through the extension’s manager. After loading data
images through the DICOM module, the observers identify the location of HCC. The nodes
were added around the tumour region using a mouse cursor. Subsequently, the flood fill
effects were activated, and ROI were segmented according to similar voxels intensity. To
finalize the output, the segmented tumour was manually edited in the finalization phase
as semi-automatic segmentation. Flood fill is an algorithm used to determine connection
of an area in multi-dimensional array with the help of similarity of intensity voxels to the
selected node determined by users. This algorithm is comparable with bucket tool in paint
programs, which fill connected similar intensity voxels with different colours [25]. The
algorithm was initiated with a start node by selecting the region of interest (ROI). Pixels
connected four-directionally with the start node and pixels connected four-directionally to
the former are considered in this effect. As the intensity voxels were decided, the algorithm
identified the path of target node given and replaced it with different colours. Leakage
prevention to other structures under this effect were manipulated using the neighbourhood
size parameter.

2.3. Feature Extraction

All segmented image data were analysed and performed in the same software, 3D
Slicer under the Radiomics module to extract imaging features. Features were extracted
using the mathematical algorithm predicated on pixel intensities. From semi-automatic
and manual segmentations, we defined 662 radiomic features for MR images that assist in
quantifying tumour characteristics. The features were divided into four groups: (I) tumour
intensity, (II) shape, (III) texture, and (IV) wavelet-features with examples of shape features
shown in Table 1. The total features extracted from volume of interest for tumour intensity,
shape and textural were 18, 14, and 54 features, respectively.

Table 1. Composition of 662 radiomic features extracted using 3D-Slicer.

Features Original (n = 1) Wavelet (n = 8)

Shape (n = 14) 14 × 1 -
Texture (n = 54) 54 × 1 54 × 8

Tumour Intensity (n = 18) 18 × 1 18 × 8

Tumour intensity represents a first order statistic, which distinguishes a histogram
of voxel intensity within the tumour region on MRI. Shape features are calculated and
described with volume properties of the tumour. Shape features extracted using the pyRa-
diomics package are independent from gray-level intensities and can only be calculated
on a non-derived image, which is the original image [31]. Thus, the wavelet filter is not
applied to shape features as it will not be calculated on derived images. Textural features
were determined by patterns or spatial distributions of voxel intensities derived from grey
level dependence matrix (GLDM), grey level co-occurrence matrix (GLCM) and grey level
run-length matrices (GLRLM) [32]. Features derived from co-occurrence and run-length
matrices were computed by averaging all 13 symmetric directions in three dimensions [6].

Wavelet features are obtained by transforming domain representations of tumour
intensity and textural features. These features were applied as either a high (H) or low
pass (L) filter in each of the three dimensions—X-axis, Y-axis, and Z-axis: wavelet-LHL,
wavelet-LHH, wavelet-HLL, wavelet-LLH, wavelet-HLH, wavelet-HHH, wavelet-HHL,
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and wavelet-LLL [14]. Eight decomposed volumes of images were used on the intensity
and textural features in the volume of interest, which resulted in a total of 576 (8 × 72)
wavelet transforms features [7,23]. These filters help to identify the detail or sudden
changes in intensity in the image [33]. Several fundamental formulas, such as entropy,
contrast, uniformity, and correlation, are presented in the equation below:

Entropy = −∑Ng
i=1 p(i) log2(p(i) + ε) (1)

Entropy measures the average amount of information required to encode the image
values, where Ng = number of non-zero bins and p(i) = normalized first order histogram.

Contrast = ∑Ng
i=1 ∑Ng

j=1 (i − j)2 p(i, j) (2)

Contrast determines local intensity variation present in the image. A larger value
correlates with greater disparity in intensity values among neighboring voxels.

Uni f ormity = ∑Ng
i=1 p(i)2 (3)

Uniformity measures the sum of squares of each intensity value. Greater uniformity
implies greater homogeneity. Correlation defines the linear dependency of grey level values
to their respective voxels in GLCM. The value for correlation is between 0 (uncorrelated)
and 1 (perfectly correlated). The equation of correlation is shown below:

Correlation =
∑

Ng
i=1 ∑

Ng
j=1 p(i, j)ij − µxµy

σx(i)σy(j)
(4)

where µx, µy and σx, σy are mean grey level intensity and standard deviation of px and py,
respectively.

