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Abstract: Magnetic Resonance Imaging (MRI) of the musculoskeletal system is one of the most
common examinations in clinical routine. The application of Deep Learning (DL) reconstruction for
MRI is increasingly gaining attention due to its potential to improve the image quality and reduce the
acquisition time simultaneously. However, the technology has not yet been implemented in clinical
routine for turbo spin echo (TSE) sequences in musculoskeletal imaging. The aim of this study was
therefore to assess the technical feasibility and evaluate the image quality. Sixty examinations of
knee, hip, ankle, shoulder, hand, and lumbar spine in healthy volunteers at 3 T were included in
this prospective, internal-review-board-approved study. Conventional (TSES) and DL-based TSE
sequences (TSEDL) were compared regarding image quality, anatomical structures, and diagnostic
confidence. Overall image quality was rated to be excellent, with a significant improvement in edge
sharpness and reduced noise compared to TSES (p < 0.001). No difference was found concerning the
extent of artifacts, the delineation of anatomical structures, and the diagnostic confidence comparing
TSES and TSEDL (p > 0.05). Therefore, DL image reconstruction for TSE sequences in MSK imaging is
feasible, enabling a remarkable time saving (up to 75%), whilst maintaining excellent image quality
and diagnostic confidence.

Keywords: magnetic resonance imaging; deep learning reconstruction; image processing; muscu-
loskeletal imaging

1. Introduction

Magnetic Resonance Imaging (MRI) has become an important diagnostic tool for the
evaluation of the musculoskeletal (MSK) system. Due to its high clinical impact, MSK
imaging is one of the most common performed examinations in clinical routine. One big
disadvantage of MRI is the long examination time, which is not tolerated by a substantial
proportion of patients and, on the other hand, comes along with other downsides such
as decreased image quality due to motion artifacts, increased costs and reduced patient
throughput [1].

The acquisition time of MRI is primarily determined by the achievable sampling
rate for a given contrast and image quality, which, in turn, is determined by the number
of samples needed for the image reconstruction for a given size and resolution. Over
the past decades, different acceleration strategies have been proposed and established
such as parallel imaging (PI) and Compressed Sensing (CS) [2–14]. These techniques
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acquire a reduced amount of k-space data with an array of receiver coils and afterwards
reconstruct images from the acquired, under sampled data [2,14]. Artifacts due to residual
aliasing, noise, or stair casing and blurring can impair achievable image quality of those
acceleration strategies.

Recently, a new acceleration strategy gained attention: Deep Learning (DL) reconstruc-
tion, as discussed here and detailed below, may solve nonlinear and ill-posed reconstruction
problems efficiently [15–17]. Instead of ad hoc regularization that enforces sparsity, the
regularization is trained on representative images. This procedure also allows the regu-
larization to generalize for different sampling patterns, acceleration factors, and artifact
behavior. With DL reconstruction providing higher signal-to-noise ratio (SNR) and allow-
ing for higher acceleration with conventional sampling patterns, the data acquisition can
be tailored. For TSE acquisitions, modifying the original acquisition’s image contrast is
usually not a desirable goal for tailored acquisitions. Rather, DL reconstruction in MRI can
be used to improve on a combination of image resolution, acquisition time, and SNR while
maintaining the original contrast [18,19].

Most prominently, the DL networks are trained in a supervised manner, i.e., rep-
resentative fully sampled data with known results for the given application—so-called
ground truth data—are available, which allow retrospective subsampling and training of
the architectures. Testing is performed on a separate set of samples (not seen in training)
with subsampled datasets. While training can be computationally intensive and takes
rather long, it can be performed offline. The trained architecture can then be used in testing
to reconstruct an aliasing and noise-free image within a few seconds and with greatly
reduced computational demand [20–22].

DL reconstruction has recently been shown to potentially accelerate image acquisition
in knee MRI [23]; however, the majority of existing literature on this topic focusses on offline
solutions simulating accelerated image acquisition. Realistic performance assessment
should be performed on prospectively subsampled datasets. To evaluate the clinical impact
of the DL reconstruction for MSK imaging, an implementation in clinical settings using
a prospective acquisition of accelerated data, as well as an extension to various joints,
is needed.

