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Abstract: Parkinson’s disease (PD) is a neuro-degenerative disorder primarily triggered due to the
deterioration of dopamine-producing neurons in the substantia nigra of the human brain. The early
detection of Parkinson’s disease can assist in preventing deteriorating health. This paper analyzes human
gait signals using Local Binary Pattern (LBP) techniques during feature extraction before classification.
Supplementary to the LBP techniques, Local Gradient Pattern (LGP), Local Neighbour Descriptive
Pattern (LNDP), and Local Neighbour Gradient Pattern (LNGP) were utilized to extract features from
gait signals. The statistical features were derived and analyzed, and the statistical Kruskal–Wallis test
was carried out for the selection of an optimal feature set. The classification was then carried out by an
Artificial Neural Network (ANN) for the identified feature set. The proposed Symmetrically Weighted
Local Neighbour Gradient Pattern (SWLNGP) method achieves a better performance, with 96.28%
accuracy, 96.57% sensitivity, and 95.94% specificity. This study suggests that SWLNGP could be an
effective feature extraction technique for the recognition of Parkinsonian gait.

Keywords: Parkinson’s disease; Parkinson’s gait; symmetrically weighted local neighbour gradient
pattern; local pattern transformation; feature extraction

1. Introduction

Parkinson’s disease (PD) is a neurological condition located in the basal ganglia and
brainstem due to a lack of dopaminergic activity [1]. It is a chronic disorder of adult
onset, which becomes more common with age [2]. A survey says that from 5% to 10%
of cases are due to hereditary predisposition, and 90–95% of cases are due to idiopathic
behavior [3]. Tremor, rigidity, and slowness of movement are the symptoms of PD in its
early stage, causing difficulty in movements [4] and dysphonia, also known as speech
disorder [5]. Sleep disorder, depression, and loss of smell are the symptoms that start
before the commencement of physical disorders [6].

PD motor disorders are diagnosed using freezing of gait [7], foot pressure analysis,
finger motion analysis, voice and speech disorders [8,9], brain dopaminergic imaging,
and handwriting studies. However, the decision is made based on subjective feelings
and the time taken for testing is extensive [10]. Chiu et al., on the other hand, state that
finger motion analysis was used to test the goniometry of finger joints [11]. Based on the
survey, the dopaminergic image in the brain is considered as an authentic method for the
identification of PD [12].
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In gait dynamics, continuous effects of PD were noticed. Gait idiosyncrasies involve
the subject’s stride duration, pace, and swing period, which can easily be assessed by
wearable sensors [13]. Richards et al. [14] reported on surveys of motor control signs in
patients for the inference of a Unified Parkinson’s Disease Rating Scale (UPDRS) score to
assess the severity of PD symptoms. These findings can still be misleading, despite their
being checked by expert physicians. Chemical tests have been suggested to identify PD,
which has been analyzed in [15]. Functional brain changes in magnetic resonance images
(MRI) can be detected in people with PD [16] and Alzheimer’s disease [17]. Handwriting
irregularities [18], and handwritten drawing patterns [19], especially the spiral drawing
test, have been used to identify PD. Resting state or motor activation electroencephalog-
raphy (EEG) analysis also have been found to be useful for neurodegenerative disorder
classification [20,21].

The connection between gait and dynamic equilibrium subjects in the identification
of PD in its early stage has been diagnosed using various advanced diagnostic software
systems, which were proposed in [22]. In the traditional method of PD diagnosis, the gait
signals are usually observed by trained neurologists to identify the neurological disorder,
which is time-consuming and complex. Using information obtained from wearable sensors,
the medical doctor can remotely assess the PD patient’s status and prescribe the best
treatment [23]. Recently, mobile devices such as smartphones and tablets have been
employed to analyze user input in the form of voice, spiral drawings and answers to the
self-administered cognitive test (SAGE) [24] to detect the symptoms of PD and related
central nervous system (CNS) disorders, such as Alzheimer’s disease, Huntington’s disease
(HD), or mild cognitive impairment (MCI) [25,26].