2.4. Statistical Analysis

The intra-class correlation coefficient (ICC) is referred to as correlations within a class
of data. It was calculated to quantify the reproducibility of features obtained. Figure 1
shows the flowcharts for reproducibility analysis in this study. ICC is a well-known statisti-
cal tool among researchers, ranging between 0 to 1. There are three type of ICC models
which can be chosen appropriately according to experimental situation. For this study,
variance estimates were obtained to determine the ICC for inter-observer segmentations
by using a two-way mixed effect model of analysis of variance (ANOVA) [25]. Equation
below defines the ICC:

ICC(A, 1) =
MSR − MSE

MSR + (k + 1)MSg +
k
n (MSC − MSE)

(5)

One-way analysis of variance (ANOVA) was used to obtained the ICC values for
intra-observer segmentation [15,16]. Equation below defines ICC (C,1):

ICC(C, 1) =
MSR − MSW

MSR + (k − 1)MSW
(6)

where MSR = mean square for rows, MSW = mean square for residual sources of variance,
MSE = mean square error, MSC = mean square for columns, k and n are number of observers
involved and subjects.
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Figure 1. Schematic diagram of the analysis.

We evaluate intra-observers’ reproducibility by letting one observer segmentized two
months apart of 30 patients and this demonstrates variation of data measured from two
different sets of segmentation. Furthermore, this also helps to assess multiple initializations
of segmentation algorithm from the same observer. For inter-observers’ reproducibility,
the delineation was accomplished by several observers using the same methods of seg-
mentation and the degree of agreement between different observers were analyzed. The
difference of reproducibility for each segmentation were assessed using the Wilcoxon
rank-sum test with p-value set at 0.05. All data were expressed in mean ± SD. All analyses
of data were accomplished using Statistical Package for Social Sciences (SPSS, also known
as IBM SPSS statistics) version 25 (SPSS Chicago, IL, USA).

3. Results

In order to investigate the reliability of radiomic features extracted from 3D Slicer
segmentation on MR images, a total of 662 features under four groups, (I) tumour inten-
sity, (II) shape, (III) texture, and (IV) wavelet-features, were assessed. Of 30 subjects, the
size of tumours for Stages III–IV (average size = 8.9 ± 3.4 cm) are larger than Stages I–II
(average size = 3.7 ± 0.7 cm). We extracted radiomic from volume of interest determined
by two independent observers twice using 3D Slicer software semi-automatic segmenta-
tion and compared them to manual segmentation by four independent observers. The
semi-automatic segmentations were divided into two sets, each having two segmentations.
Figure 2 shows comparisons of intra-class correlation coefficient between semi-automatic
and manual segmentation in terms of categorized features. We observed that features ex-
tracted from semi-automatic segmentation had significantly higher reproducibility (average
ICC = 0.952 ± 0.009, p < 0.05) compared to features extracted from manual segmentation
(average ICC = 0.897 ± 0.011, p > 0.05).
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Figure 2. Cont.
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Figure 2. Comparisons of intra-class correlation coefficient (ICC) values in (a) shape based features, (b) textural features,
and (c) first order statistics features.