Therefore, the aim of this study was to first assess the technical feasibility of the DL
reconstruction, and to compare the obtainable image quality for accelerated DL-based
TSE sequences (TSEDL) in comparison to conventional TSE sequences (TSES) for the most
common MSK examinations in healthy volunteers. In addition, technical guidance is
provided for prospective implementation of DL image reconstruction into clinical workflow.

2. Materials and Methods
2.1. Study Design

Institutional review board approval was obtained for this prospective, monocentric
study (Eberhard Karls University Tuebingen, project identification code: 055/2017BO2,
2 December 2020). All volunteers gave informed consent to participate in this study and
all study procedures were conducted in accordance with the ethical standards as laid down
in the 1964 Declaration of Helsinki and its later amendments.

A total of 60 volunteer-MRI-examinations, ten from each joint (ankle, hand, hip, knee,
lumbar spine, and shoulder) were included in this study.

A short protocol comprising PD-weighted TSE sequences with fat suppression (FS)
of the two clinically most commonly used orientations for ankle (axial/sagittal), hand
(axial/coronal), hip (axial/coronal), knee (coronal/sagittal) and shoulder (axial/coronal),
as well as T2-weighted and T1-weighted TSE sequences with FS for the lumbar spine in
sagittal orientation were acquired. Accelerated TSEDL sequences were acquired along with
standard TSES sequences at clinical 3 T MRI scanner (MAGNETOM Prismafit, Siemens
Healthcare, Erlangen, Germany) using clinical surface coils respectively for each joint. An
overview of the acquisition parameters is displayed in Table 1.
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Table 1. Acquisition parameters of TSES and TSEDL at 3 T.

Sequence Orientation TA, min FOV, mm Voxel Size, mm A C PAT TR, ms TE, ms FA, Degree Bandwith,
Hz/Px

Echo Spacing,
ms

Shoulder
TSES TSE PD FS

axial 2:14 180 0.6 × 0.6 × 3.0 1 2 2 3000 44 150 180 10.9
coronal 2:53 180 0.6 × 0.6 × 3.0 2 1 2 3300 42 150 191 10.6

TSEDL TSE PD FS
axial 1:10 180 0.6 × 0.6 × 3.0 1 1 3 3520 44 150 180 10.9

coronal 1:09 180 0.6 × 0.6 × 3.0 1 1 3 3000 42 150 191 10.6

Knee
TSES TSE PD FS

coronal 3:11 150 0.2 × 0.2 × 3.0 2 1 3 3790 44 150 100 14.6
sagittal 3:11 150 0.2 × 0.2 × 3.0 2 1 3 3790 44 150 100 14.6

TSEDL TSE PD FS
coronal 1:33 150 0.5 × 0.5 × 3.0 1 1 3 3580 41 150 120 13.7
sagittal 1:33 150 0.5 × 0.5 × 3.0 1 1 3 3580 41 150 120 13.7

Lumbar spine
TSES

T1 TSE sagittal 2:56 300 0.9 × 0.9 × 3.0 1 2 0 562 10 150 180 10.4
T2 TSE FS sagittal 2:45 300 0.7 × 0.7 × 3.0 2 1 2 6040 102 150 189 11.3

TSEDL
T1 TSE sagittal 1:27 300 0.9 × 0.9 × 3.0 1 2 3 462 10 150 180 10.4

T2 TSE FS sagittal 0:58 300 0.7 × 0.7 × 3.0 1 1 3 4470 105 150 189 10.5

Hip
TSES TSE PD FS

axial 3:02 200 0.3 × 0.3 × 3.0 1 1 0 3410 42 150 100 14.1
coronal 2:01 200 0.3 × 0.3 × 3.0 1 1 2 3410 42 150 100 14.1