In Local Binary Pattern (LBP) techniques, the time taken for the process of feature
extraction is very minimal and each sample of the pattern can be analyzed. The develop-
ment of pattern recognition techniques to select the prominent statistical features from gait
signals with improved accuracy remains a challenging task in the automatic diagnosis of
PD. Ertugrul et al. [4] presented a method for detecting PD using shifted one-dimensional
LBPs by extracting the features from sensor readings and the possible shift amount was
carried along with several machine learning algorithms to achieve the highest accuracy.
The author of [27] developed a technique called neighborhood representation local binary
patterns, in which the statistical features were extracted from the transformed data and
the performance was evaluated using artificial neural network (ANN) classifier. Various
methods of signal processing techniques are used in PD detection. Using the time domain
analysis, methods such as Principal Component Analysis (PCA) [28], Neural Network with
Weighted Fuzzy Membership function [29], and Short-Term Fourier Transforms (STFT) [30]
are used to classify the Parkinson’s and non-Parkinson’s gait signals. PD is often not diag-
nosed for several years, because symptoms and the course of the disease differ. Accordingly,
more sensitive diagnostic tools for the diagnosis of PD are required. Since the progression
of the disease increases day by day, there is an increase in various symptoms that make
PD more difficult to manage. The global burden of PD is increased with the increasing
number of aged people. It is estimated that only 4% of people are diagnosed before the
age of 50. It is evident that early prediction substantially reduces the risk of severity in
PD patients through physical exercises. In the USA, it is reported that the average cost of
Parkinson’s medication is $2,500 per year and Parkinson’s surgery costs up to $100,000 per
patient. The proposed system will lead to the early diagnosis of the disease, which will
reduce the average cost of medication for Parkinson’s patients.

The objective of this research is to determine and verify an intelligent system for
detecting Parkinson’s disease from human gait signal. The dataset used in this paper was
obtained from PhysioNet website, which provides movement disorder data supervised by
a neurologist. PhysioNet is an open-source software that provides access to physiological
and clinical data developed by the collaborative research of Harvard medical school, Boston
University, McGill University and MIT. The gait signal in Parkinson’s disease (gaitpdb)
dataset comprises three gait datasets recorded through various experimental setup, which
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have been used to identify Parkinson’s disease. This paper focuses on the role of pattern
recognition approaches, namely LBP, Local Gradient Pattern, Local Neighbour Gradient
Pattern and, Local Neighbour Descriptive Pattern, to detect PD.

The main contributions of our study are summarized as follows:

• This study investigates the role of analyzing gait signals using LBP techniques during
feature extraction before classification. Supplementary to LBP techniques, Local
Gradient Pattern (LGP), Local Neighbour Descriptive Pattern (LNDP), and Local
Neighbour Gradient Pattern (LNGP) techniques are used to extract features from
gait signals.

• Statistical features were derived and analyzed, and the statistical Kruskal–Wallis test
was carried out for the selection of an optimal feature set. The classification was then
carried out by ANN for the identified feature set.

• The highest performance accuracy was acquired by the Symmetrically Weighted
Local Neighbour Gradient Pattern (SWLNGP) technique. The enhancement has
been accomplished by the ability of local pattern techniques to gauge the gradient
relationship between the neighboring points.

• To the best of the authors’ knowledge and from the literature survey, SWLNGP has
not been used in PD detection to date.

Section 2 deals with a detailed discussion of the proposed methodology, including an
explanation of the dataset. Section 3 explains the experimental results and discusses the
comparison with other pattern techniques. Finally, Section 4 concludes the proposed study
and offers future directions.