There are 576 features of wavelet features, we separate the features into their respective
feature types such as GLDM, GLCM, GLRLM and first order statistics for both semi-
automatic and manual segmentations to ease the analysis process. There are 8 wavelet
transforms in total. Figure 3 shows comparisons for ICC values of GLDM and first order
features from both techniques. We observed that ICC values for intensity and texture
features applied with wavelet transforms were high for semi-automatic segmentation
compared to manual segmentation. Most ICC values for manual segmentations that
undergoes wavelet transforms seen to have lower value which at lower level of the graphs.
The ICC values of GLDM, GLCM, GLRLM, and intensity statistics for semi-automatic
segmentation are 0.935 ± 0.008, 0.921 ± 0.013, 0.943 ± 0.011, and 0.948 ± 0.008, respectively.
In contrary, ICC values for manual segmentations shows fluctuation in all four parameters
(GLDM, GLCM, GLRLM, and intensity statistics) with average ICC equals to 0.796 ± 0.032,
0.848 ± 0.021, 0.941 ± 0.012, and 0.578 ± 0.037. Of the 662 features, 354 features (53%)
showed higher ICC values for semi-automatic segmentation compared to manual one.
Tables 2–4 show the reproducibility of ICC for both segmentations in regards with shape
features and wavelet features.
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Figure 3. Comparisons of wavelet features for semi-automatic and manual segmentation in; (a) Gray-level dependence
matrix (GLDM) features and, (b) first order statistics features.



Diagnostics 2021, 11, 1573 9 of 16

Table 2. Intra-class correlation coefficient (ICC) of semi-automatic and manual segmentation for shape and grey level run
length matrix (GLRLM) features.

Features Original Semi-Automatic Manual

Shape

Voxel Volume * 0.994 0.996
Maximum 3D-Diameter 0.964 0.973

Mesh Volume * 0.994 0.856
Major Axis Length 0.972 0.909

Sphericity 0.940 0.909
Least Axis Length * 0.997 0.909

Elongation 0.968 0.909
Surface Volume Ratio * 0.990 0.909

Maximum 2D-Diameter Slice 0.960 0.909
Flatness 0.983 0.909

Surface Area 0.971 0.908
Minor Axis Length * 0.996 0.909

Maximum 2D-Diameter Column 0.961 0.909
Maximum 2D-Diameter Row 0.955 0.909

Gray-level run-length matrix
(GLRLM)

Short Run Low Gray-Level Emphasis 0.925 0.909
Gray-Level Variance 0.951 0.909

Low Gray-Level Run Emphasis * 0.972 0.909
Gray-Level Non-Uniformity Normalized 0.970 0.909

Run Variance * 0.987 0.909
Gray-Level Non-Uniformity * 0.996 0.909

Long-Run Emphasis 0.985 0.909
Short Run High Gray-Level Emphasis 0.946 0.909

Run-Length Non-Uniformity * 0.991 0.909
Short Run Emphasis 0.980 0.909

Long Run High Gray-Level Emphasis 0.937 0.906
Run Percentage * 0.978 0.909

Long Run Low Gray-Level Emphasis * 0.989 0.907
Run Entropy 0.954 0.909

High Gray-Level Run-Emphasis 0.946 0.909
Run-Length Non-Uniformity Normalized * 0.978 0.909

Tumour Intensity (First Order
Statistics)

Interquartile Range * 0.980 0.909
Skewness 0.947 0.909

Uniformity 0.968 0.909
Median 0.925 0.909
Energy * 0.951 0.514

Robust Mean Absolute Deviation 0.945 0.909
Mean Absolute Deviation 0.971 0.909

Total Energy * 0.978 0.053
Maximum * 0.994 0.909

Root Mean Squared 0.972 0.909
90-Percentile 0.949 0.909

Minimum 0.968 0.909
Entropy 0.980 0.909
Range 0.905 0.909

Variance 0.975 0.909
10-Percentile 0.937 0.909

Kurtosis 0.922 0.909
Mean 0.881 0.909

* Statistically significant (p < 0.05).
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Table 3. Wavelet features for semi-automatic segmentation.