TSEDL TSE PD FS
axial 1:32 200 0.6 × 0.6 × 3.0 1 1 3 3069 42 150 120 13.1

coronal 1:33 200 0.6 × 0.6 × 3.0 1 1 3 3000 41 150 120 13.7

Ankle
TSES TSE PD FS

axial 2:25 150 0.4 × 0.4 × 3.0 1 1 2 3340 17 150 90 17.1
sagittal 1:47 160 0.2 × 0.2 × 3.0 1 1 3 3000 32 150 100 15.9

TSEDL TSE PD FS
axial 1:54 150 0.4 × 0.4 × 3.0 1 1 3 3000 17 150 90 16.9

sagittal 1:45 160 0.4 × 0.4 × 3.0 1 1 3 3000 31 150 100 15.7

Hand
TSES TSE PD FS

coronal 2:23 200 0.5 × 0.5 × 2.0 2 1 0 3000 41 150 121 13.6
axial 4:40 180 0.5 × 0.5 × 2.0 2 2 0 3310 42 150 121 13.9

TSEDL TSE PD FS coronal 0:36 200 0.5 × 0.5 × 2.0 1 1 3 3000 44 150 119 14.7
axial 1:23 180 0.5 × 0.5 × 2.0 1 2 2 3190 42 150 119 14.1

TA indicates time of acquisition; FOV, field of view; A, Averages; C, Concatenations; PAT, Parallel Acquisition Technique; TE/TR, echo time/repetition time; FA, flip angle; TSE, turbo spin echo; PD, Proton
Density; FS, fat saturation.
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2.2. Deep Learning Image Reconstruction

A conventional under sampling pattern, as known from parallel imaging, is used. As
shown in earlier works [24,25], these provide the same performance when reconstructed
with DL-based methods as incoherent sampling patterns favored by CS. They have the
important advantages of being clinically established and are highly flexible regarding
adaptations of resolution and signal evolution during sampling. Furthermore, their artifact
behavior with regard to motion, reduced field of view, and aliasing is well known and
potentially even improved by the DL-based reconstruction. In addition, as a part of
conventional under sampling patterns, a fraction of the k-space’s periphery is often not
acquired in order to reduce acquisition time. This effectively reduces the resolution in the
phase-encoding direction and is referred to as phase resolution. It describes the fraction of
acquired data in the phase-encoding direction in percent neglecting the regular parallel
imaging type of under sampling. For illustration, an exemplary sampling pattern of
acceleration factor 2 and a phase resolution <100% is shown in Figure 1.
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Figure 1. Exemplary sampling pattern used for the k-space data acquisition (red arrows point to the acquired date; black
arrows point to the missing data). Along the phase encoding direction, data are under sampled by an acceleration factor R.
An autocalibration region covering the center of k-space is acquired, either along with the imaging acquisition or separately
with a different image contrast. A fraction of the periphery may be skipped, usually referred to as phase resolution.

Besides the data acquisition for the actual image data, calibration data for the coil-
sensitivity estimation needs to be acquired. For the TSE sequence, a fully sampled region
around the k-space center (typically about 16 phase-encoding lines) is acquired as part of



Diagnostics 2021, 11, 1484 5 of 16

the imaging scan. These data are used for both the image reconstruction and the estimation
of coil sensitivity maps.