2. Materials and Methods
2.1. Dataset

The dataset (gaitpdb) utilized in this work was retrieved from PhysioNet, which was
assembled by the authors of [31–33]. Gaitpdb encloses the gait signals that can lead to
classifying the subject as healthy or Parkinson’s affected. Out of 166 subjects, 73 were
healthy (mean age: 66.3 and mean weight: 72.4) and the rest were affected (mean age: 63.6
and mean weight: 72.8). The assimilated gait data were sampled at 0.01 s time intervals,
for an epoch of two minutes. Inconsistencies were validated by requesting the subjects
to accomplish three miscellaneous tasks. Based on the task executed by a subject and the
progression of the dataset, they are entitled to labels such as Si [31], Ga [32], or Ju [33].
Sixteen sensors, eight on each foot, were integrated into shoes for supervision. The sensor
signals collected from each foot channeled the Vertical Reaction Force (VRF), measured
in Newton.

The experiments were performed on an Intel core i5 (2.40 GHz) processor with 6 GB
RAM using the MATLAB R2018b (MathWorks, Nattick, MA, USA) software. The sampled
data structure is disclosed in Table 1. For both Parkinson’s and healthy subjects, Figure 1
delineates the gait signals received.

In both Equations (1) and (2), n represents the length of the boolean array b.

Table 1. Columns and data represented in a patient’s record.

Columns Data Represented

Col 1 Time (seconds)
Cols 2–9 Vertical Ground Reaction Force from sensors in left foot (Newton)

Cols 10–17 Vertical Ground Reaction Force from sensors in right foot (Newton)
Col 18 Total Reaction Force under left foot (Newton)
Col 19 Total Reaction Force under right foot (Newton)
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Figure 1. (a) illustrates VRF data captured by the sensors placed on the left foot of a subject declared healthy in the dataset;
(b) illustrates VRF data captured by the sensor when placed in the same location on a Parkinson’s patient.

2.2. Outline of Methodology

Figure 2 illustrates an overview of the proposed methodology, followed by explanations
regarding each block involved. The following section elaborations the rest of the process.

Block 1: Sensors positioned on the foot of the subject channels for calculating vertical
ground reaction force (VRF) at the rate of 10 Hz for a time window of 120 s. The channeled
signal data were stored in a numerical format for all 166 subjects in the dataset.

Block 2: Pattern recognition techniques process nine VRF samples to form a code
representing the pattern, and the entire signal is converted into a normal distribution
of values.

Block 3: The distribution’s statistical properties such as skewness, kurtosis, stan-
dard deviation, energy, normalized energy, Shannon’s entropy, log energy, entropy, mean,
maximum, and normalized standard deviation were analyzed.

Block 4: Ten different features were evaluated from the normal distribution derived
per sensor and, to enhance the model, the Kruskal–Wallis test was conducted to select the
features with the highest impact on the categorization of the subjects.

Block 5: The extracted features are fed as an input to the artificial neural network
classifier to distinguish between an affected patient and a healthy subject.

2.3. Feature Extraction

PD is commonly found amongst the elderly and its complications can be serious.
Early detection of the disease may slow down the progression of the disease and decrease
its fatality. Gait disturbance is a prominent symptom and occurs during the early stage
of PD. Since traditional feature extraction techniques result in relatively poor classifica-
tion accuracy, there is a need for a novel technique to identify the natural changes in the
gait features for the early identification of PD, with improved accuracy. Based on this, a
Symmetrically Weighted Local Neighbour Gradient Pattern (SWLNGP) method is pro-
posed, and its performance is analyzed with the existing feature extraction algorithms. The
foremost aim of this utilization is to select patterns from the images and support neural
networks to boost its performance. The pattern identification procedure encompasses the
transformation of a region of interest in the image into a decimal representation. At the
end of this conversion, similar regions of the image hold identical decimal magnitude. By
applying a pattern recognition algorithm, the signal is converted into a normal distribution
with a fixed range. Furthermore, the distributions may be distinguished by extracting all
the statistical features mentioned in Section 2.
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Figure 2. Block diagram of the proposed methodology.

In this study, various techniques were employed to analyze trends within VRF data
sampled from the given subjects. Eight algorithms were implemented, and all are discussed
in detail in the next section.