Features Wavelet
Semi-Auto Segmentation

1.HLL 2.LHL 3.LHH 4.LLH 5.HLH 6.HHH 7.HHL 8.LLL

Gray-level
run-length matrix

(GLRLM)

Short Run Low Gray-Level
Emphasis 0.992 0.983 0.989 0.947 0.981 0.979 0.970 0.915

Gray-Level Variance 0.911 0.934 0.930 0.988 0.917 0.918 0.921 0.953
Low Gray-Level Run

Emphasis 0.995 0.979 0.986 0.949 0.978 0.974 0.961 0.915

Gray-Level Non-Uniformity
Normalized 0.960 0.980 0.986 0.990 0.968 0.979 0.982 0.967

Run Variance 0.984 0.983 0.988 0.997 0.978 0.990 0.990 0.863
Gray-Level Non Uniformity 0.996 0.997 0.996 0.996 0.995 0.995 0.996 0.997

Long Run Emphasis 0.982 0.979 0.985 0.996 0.975 0.989 0.990 0.912
Short Run High Gray-Level

Emphasis 0.919 0.946 0.836 0.899 0.821 0.920 0.926 0.935

Run-Length
Non-Uniformity 0.990 0.995 0.996 0.994 0.992 0.996 0.997 0.883

Short Run Emphasis 0.975 0.986 0.990 0.989 0.977 0.988 0.989 0.000
Long Run High Gray-Level

Emphasis 0.925 0.947 0.834 0.872 0.821 0.922 0.927 0.768

Run Percentage 0.974 0.989 0.002 0.988 0.978 0.989 0.990 0.980
Long Run Low Gray-Level

Emphasis 0.998 0.971 0.971 0.936 0.971 0.966 0.943 0.908

Run Entropy 0.951 0.973 0.976 0.983 0.958 0.977 0.980 0.971
High Gray-Level Run

Emphasis 0.920 0.947 0.836 0.896 0.820 0.921 0.927 0.935

Run-Length Non-Uniformity
Normalized 0.974 0.990 0.993 0.987 0.978 0.988 0.989 0.971

First Order Statistics

Interquartile Range 0.989 0.988 −0.001 0.991 0.975 0.926 0.990 0.989
Skewness 0.945 0.968 0.966 0.986 0.945 0.950 0.956 0.935

Uniformity 0.967 0.987 0.988 0.984 0.967 0.976 0.983 0.951
Median 0.903 0.936 0.665 0.977 0.916 0.917 0.921 0.923
Energy 0.912 0.934 0.929 0.988 0.916 0.917 0.921 0.953

Robust Mean Absolute
Deviation 0.919 0.946 0.836 0.869 0.820 0.921 0.927 0.935

Mean Absolute Deviation 0.949 0.961 0.970 0.981 0.945 0.974 0.973 0.973
Total Energy 0.994 0.993 0.996 0.993 0.994 0.995 0.997 0.996
Maximum 0.994 0.994 0.994 0.994 0.994 0.994 0.994 0.994

Root Mean Squared 0.976 0.986 0.983 0.984 0.978 0.969 0.976 0.974
90-Percentile 0.910 0.923 0.833 0.952 0.828 0.906 0.912 0.940

Minimum 0.976 0.983 0.970 0.982 0.975 0.933 0.963 0.965
Entropy 0.977 0.987 0.992 0.991 0.978 0.991 0.991 0.933
Range 0.999 0.976 0.977 0.965 0.970 0.965 0.942 0.845

Variance 0.989 0.996 0.987 0.986 0.993 0.953 0.975 0.867
10-Percentile 0.954 0.909 0.858 0.770 0.987 0.898 0.913 0.949

Kurtosis 0.971 0.964 0.956 0.963 0.994 0.988 0.991 0.946
Mean 0.995 0.980 0.986 0.954 0.997 0.974 0.961 0.922
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Table 4. Wavelet features for manual segmentation.

Features Wavelet
Manual Segmentation

1.HLL 2.LHL 3.LHH 4.LLH 5.HLH 6.HHH 7.HHL 8.LLL

Gray-level
run-length matrix

(GLRLM)

Short Run Low Gray-Level
Emphasis 0.926 0.969 0.974 0.987 0.980 0.942 0.963 0.960

Gray-Level Variance 0.998 0.999 0.999 0.999 0.998 0.887 1.000 0.998
Low Gray-Level Run

Emphasis 0.924 0.965 0.972 0.987 0.979 0.938 0.957 0.950

Gray-Level Non-Uniformity
Normalized 0.980 0.991 0.993 0.997 0.983 0.989 0.986 0.993