For all discussed applications, the prototype image reconstruction comprises a fixed
iterative reconstruction scheme or variational network [25,26]. The deep neural network
model leverages the combined benefits of physical models of MR imaging (SENSE model
with coil sensitivity maps [12] with bias field corrections) and data-driven models. The
fixed unrolled algorithm for accelerated MR image reconstruction consists of multiple
cascades (6 pre-cascades, 12 cascades, and 1 post-cascade), each made up from a data
consistency using a trainable Nesterov Momentum followed by a CNN-based regulariza-
tion. The regularization model’s architecture is based on a novel hierarchical design of an
iterative network that repeatedly decreases and increases the resolution of the feature maps,
allowing for a more memory-efficient model than conventional CNNs. The CNN module
is a “Deep, Iterative, Hierarchical Network” that extends the Down-Up network [27] with
a hierarchical block design, facilitating memory efficiency over a standard U-Net [28]. In
addition to the input under sampled k-space data, coil-sensitivity maps are also provided,
which are estimated from the calibration data as a non-DL based pre-processing step. In
addition, a bias field is extracted from a separate adjustment acquisition for image ho-
mogenization. The architecture of the reconstruction network is illustrated in Figure 2.
During the training phase, the bias field is inserted into the image reconstruction as a final
correction step.
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Figure 2. Architecture of the fixed iterative reconstruction scheme. Pre-cascades address data consistency and generate
an image similar to conventional parallel imaging, cascades use an alternating scheme between data consistency and
regularization, post-cascades reemphasize consistency of a reconstructed image and acquired data. Note that only the
regularization is a Convolutional Neural Network (CNN). Nevertheless, the whole architecture can be presented by a
general network.

For the image reconstruction, the k-space data, the bias field and coil-sensitivity maps
are inserted into the variational network. Compared to previous works and the previously
described cascades, the variational network also utilizes two additional types of cascades,
namely, pre- and post-cascades. Like regular cascades, pre-cascades employ trainable
extrapolation; however, no regularization is applied, allowing the network to focus on
the parallel imaging part of the reconstruction problem. Such design is motivated by the
empirical finding that initial steps in the variational network focus on the signal recovery
of missing data near the k-space center. This approach supports acquisitions without
integrated calibration and flexible k-space sampling. Finally, post-cascades employing
non-trainable extrapolation are also utilized for further guarantees on the data consistency,
which minimizes the risk of hallucination when adversarial training is applied. The
network is first trained to minimize the combined L1 and a multi-scale version of the
structural similarity (SSIM) content losses between network prediction and ground truth
images [29].
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The reconstruction was trained on volunteer acquisitions using conventional TSE
protocols independently of the data acquired in this study. About 10,000 slices were
acquired on volunteers using clinical 1.5 T and 3 T scanners (MAGNETOM scanners,
Siemens Healthcare, Erlangen, Germany). Fully sampled acquisitions with high resolution
were performed in head, pelvis, and knee using representative contrasts for the respective
body regions. The training data therefore included a wide range of image contrasts,
orientations, body regions, and resolutions. The input to the reconstruction network was
retrospectively under sampled to an acceleration factor of 4. The training was implemented
in PyTorch and performed on a GPU cluster NVIDIA Tesla V100 (32 GB of memory) GPU.

2.3. Implementation of DL Image Reconstruction in Clinical Workflow

For deployment in the scanner reconstruction pipeline, the obtained network was
converted to a C++ implemented inference framework. For the CPU-only reconstruction
on a clinical MRI scanner, inference needed about 4 s per slice for the used protocol settings.
The reconstruction was triggered after the end of the acquisition, which resulted in a
perceived reconstruction time of 2–3 min including additional pre- and post-processing.
GPU-based reconstruction can bring the duration down to the order of 20 s for a complete
dataset but was not available in the local setting of this study.

2.4. Image Analysis

Image analysis was performed by two radiologists with three and nine years of
experience. Both readers independently analyzed both TSES and TSEDL datasets by using
a random order. The radiologists assessed qualitative image parameters including overall
image quality, diagnostic confidence, edge sharpness, contrast resolution, as well as the
extent of noise and artifacts using an ordinal 4-point Likert scale (1 = non-diagnostic,
with major streak artifacts; 2 = non-diagnostic, moderate artifacts with low image quality;
3 = minor artifacts with good image quality; 4 = no artifacts with excellent image quality).
Complementary, the overall clarity of anatomical structures, the assessment of bone and
articular cartilage, as well as the delineation of ligaments and tendons were assessed as well
on a 4-point Likert scale (4 = excellent clarity of the anatomical structures/assessment of
bone and articular cartilage; 3 = good; 2 = acceptable; 1 = poor). Furthermore, the subjective
image impression was evaluated by both readers (1 = very unrealistic, 2 = unrealistic,
3 = realistic, and 4 = very realistic). Reading scores were considered sufficient when
reaching ≥3.