2.3.1. Local Binary Pattern and Symmetrically Weighted Local Binary Patterns

Although eight algorithms were implemented, they are considered a derivative of
LBP. LBP involves scrutinizing non-overlapping regions of the gait signal by comparing
the eight values of VRF against a nominated value. A Boolean digit representing the result
is concatenated to form a string of eight-bit length per comparison. The Boolean string
is then transformed to decimal format. Through the repetitive processing of VRF data, a
collection of unique values representing trends in gait signals are obtained. Although LBP
is known for its ability to capture global variations, gait data have noise triggered due to
random movements other than those requested.

Hence, a variation of the technique was put forward to mitigate the consequences of
such noise. The difference between both techniques are represented in its binary to decimal
conversion. Algorithm 1 elaborates the procedural representation of LBP and SWLBP
pattern technique and Figure 3 depicts both LBP and SWLBP techniques.
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Algorithm 1:

Require: 1 × 9 VRF signal array, x[1 . . . 9].

1. For a given signal, compute the centre point (c) with an adjacent point.
2. For each sample point, calculate the gradient value as
3. x[i] = |x[i]− c| for i = 0, 1, 2, . . . , n.
4. Compare the gradient values, if x[i] ≥ c, when the value of 1 is set, if not 0 will be assigned.
5. Obtained binary code is converted into decimal representation.

The LBP and SWLBP code is calculated as:

LBP =
n

∑
i=1

(
b[i]× 2n−i

)
, (1)

SWLBP =

n
2

∑
i=1

(
b[i]× 2n−i

)
+

n

∑
i= n

2 +1

(
b[i]× 2i− n

2

)
, (2)
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2.3.2. Local Gradient Pattern and Symmetrically Weighted Local Gradient Pattern

Along with LBP’s procedural approach, LGP goes a step further to ensure that not
only global variation, but also certain local dissimilarities in the signal, are captured. Hence,
in this technique, the the mid-point value is selected and its VRF magnitudes are calculated
based on their differences from the selected mid-points of the region. Furthermore, the
derived values are averaged to form a threshold value. Unlike in LBP, the new derivations
are compared to the threshold value instead of the mid-point, capturing major local
variations as well.

The SWLGP process follows all LGP steps, but disregards the traditional conversion
method. Algorithm 2 elaborates the procedural representation of LGP and SWLGP pattern
techniques and Figure 4 depicts both LGP and SWLGP techniques.
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Algorithm 2:

Require: 1 × 9 VRF signal array, x[1 . . . 9].

1. Set center value in the region as c, with the number of adjacent points n.
2. Evaluate the threshold value by implementing (3), and consider it the new comparison

constant, since further comparisons are performed between the threshold value and the
difference between the magnitude and value of c.

3. Compute the absolute difference, the gradient g, between x[i] and c, where g = |x[i]− c|.
4. Compare the gradient and the threshold value, g ≥ threshold and, if the result is true,

represent by 1, if not indicate as 0.
5. The resultant binary code is converted into a decimal code.

Threshold =
1
n
×

n

∑
i=1
|x[i]− c|, (3)

Diagnostics 2021, 11, x FOR PEER REVIEW 7 of 19 
 

 

1. Set center value in the region as 𝑐, with the number of adjacent points 𝑛. 
2. Evaluate the threshold value by implementing (3), and consider it the new compar-

ison constant, since further comparisons are performed between the threshold value 
and the difference between the magnitude and value of 𝑐. 

3. Compute the absolute difference, the gradient 𝑔, between 𝑥[𝑖] and 𝑐, where 𝑔 = |𝑥[𝑖] –  𝑐|. 
4. Compare the gradient and the threshold value, 𝑔  𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 and, if the result is 

true, represent by 1, if not indicate as 0. 
5. The resultant binary code is converted into a decimal code. 