Run Variance 0.984 0.976 0.989 0.978 0.980 0.987 0.981 0.968
Gray-Level Non Uniformity 0.996 0.996 0.996 0.997 0.996 0.996 0.996 0.998

Long Run Emphasis 0.985 0.979 0.988 0.979 0.979 0.987 0.981 0.972
Short Run High Gray-Level

Emphasis 0.872 0.516 0.927 0.716 0.506 0.999 0.980 0.984

Run-Length
Non-Uniformity 0.990 0.991 0.995 0.991 0.993 0.996 0.994 0.991

Short Run Emphasis 0.983 0.990 0.994 0.996 0.984 0.990 0.986 0.989
Long Run High Gray-Level

Emphasis 0.869 0.507 0.925 0.675 0.490 0.996 0.979 0.981

Run Percentage 0.982 0.992 0.995 0.996 0.986 0.991 0.988 0.988
Long Run Low Gray-Level

Emphasis 0.915 0.939 0.962 0.955 0.969 0.938 0.945 0.914

Run Entropy 0.992 0.989 0.993 0.999 0.992 0.996 0.995 0.994
High Gray-Level Run

Emphasis 0.872 0.515 0.927 0.708 0.504 0.999 0.980 0.984

Run-Length Non-Uniformity
Normalized 0.983 0.993 0.995 0.001 0.987 0.992 0.989 0.991

First Order Statistics

Interquartile Range −0.005 0.021 0.087 0.033 0.010 0.026 −0.007 −0.008
Skewness 0.994 0.998 0.998 0.999 0.995 0.999 0.999 0.999

Uniformity 0.972 0.985 0.988 0.992 0.982 0.984 0.984 0.957
Median 0.998 0.999 0.999 0.999 0.999 1.000 1.000 0.997
Energy 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Robust Mean Absolute
Deviation 0.872 0.515 0.927 0.708 0.504 0.999 0.980 0.984

Mean Absolute Deviation 0.096 0.946 0.958 0.918 0.867 0.971 0.925 0.057
Total Energy 0.000 0.001 0.030 0.000 0.002 0.051 0.002 0.000
Maximum 0.996 0.996 0.996 0.997 0.996 0.996 0.996 0.997

Root Mean Squared −0.018 0.034 0.315 0.010 −0.007 0.242 0.031 −0.007
90-Percentile 0.873 0.517 0.928 0.853 0.504 0.999 0.980 0.990

Minimum 0.001 0.006 0.007 0.013 0.000 0.004 −0.001 −0.025
Entropy 0.977 0.972 0.976 0.972 0.970 0.964 0.965 0.949
Range 0.548 0.953 0.979 0.787 0.965 0.927 0.939 0.183

Variance 0.102 0.912 0.981 0.837 0.560 0.974 0.630 0.065
10-Percentile 0.888 0.718 0.890 0.600 0.587 0.964 0.969 0.921

Kurtosis −0.005 −0.006 −0.007 −0.002 −0.006 −0.005 −0.010 0.000
Mean 0.918 0.961 0.981 0.423 0.978 0.930 0.957 0.002

Features that had been extracted are classified into three groups, high reproducibility
(ICC ≥ 0.8), medium reproducibility (0.8 > ICC ≥ 0.5), and low reproducibility (ICC < 0.5),
based on their ICC values. Out of 662 features, manual segmentation had 78.1% high,
6.5% medium, and 15.4% low reproducibility. However, semi-automatic segmentation,
which is the flood filling effect, had 96.7% features in high reproducibility, 1.8% medium
reproducibility, and 1.5% low reproducibility. Table 5 summarizes features extracted from
both segmentations in reproducibility groups. Hence, reproducibility of the extracted
features was higher for semi-automatic segmentations.
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Table 5. Features extracted in different reproducibility groups.