Image analysis was performed on a PACS workstation (GE Healthcare Centricity™
PACS RA1000, Milwaukee, WI, USA).

2.5. Statistical Analysis

Statistical analyses were performed using SPSS version 26 (IBM Corp, Armonk, NY,
USA). Besides descriptive statistics, compromising median and interquartile range (IQR),
reading scores of the qualitative image analysis of the TSE sequences were compared using
a Wilcoxon signed-rank test for paired data of ordinal structure. Significance was assumed
at a level of p < 0.05.

Inter-rater agreement was calculated through Cohen’s kappa. Kappa values were inter-
preted as follows: 0–0.20 = poor agreement, 0.21–0.40 = fair agreement, 0.41–0.60 = moderate
agreement, 0.61–0.80 = substantial agreement, 0.81–1 = (almost) perfect agreement.

3. Results

The aim of this work was to assess the technical feasibility of the DL image reconstruc-
tion for TSE sequences in MSK imaging. In total, 60 examinations in healthy volunteers
(37 males, age: 26 ± 7 (20–55) years) were included in this prospective study, ten from each
MSK region (knee, ankle, hip, shoulder, hand, lumbar spine), as shown in Table 2.
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Table 2. Demographics.

Variables

Total (male/female), n 60 (37/23)
Age, mean ± SD (range), y total: 26 ± 7 (20–55)

knee: 25 ± 4 (20–31)
ankle: 26 ± 5 (20–35)
hip: 26 ± 5 (20–35)

shoulder: 27 ± 10 (20–55)
wrist: 27 ± 8 (20–44)

lumbar spine: 29 ± 11 (20–55)
SD indicates standard deviation; y, years; n, number.

All TSEDL were successfully acquired for all regions. Fat suppression could be applied
successfully for TSEDL. TSEDL allowed a remarkable time saving by at least 21% and up
to 75%; for instance, T1-weighted TSE in sagittal orientation for lumbar spine required
an acquisition time of 2:45 min compared to T1-weighted TSEDL with an acquisition time
of 0:58 min, or TSES of the hand in coronal orientation required 2:23 min compared to
0:36 min for TSEDL (see Table 1).

As inter-reader agreement resulted in a Cohen’s kappa of 0.634 to 0.923, the results of
the more experienced reader 1 are described in the following.

3.1. Assessment of Image Quality

Overall image quality was rated to be excellent for TSEDL (median 4, IQR 4−4),
significantly higher compared to TSES (median 4, IQR 4−4, p = 0.002) with significantly
lower levels of noise (TSES: median 4, IQR 3−4; TSEDL: median 4, IQR 4−4; p < 0.001)
and improved edge sharpness (TSES: median 4, IQR 3−4; TSEDL: median 4, IQR 4−4;
p = 0.008) in TSEDL. No difference was found for contrast resolution and the extent of
artifacts, which were both rated as excellent in TSES (median 4, IQR 4−4) and TSEDL
(median 4, IQR 4−4, p > 0.05). Image examples are shown in Figures 3–8. To highlight the
image quality difference of the DL-reconstruction compared to standard reconstruction,
we exported raw data of TSEDL of a single volunteer and reconstructed the accelerated
TSEDL raw data with the standard reconstruction method (GRAPPA) as used in TSES (see
Figures 9 and 10). To illustrate the effect of the DL reconstruction on the extent of noise,
raw data of a single volunteer were exported, and exemplary SNR-maps were determined
offline using a pseudo-replica method [30]; see Figure 11.