 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =   ×  ∑ |𝑥[𝑖] − 𝑐|, (3) 

Mathematically, the LGP and SWLGP code is given as 𝐿𝐺𝑃 =  ∑ (𝑏[𝑖] × 2 ), (4) 

However, the variation in conversion illustrated by SWLBP is depicted as 𝑆𝑊𝐿𝐺𝑃 =  ∑ (𝑏[𝑖] ×  2 ) + ∑ 𝑏[𝑖] ×  2 , (5) 

 
Figure 4. LGP procedure illustrated in a pictorial workflow diagram. 

2.3.3. Local Neighbour Descriptive Pattern and Symmetrically Weighted Local Neigh-
bour Descriptive Pattern 

Unlike LBP and LGP, the LNDP methodology focuses on showing the prominence 
of local variation in gait signals. Therefore, this technique examines the relationship be-
tween a selected VRF magnitude within the region and its adjacent on the right. Such 
scrutiny warrants that any minute changes in trends within the signal are noticed and 
recorded. Though certain noise in gait data may reduce the efficiency of the technique in 
detecting intimate patterns, the utilization of SWLNDP helps the traditional method 
overcome this drawback. In SWLNDP or any other symmetrically weighted binary pat-

Figure 4. LGP procedure illustrated in a pictorial workflow diagram.

Mathematically, the LGP and SWLGP code is given as

LGP =
n

∑
i=1

(
b[i]× 2n−i

)
, (4)

However, the variation in conversion illustrated by SWLBP is depicted as

SWLGP =

n
2

∑
i=1

(
b[i]× 2n−i

)
+

n

∑
i= n

2 +1

(
b[i]× 2i− n

2

)
, (5)

2.3.3. Local Neighbour Descriptive Pattern and Symmetrically Weighted Local Neighbour
Descriptive Pattern

Unlike LBP and LGP, the LNDP methodology focuses on showing the prominence of
local variation in gait signals. Therefore, this technique examines the relationship between
a selected VRF magnitude within the region and its adjacent on the right. Such scrutiny
warrants that any minute changes in trends within the signal are noticed and recorded.
Though certain noise in gait data may reduce the efficiency of the technique in detecting
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intimate patterns, the utilization of SWLNDP helps the traditional method overcome this
drawback. In SWLNDP or any other symmetrically weighted binary pattern technique, the
conversion only yields values within the range 0–30, unlike in LBP, LGP or LNDP, where
codes lay within the range 0–255.

The reduction in the limits of the range between the two sets of techniques symbolizes
the difference in the ability to detect and uniquely present the features. Given the shrunken
range in symmetrically weighted patterns, a set of trends are clustered into the same
group, unlike in the traditional techniques. Therefore, reducing the uniqueness by a safe
standard ensures that the noise in the gait signal is disregarded. Algorithm 3 elaborates the
procedural representation of LNDP and SWLNDP pattern technique and Figure 5 depicts
both LNDP and SWLNDP techniques.

Algorithm 3:

Require: 1 × 9 VRF signal array, x[1 . . . 9].

1. Let the number of adjacent points m.
2. Select the m/2 number of neighbor points for each signal point c with respect to front and

back.
3. Calculate the difference between consecutive points.
4. Comparison of the result is computed as, x[i] ≤ x[i + 1], where 1 in case of current element

greater than or equal to the adjacent value, else 0.
5. In the encrypting step, the binary value is converted into a decimal value.

Mathematically, the LNDP and SWLNDP code is given as:

LNDP =
m

∑
i=1

(
b[i]× 2n−i

)
, (6)
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However, the variation in conversion illustrated by SWLNDP is depicted as

SWLNDP =

n
2

∑
i=1

(
b[i]× 2n−i

)
+

n

∑
i= n

2 +1

(
b[i]× 2i− n

2

)
, (7)
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2.3.4. Local Neighbour Gradient Pattern and Symmetrically Weighted Local Neighbour
Gradient Pattern