Reproducibility Groups Semi-Automatic Manual

High (ICC ≥ 0.8) 639 (96.7%) 517 (78.1%)
Medium (0.8 > ICC ≥ 0.5) 12 (1.8%) 43 (6.5%)

Low (ICC < 0.5) 11 (1.5%) 102 (15.4%)

The robustness of each technique was evaluated by analysing the ICC of features
extracted from inter- and intra-observers. Based on Figure 4, high ICC values for inter-
observer from semi-automatic segmentation were observed (ICC = 0.976 ± 0.006 and
ICC = 0.978 ± 0.003, respectively). Table 6 tabulates the inter-observer reproducibility of
shape features for one subject.

Figure 4. Boxplot of the ICC value represents by inter-observers’ reproducibility on the radiomic features.

Table 6. ICC of radiomic features.

Features Semi_1 Semi_2 Manual

Shape

Voxel Volume * 0.984 0.996 0.996
Maximum 3D-Diameter 0.878 0.965 0.973

Mesh Volume 0.985 0.996 0.857
Major Axis Length 0.939 0.956 0.909

Sphericity 0.756 0.903 0.909
Least Axis Length 0.991 0.999 0.909

Elongation * 0.941 0.932 0.909
Surface Volume Ratio 0.962 0.977 0.909

Maximum 2D-Diameter Slice 0.924 0.944 0.909
Flatness 0.970 0.954 0.909

Surface Area 0.941 0.988 0.908
Minor Axis Length 0.984 0.998 0.909

Maximum 2D-Diameter Column 0.886 0.995 0.909
Maximum 2D-Diameter Row 0.866 0.965 0.909
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Table 6. Cont.

Features Semi_1 Semi_2 Manual

Gray-level run-length
matrix (GLRLM)

Short Run Low Gray-Level
Emphasis * 0.964 0.927 0.909

Gray-Level Variance 0.999 0.998 0.909
Low Gray-Level Run Emphasis 0.983 0.962 0.909

Gray-Level Non-Uniformity
Normalized 0.997 0.998 0.909

Run Variance 0.993 0.999 0.909
Gray-Level Non-Uniformity 0.995 0.995 0.909

Long-Run Emphasis 0.992 0.999 0.909
Short Run High Gray-Level

Emphasis 0.943 0.927 0.909

Run-Length Non-Uniformity 0.996 0.998 0.909
Short Run Emphasis 0.999 0.999 0.909

Long Run High Gray-Level
Emphasis * 0.937 0.922 0.909

Run Percentage 0.999 0.999 0.909
Long Run Low Gray-Level

Emphasis 0.986 0.998 0.909

Run Entropy 0.997 0.998 0.909
High Gray-Level Run-Emphasis * 0.943 0.927 0.909

Run-Length Non-Uniformity
Normalized 0.999 0.999 0.909

Tumour Intensity (First
Order Statistics)

Interquartile Range 0.98 0.989 0.909
Skewness 0.999 0.996 0.909

Uniformity 1 0.994 0.909
Median 1 0.993 0.909
Energy 0.999 0.998 0.805

Robust Mean Absolute Deviation 0.942 0.926 0.909
Mean Absolute Deviation 0.991 0.998 0.909

Total Energy 1 0.992 0.849
Maximum 0.999 0.992 0.909

Root Mean Squared 0.997 0.995 0.909
90-Percentile * 0.945 0.919 0.909

Minimum 0.995 0.987 0.909
Entropy 0.999 0.999 0.909
Range 0.998 0.998 0.909

Variance 0.999 0.997 0.909
10-Percentile 0.944 0.928 0.909

Kurtosis 0.888 0.9 0.909
Mean 0.988 0.975 0.909

* Statistically significant (p < 0.05).

4. Discussion

MR images were used in this study, as it produces high quality images compared to
CT scans [34]. It is reported that resolution of input images influences the robustness of
radiomic features as higher resolution images enhance visualization for segmentations [35].
In 2014, Chintan et al. assessed reproducibility of feature extracted using 3D-Slicer segmen-
tation (GrowCut algorithm) which resulted in semi-automatic segmentation higher than
manual delineation of CT images [7]. Therefore, additional features such as wavelet trans-
form are implemented to study MR images using different types of algorithms. Despite
increasing development in application of radiomic studies, robustness and reproducibil-
ity of radiomic features extracted from MR images are still one of the main challenges’
oncologist encounters.