3.2. Assessment of Anatomical Structures

The overall clarity of anatomic structures was rated excellent for TSEDL (median 4,
IQR 4−4) and comparable to TSES (p > 0.05). Furthermore, the assessment of the articular
cartilage, the delineation of ligaments and tendons were all rated excellent and to be
comparable between the two sequences (median 4, IQR 4−4, p > 0.05). The assessment of
the bone was rated to be lower in TSEDL (median 4, IQR 4−4) compared to TSES (median 4,
IQR 4−4). There was no significant difference regarding the diagnostic confidence between
both sequences (median 4, IQR 4−4, p > 0.05).

Subjective image impression was rated to be more realistic in TSES (median 4, IQR
4−4) compared to TSEDL (median 4, IQR 3−4, p < 0.001). An overview of all results is
displayed in Table 3.
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anatomical structures in both TSES and TSEDL.
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Figure 10. Comparison of TSES (A), TSEDL raw data reconstructed with a standard (GRAPPA) method (B) and TSEDL (C) of
a knee in coronal orientation. Note that the image quality in TSEDL (C) is increased compared to TSES (A) and TSEDL with
standard reconstruction (B).

Table 3. Image Quality, Inter-reader Agreement and Comparison of TSE and TSEDL.

TSES TSEDL TSES vs. TSEDL

R1
m (IQR)

R2
m (IQR) κ

R1
m (IQR)

R2
m (IQR) κ R1 R2

IQ 4 (4−4) 4 (3−4) 0.697 4 (4−4) 4 (4−4) 0.634 0.002 0.013
Artifacts 4 (4−4) 4 (4−4) 0.649 4 (4−4) 4 (4−4) 0.700 0.180 0.157
Edge sharpness 4 (3−4) 4 (3−4) 0.883 4 (4−4) 4 (4−4) 0.792 <0.001 <0.001
Contrast resolution 4 (4−4) 4 (4−4) 0.741 4 (4−4) 4 (4−4) 0.649 0.257 0.157
Noise 4 (3−4) 4 (3−4) 0.897 4 (4−4) 4 (4−4) 0.651 <0.001 <0.001
Clarity of anatomic structures 4 (4−4) 4 (4−4) 0.747 4 (4−4) 4 (4−4) 0.889 0.317 0.564
Bone 4 (4−4) 4 (4−4) 0.896 4 (4−4) 4 (4−4) 0.741 0.014 0.025
Articular cartilage 4 (4−4) 4 (4−4) 0.739 4 (4−4) 4 (4−4) 0.773 0.157 0.705
Ligaments 4 (4−4) 4 (4−4) 0.732 4 (4−4) 4 (4−4) 0.643 0.705 0.480
Tendons 4 (4−4) 4 (4−4) 0.640 4 (4−4) 4 (4−4) 0.659 0.180 0.083
Diagnostic confidence 4 (4−4) 4 (4−4) 0.773 4 (4−4) 4 (4−4) 0.651 0.102 0.096
Image impression 4 (4−4) 4 (4−4) 0.848 4 (3−4) 4 (3−4) 0.923 <0.001 <0.001

IQ indicates Image Quality; R, Reader; m, median; κ, Cohen’s κ (Inter-rater Reliability); IQR, Interquartile Range.



Diagnostics 2021, 11, 1484 12 of 16

Diagnostics 2021, 11, x FOR PEER REVIEW 12 of 16 
 

 

 
Figure 11. Exemplary visualization of signal-to-noise ratio (SNR) as SNR-maps. On the (left), results of the TSEDL dataset, 
and on the (right), of a TSES dataset of knee in sagittal orientation. The TSEDL dataset shows lower noise levels and an 
increase of SNR with a more homogeneous distribution compared to the TSES dataset. In addition, SNR levels throughout 
the whole image are more homogeneous. 

3.2. Assessment of Anatomical Structures 
The overall clarity of anatomic structures was rated excellent for TSEDL (median 4, 

IQR 4−4) and comparable to TSES (p > 0.05). Furthermore, the assessment of the articular 
cartilage, the delineation of ligaments and tendons were all rated excellent and to be com-
parable between the two sequences (median 4, IQR 4−4, p >0.05). The assessment of the 
bone was rated to be lower in TSEDL (median 4, IQR 4−4) compared to TSES (median 4, 
IQR 4−4). There was no significant difference regarding the diagnostic confidence between 
both sequences (median 4, IQR 4−4, p > 0.05). 