The LNGP technique is derived from LBP. The illustration demonstrated in Figure 6
associates phases from both LGP and LNDP. On combining these implementations, the
LNGP technique sensitizes any minute local variations within the region being processed,
in turn, capturing minor as well as major global variations in the signal being processed.
Though this may be considered an advantage from certain perspectives, this may be a
hindrance when extracting statistical features to determine the disparities between the
records of healthy subjects versus the affected. Hence, the inclusion of SWLNGP was
considered a necessity, as in all previously discussed algorithms. Thus, SWLNGP reduces
the sensitivity of the algorithm and ensures that only vital changes in the signal data are
captured. This contributes towards the efficient distinguishability of a distribution of
values produced by gait signals of a healthy subject versus the distribution of values of
an affected subject. The illustrations of LNGP and SWLNGP code are shown in Figure 6.
Algorithm 4 illstrates the steps involved in computing LNGP and SWLNGP technique.

Algorithm 4:

Require: 1 × 9 VRF signal array, x[1 . . . 9].

1. Select the center value c from the set of neighboring points.
2. For each sample point, calculate the gradient value as x[i] = |x[i]− c| for i = 0, 1, 2, . . . , n.
3. Compare the continuous neighboring gradient point along with the center value c. If the

adjacent point x[i] is greater than or equal to x[i + 1] the value of 1 is set, otherwise 0 will be
assigned.

4. In the transformation step, the binary value is converted into decimal code.
5. Compute the LNGP code.

LNGP =
n

∑
i=1

(
b[i]× 2n−i

)
, (8)
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Hence, the mathematical formulation for SWLNGP was depicted as:

SWLNGP =

n
2

∑
i=1

(
b[i]× 2n−i

)
+

n

∑
i= n

2 +1

(
b[i]× 2i− n

2

)
, (9)

Eleven features based on the transformation were extracted from each sensor and they
are maximum, mean, standard deviation (SD), energy, skewness, and kurtosis, normalized
energy (NE), normalized standard deviation (NSD), log entropy (LE), and Shannon’s
entropy (SE), which are defined as follows:

Mean c =
1
N

N

∑
i=1

ci, (10)

SD σ(c) =

√√√√ 1
N

N

∑
i=1

(ci − c)2, (11)

Energy e =
M

∑
i=1

(ci)
2, (12)

Skewness s =
N

(N − 1)(N − 2)

N

∑
i=1

(
ci − c
σ(c)

)3
, (13)

Kurtosis k =
1

N × (σ(c))4

N

∑
i=1

(ci − c)4, (14)

Normalized Energy NE =
1
N

N

∑
i=1

(ci)
2, (15)

Normalized standard deviation NSD =
σ(c)

cmax − cmin
, (16)

Log Entropy LE =
N

∑
i=1

log2(ci)
2, (17)

Shannon Entropy SE = −
N

∑
i=1

(ci)
2log2

(
ci

2
)

. (18)

In the above-stated equations, the variable ci denotes the decimal code at position i in
the distribution of values and, N denotes the number of codes that are available.

2.4. Feature Selection

Feature selection helps to diminish the computational complexity in classifying PD and
normal patients. Some of the extracted features, due to their low discriminating abilities,
do not contribute significantly to the results. Moreover, not all features are very much in
line with the result. In this study, the non-parametric Kruskal-Wallis test was conducted to
figure out the significance of each feature for identifying the difference between the PD
and healthy subjects. This test can be used to analyze statistical differences between two or
more features of an independent variable.

To compute the Kruskal–Wallis test statistic K, where n represents the number of
features, J refers to the total of samples, Aj represents the sample size in j-th group and Tj
denotes the ranking function, the following equation was used:

K = 12/J(J + 1) =
n

∑
j=1

(
Tj2

Aj

)
− 3(J + 1), (19)
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The statistical features were considered as a set of independent features and targets
were considered as the dependent feature. A p-score is originated by the test, which
portrays the impact on the target. The feature is checked as impactful if its p-score is lower
than the threshold value of 0.05. The extracted features are summarized in Table 2. The
results obtained stress that the lowest p-scores were reached by skewness, kurtosis, and
normalized standard deviation.