In this study, we investigate the reproducibility and robustness of radiomic features of
HCC between two types of segmentations, manual and semi-automatic, using 3D-Slicer
software. A total of 662 features were extracted from volume of interest and can be classified
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into four main groups (18 tumour intensity, 14 shape features, 54 textural features, and
576 wavelet features). Based on the results, semi-automatic segmentation has higher ICC
values compared to manual segmentation. Semi-automatic segmentation, which we used
for flood filling algorithm, is also more robust and significantly higher compared to manual
segmentation. Flood filling algorithm was performed when the observer chose several
points around the volume of interest, and the tumour region was digitized according to the
uniform colour which results in accurate segmentation [30]. This algorithm is proven to be
the best segmentation method by comparing their accuracy in selection of objects [25].

All four quantitative imaging features extracted from semi-automatic segmentation
had higher reproducibility score (p < 0.05) compared to manual segmentation. For most tu-
mour intensity feature, semi-automatic segmentation had higher reproducibility compared
to manual segmentation. There were a few negative ICC values for wavelet features in both
segmentations shown in Figure 3, which indicates that particular features vary than any
features randomly chosen from the whole population [36]. Despite that, the reproducibility
of wavelet features from semi-automatic segmentation is still higher compared to manual
segmentation. Furthermore, semi-automatic segmentation was consistent with ICC values
(97% good reproducibility) compared to manual segmentation (78% good reproducibility).
In 2020, Wang et al. implied that the features’ reliability increased using wavelet filters
through their proposed deep learning tools compared to normal features [21].

We also analysed intra- and inter-observer reproducibility to evaluate the performance
for both segmentations. Two sets from two different observers are shown in Figure 4 with
one observer segments without formal clinical training. Despite using semi-automatic
segmentation, experience of observers affects the segmentations of tumours as human
interaction’s influence the process of segmentation. this indicates the difference in radiomic
features. However, semi-automatic segmentation demonstrates high ICC values for both
intra- and inter-observers compared to manual segmentation. This suggests that features
extracted from semi-automatic segmentation are more robust and reproducible. There
are two limitations in this study. First, this study does not involve image descriptors
for prognostic models due to the insufficient images of HCC patients from the accessible
source. Secondly, this study only comprises of single MRI sequence. The contrast enhanced
MRI and infiltrative HCC are not included in this study.

5. Conclusions

This study assesses the reproducibility of radiomic features between two techniques.
Semi-automatic segmentation using the flood fill algorithm produces more reproducible
features, and this indicates it could be a better alternative to the current manual segmen-
tation. Thus, this algorithm could be further applied for prognostic and classification
models with sufficient data taken from several centers. Note that the study was focused
on robustness and reproducibility of features extracted from semi-automatic and manual
segmentation. Hence, for adapting machine learning, the study should be in larger scales
with more data so the application will be much accurate.

Author Contributions: Conceptualization, M.K.A.K.; formal analysis, N.S.M.H.; funding acquisition,
M.K.A.K. and M.J.I.; investigation, M.K.A.K. and N.H.O.; methodology, N.S.M.H. and M.I.S.; re-
sources, I.N.C.I.; software, I.N.C.I.; validation, M.K.A.K.; writing—original draft, N.S.M.H.; writing—
review and editing, M.K.A.K. and M.J.I. All authors have read and agreed to the published version
of the manuscript.

Funding: This work was supported by Ministry of Higher Education (MOHE) Malaysia under the
Fundamental Research Grant Scheme (FRGS) with grant number FRGS/1/2020/STG07/UPM/02/3.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: The authors would like to acknowledge Universiti Putra Malaysia and Ministry
of Higher Education Malaysia (MOHE) for the financial support of this research.