Subjective image impression was rated to be more realistic in TSES (median 4, IQR 
4−4) compared to TSEDL (median 4, IQR 3−4, p < 0.001). An overview of all results is dis-
played in Table 3. 

Table 3. Image Quality, Inter-reader Agreement and Comparison of TSE and TSEDL. 

 
TSES TSEDL TSES vs. TSEDL 

R1 
m (IQR) 

R2 
m (IQR) κ R1 

m (IQR) 
R2 

m (IQR) κ R1 R2 

IQ 4 (4−4) 4 (3−4) 0.697 4 (4−4) 4 (4−4) 0.634 0.002 0.013 
Artifacts 4 (4−4) 4 (4−4) 0.649 4 (4−4) 4 (4−4) 0.700 0.180 0.157 
Edge sharpness 4 (3−4) 4 (3−4) 0.883 4 (4−4) 4 (4−4) 0.792 <0.001 <0.001 
Contrast resolution 4 (4−4) 4 (4−4) 0.741 4 (4−4) 4 (4−4) 0.649 0.257 0.157 
Noise 4 (3−4) 4 (3−4) 0.897 4 (4−4) 4 (4−4) 0.651 <0.001 <0.001 
Clarity of anatomic structures 4 (4−4) 4 (4−4) 0.747 4 (4−4) 4 (4−4) 0.889 0.317 0.564 
Bone 4 (4−4) 4 (4−4) 0.896 4 (4−4) 4 (4−4) 0.741 0.014 0.025 
Articular cartilage 4 (4−4) 4 (4−4) 0.739 4 (4−4) 4 (4−4) 0.773 0.157 0.705 
Ligaments 4 (4−4) 4 (4−4) 0.732 4 (4−4) 4 (4−4) 0.643 0.705 0.480 
Tendons 4 (4−4) 4 (4−4) 0.640 4 (4−4) 4 (4−4) 0.659 0.180 0.083 

Figure 11. Exemplary visualization of signal-to-noise ratio (SNR) as SNR-maps. On the (left), results of the TSEDL dataset,
and on the (right), of a TSES dataset of knee in sagittal orientation. The TSEDL dataset shows lower noise levels and an
increase of SNR with a more homogeneous distribution compared to the TSES dataset. In addition, SNR levels throughout
the whole image are more homogeneous.

4. Discussion

This study investigated the technical feasibility and impact of a DL image recon-
struction for TSE sequences in MSK MRI in a prospective volunteer study compared to
standard TSE imaging. The results demonstrate that TSE with DL image reconstruction is
feasible, providing even higher image quality as well as an improvement in edge sharpness,
and concerning the evaluation of MSK-specific items, an equivalent assessment of the
articular cartilage, correspondingly equal delineation of ligaments and tendons. Therefore,
TSE with DL image reconstruction maintains equal diagnostic confidence compared to
conventional TSE.

The fact that DL-based reconstructed images exhibit even lower noise levels than
corresponding fully sampled conventional acquisition techniques, and may therefore look
artificial to experienced radiologists, was already discussed in prior studies [15,23] and is in
line with our findings: TSES is rated to have a more realistic image impression compared to
TSEDL. The low extent of noise may also be the cause of the lower ratings of the assessment
of the bone, due to almost noise-free image impression, in which very small structures
disappear. Nonetheless, this is only an impairment of the image impression and there is no
impact on the diagnostic accuracy since TSEDL exhibited excellent diagnostic confidence.