Table 2. Results of the Kruskal–Wallis test for feature selection.

Feature P-Score

Standard Deviation 0.081195
Energy 0.077301

Normalized Energy 0.077301
Shannon’s Entropy 0.072003

Log Energy Entropy 0.067493
Mean 0.033388

Maximum 0.005222
Skewness 2.00 × 10−4

Kurtosis 1.43 × 10−4

Normalized Standard Deviation 1.34 × 10−4

2.5. Artificial Neural Network (ANN) Classifier

An ANN classifier is a group of neurons performing a mathematical operation on
each layer, as shown by Figure 7. The neural network architecture involved in this work
is shown in Table 3, demonstrating the training feature that yielded the best results. The
architecture can be sorted into an ANN classifier by performing various training functions,
changing the hidden layer and other parameters.
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Table 3. ANN configuration summary and input size.

Parameters Values

No. of Input Neurons 176/48 (Depending on input feature set)
No. of Hidden Neurons 20
No. of Output Neurons 1

Training Function Trainscg
Hidden Transfer Function Tansig
Output Transfer Function Softmax
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However, only the training role was examined to evaluate the difference in output in
this analysis. The nine different training functions applied in this work are Scaled Conjugate
Gradient (trainscg), Conjugate Gradient with Powell/Beale Restarts (traincgb), Fletcher-Powell
Conjugate Gradient (traincgf), Polak-Ribiére Conjugate Gradient (traincgp), One Step Secant
(trainoss), Gradient Descent (traingd), Variable Learning Rate Gradient Descent (traingdx),
Gradient Descent with Momentum (traingdm), and Resilient Backpropagation (trainrp).

The performance of the classifier was discerned using Positive (TP), True Negative
(TN), False Positive (FP), and False Negative (FN) parameters, as follows:

Accuracy =
TN + TP

TN + TP + FN + FP
× 100, (20)

Sensitivity =
TP

TP + FN
× 100, (21)

Speci f icity =
TN

TN + FP
× 100, (22)

PPV =
TP

TP + FP
× 100, (23)

NPV =
TN

TN + FN
× 100, (24)

MCC =
(TP× TN)− (FP× FN)√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
× 100, (25)

F1− Score =
2× TP

FP + FN + (2× TP)
× 100, (26)

G−Mean =

√(
TP

TP + FN

)
×
(

TN
TN + FP

)
× 100, (27)

Here, PPV and NPV are Positive Predictive Value and Negative Predictive Value.
Sensitivity indicates the rate of positive values correctly deduced, while specificity deter-
mines the rate of negative values that were correctly distinguished. Accuracy measures the
percentage of all correctly recognized values.

3. Results and Discussion

The prime objective of this study was to observe the influence of binary pattern
techniques when identifying affected subjects from healthy persons using gait signals.
Eight different pattern recognition techniques were used for the feature extraction, which
leads to a good performance in identifying PD in its early stage. Divergence in the steps
followed by each algorithm brings about different sets of dissimilarities within the trends
in the VRF data. The proposed methodology, which contributes to maximum performance
with respect to time-efficiency, classification was performed utilizing the statistical features
derived from the transformed signal. In this phase of work, the resulting feature set per
algorithm was classified where each set consists of 11 features per sensor, with a total of
176 features represented in the columns.

The classification was conducted twice in this work, under different conditions. On
the first conditional event, the ANN classified all eight derived feature sets separately.
The results of these proceedings are summarized in Table 4. However, based on the
fundamentals of machine-learning techniques, it is well known that not all independent
features contribute to classification. To overcome this drawback, a feature selection phase,
as discussed in the previous section, was implemented. On scrutinizing the outcomes of
the Kruskal–Wallis test, the p-score achieved by statistical features revealed that skewness,
kurtosis and normalized standard deviation were the lowest. In theory, a lower the p-score
for an independent feature leads to a higher correlation.
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Table 4. Results of first classification phase: all feature columns fed as input to the ANN.