Diagnostics 2021, 11, 1573 15 of 16

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Azizah, A.M.; Hashimah, B.; Nirmal, K.; Siti Zubaidah, A.R.; Puteri, N.A.; Nabihah, A.; Sukumaran, R.; Balqis, B.; Nadia, S.M.R.;

Sharifah, S.S.S.; et al. Malaysian National Cancer Registry Report; Ministry of Health: Putrajaya, Malaysia, 2017; pp. 1–116.
2. Kharrat, A.; Gasmi, K.; Ben Messaoud, M.; Benamrane, N.; Abid, M. A Hybrid Approach for Automatic Classification of Brain

MRI Using Genetic Algorithm and Support Vector Machine An Hybrid Approach for Automatic Classification of Brain MRI
Using Genetic Algorithm and Support Vector Machine. Leonardo J. Sci. 2010, 17, 71–82.

3. Ma, J.; Wang, Q.; Ren, Y.; Hu, H.; Zhao, J. Automatic lung nodule classification with radiomics approach. In Medical Imaging 2016:
PACS and Imaging Informatics: Next Generation and Innovations; International Society for Optics and Photonics: California, CA,
USA, 2016; Volume 9789, p. 978906. [CrossRef]

4. Vauthey, J.N.; Lauwers, G.Y.; Esnaola, N.F.; Do, K.A.; Belghiti, J.; Mirza, N.; Curley, S.A.; Ellis, L.M.; Regimbeau, J.M.; Rashid, A.;
et al. Simplified staging for hepatocellular carcinoma. J. Clin. Oncol. 2002, 20, 1527–1536. [CrossRef] [PubMed]

5. Scrivener, M.; De Jong, E.E.C.; van Timmeren, J.E.; Pieters, T.; Geets, X. Radiomics applied to lung cancer: A review. Transl. Cancer
Res. 2016, 5, 398–409. [CrossRef]

6. Xu, L.; Gao, Q.; Yousefi, N. Brain tumor diagnosis based on discrete wavelet transform, gray-level co-occurrence matrix, and
optimal deep belief network. Simulation 2020, 96, 867–879. [CrossRef]

7. Parmar, C.; Velazquez, E.R.; Leijenaar, R.; Jermoumi, M.; Carvalho, S.; Mak, R.H.; Mitra, S.; Shankar, B.U.; Kikinis, R.; Haibe-Kains,
B.; et al. Robust radiomics feature quantification using semiautomatic volumetric segmentation. PLoS ONE 2014, 9, e0102107.
[CrossRef] [PubMed]

8. Kumar, G.; Bhatia, P.K. A detailed review of feature extraction in image processing systems. In Proceedings of the 2014 Fourth
International Conference on Advanced Computing & Communication Technologies, Rohtak, India, 8–9 February 2014; pp. 5–12.
[CrossRef]

9. Chen, W.; Liu, B.; Peng, S.; Sun, J.; Qiao, X. Computer-Aided Grading of Gliomas Combining Automatic Segmentation and
Radiomics. Int. J. Biomed. Imaging 2018, 2018, 2512037. [CrossRef] [PubMed]

10. Delzell, D.A.P.; Magnuson, S.; Peter, T.; Smith, M.; Smith, B.J. Machine Learning and Feature Selection Methods for Disease
Classification with Application to Lung Cancer Screening Image Data. Front. Oncol. 2019, 9, 1–8. [CrossRef]

11. Oyama, A.; Hiraoka, Y.; Obayashi, I.; Saikawa, Y.; Furui, S.; Shiraishi, K.; Kumagai, S.; Hayashi, T.; Kotoku, J. Hepatic tumor
classification using texture and topology analysis of non-contrast-enhanced three-dimensional T1-weighted MR images with a
radiomics approach. Sci. Rep. 2019, 9, 2–11. [CrossRef]

12. Dutra, L.V.; Huber, R. Feature extraction and selection for ers-1/2 insar classification. Int. J. Remote Sens. 1999, 20, 993–1016.
[CrossRef]

13. Coroller, T.P.; Agrawal, V.; Huynh, E.; Narayan, V.; Lee, S.W.; Mak, R.H.; Aerts, H.J.W.L. Radiomic-Based Pathological Response
Prediction from Primary Tumors and Lymph Nodes in NSCLC. J. Thorac. Oncol. 2017, 12, 467–476. [CrossRef]
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