Another aim of the study was to accelerate TSE sequence acquisition by the incorpo-
ration of DL image reconstruction. DL allowed for an acquisition time reduction of up to
50% while maintaining excellent image quality and diagnostic confidence. DL therefore
seems to allow for higher accelerations than prior acceleration techniques. Prior to DL
image reconstruction, high acceleration levels beyond the Nyquist–Shannon sampling limit
could be obtained by CS. In fact, if images can be sparsely represented in some transform
domain, then a random and incoherent sub-Nyquist sampling together with an appropriate
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nonlinear iterative image reconstruction allows aliasing-free recovery from incompletely
sampled k-space data [14]. CS employs iterative reconstruction algorithms that use a priori
fixed sparsity-promoting transformation. Furthermore, the a priori assumption on sparsity
with application-specific regularization weighting can, if not chosen appropriately, result
in residual aliasing (under-regularized) or stair casing and blurring (over-regularized).
Depending on the imaging application and sequence, a sampling trajectory that follows a
desired random distribution can be challenging to implement without introducing other
artifacts, e.g., by eddy currents due to strong switching gradients. Overall, these factors can
impair achievable image quality and/or limit the achievable acceleration. The implemen-
tation of DL can overcome this drawback and enables the acceleration of MR acquisition
without impairing image quality.

Current Deep Learning-based image reconstruction uses supervised learning tech-
niques with convolutional neural networks (CNNs) [24,31]. DL networks have been
proposed that operate on parallel imaging (PI)-accelerated acquisitions [25,26,32] and on
CS-accelerated acquisitions [33]. The proposed methods primarily differ in the way the
DL network is applied in the image reconstruction and how data consistency is enforced
between reconstructed images and acquired data: (i) the network acts as trainable denoiser
without explicit data consistency inside the architecture during training, but handling it
in outer optimization schemes (plug-and-play denoisers), (ii) physics-based reconstruc-
tions that incorporate data consistency during training. Networks furthermore differ in
the chosen architectures (VN, UNet, cascaded CNN, etc.), raw k-space or noisy/aliased
image input, the input dimensionality (2D, 3D, 2D+time, 3D+time, etc.), single- or multi-
parametric input, complex- or real-valued processing of the complex-valued data, and
single-coil (coil-combined) or multi-coil processing [20,21,25,26,33–43]. To date, there are
only a small number of published studies using DL methods on k-space data for MR image
reconstruction in a clinical setting. Although the results are promising, routine application
in clinical practice remains rare. As we successfully implemented DL reconstruction in
imaging of different body regions, this report is intended to motivate radiologists to es-
tablish new AI techniques in everyday clinical practice to further accelerate MR imaging
and gain access to MRI for more patients. Prolonged scanning duration can cause patient
inconvenience and also limits the availability of MRI, which makes the single examination
slots expansive. Drastic acceleration and cut-down of examination times might display
one piece of the big puzzle to enhance health care and balance the weight of supply and
demand. One of the most challenging tasks in medicine has always been finding a compro-
mise between best medical care and best economical outcome. As most healthcare systems
worldwide are insurance-based using different architectures (mandatory versus voluntary;
public health insurance versus private sector), all systems face the same problem: shortage
of money versus increased demand due to the development of new expensive therapies,
increase in expectancy of life, and new diagnostic possibilities. Reduction of TA might
allow for a higher number of examinations per day.

This study has limitations. First, we included a small amount of image data acquired
in healthy volunteers. Second, we just investigated the TSEDL at 3 T; further studies
are needed to evaluate its feasibility and diagnostic confidence at 1.5 T. This impacts
the generalizability of our findings. However, this report primarily aims to describe the
implementation of DL-based reconstruction and to assess its technical feasibility rather
than to systematically and comprehensively evaluate the resulting image quality in routine
clinical practice. For image quality assessment, body-region-focused clinical studies at
1.5 and 3 T are still required. A further limitation is the fact that DL-based reconstruction
was not applied on 3D MR sequences yet. DL-based reconstruction algorithms for 3D
sequences are still being developed by our team.

To conclude, DL image reconstruction can be implemented in clinical workflow and en-
ables accelerated image acquisition, allowing a remarkable time saving while maintaining
excellent image quality for TSE sequences.
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