Techniques Accuracy
(%)

Sensitivity
(%)

Specificity
(%) PPV (%) NPV (%) MCC (%) F1-Score

(%)
G-Mean

(%)

LBP 95.08 95.70 94.26 95.80 94.86 90.31 95.57371 94.81898
SWLBP 95.50 95.23 95.80 96.84 94.48 91.17 95.88928 95.39281

LGP 94.43 93.98 94.96 96.04 93.14 89.06 94.84712 94.30776
SWLGP 93.83 93.66 94.03 95.45 92.44 87.79 94.37416 93.649
LNDP 92.38 92.86 91.69 93.93 91.15 84.811 93.18298 91.9793

SWLNDP 93.50 93.74 93.16 94.32 93.37 87.29 93.79522 93.23528
LNGP 94.42 94.42 94.46 95.75 94.10 89.33 94.78071 94.18657

SWLNGP 94.64 94.51 94.87 95.70 93.95 89.52 94.95906 94.59342

After these results, a revised feature set is formed for every algorithm attained; only
skewness, kurtosis, and normalized standard deviation were derived for all sensors by
reducing the number of independent variables to 48. Furthermore, the same ANN then
classified the revised datasets per algorithm, and these results are summarized in Table 5.
On scrutinizing the results from both classification phases, the performance of the ANN
on the revised feature set, corresponding to SWLNGP, showed the maximum. With
further research, it was found that the varying training functions of a neural network may
significantly impact its performance. To explore the results of the proposed model, different
training functions were configured, and a classification was performed.

Table 5. Results of second classification phase: revised feature set input to the ANN.

Techniques Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) MCC (%) F1-Score
(%)

G-Mean
(%)

LBP 95.39 95.71 95.01 96.48 94.21 90.73 95.94554 94.87847
SWLBP 95.21 94.91 95.67 96.33 94.61 90.76 95.38315 95.06822

LGP 94.07 94.76 93.26 95.16 93.57 88.37 94.68777 93.76139
SWLGP 94.69 95.03 94.23 95.69 94.26 89.59 95.17081 94.38679
LNDP 91.34 91.23 91.42 93.09 90.34 83.04 91.85903 91.09237

SWLNDP 92.88 94.01 91.5 93.68 92.60 85.87 93.6776 92.5154
LNGP 94.70 94.90 94.5 95.48 94.17 89.52 95.0827 94.59604

SWLNGP 96.28 96.57 95.94 96.94 96.04 92.75 96.6132 96.13201

Nine training functions were considered in this study, and Table 6 summarizes the
results of classification under each configuration. Upon scrutinizing the performance
reports, scaled conjugate gradient training function achieved a maximum accuracy of
96.28%, 96.57% sensitivity, and 95.94% specificity, when compared to the other training
functions.

Table 6. Results from classification under different training functions.

Training
Function

Accuracy
(%)

Sensitivity
(%)

Specificity
(%) PPV (%) NPV (%) MCC (%) F1-Score

(%)
G-Mean

(%)

trainscg 96.28 96.57 95.94 96.94 96.04 92.75 96.6132 96.13201
traincgb 94.97 95.01 94.92 96.06 94.25 90.12 95.36571 94.8344
trainoss 94.48 95.15 93.66 95.17 93.96 88.96 95.07893 94.27387
traincgf 93.91 94.07 93.69 95.11 93.22 88.04 94.36148 93.66999
traincgp 92.83 93.43 92.07 94.02 92.06 85.77 93.57451 92.57581
trainrp 91.80 91.90 91.73 93.56 90.95 84.05 92.40578 91.52484

traingdx 81.46 83.11 79.28 83.99 80.34 63.32 83.00961 80.60864
traingd 66.46 70.26 61.51 70.64 63.50 32.87 - 63.52383

traingdm 63.6969 68.12 58.01 67.95 59.88 26.91 67.2902 61.52082

Figure 8 compares the three major performance metrics, accuracy, sensitivity, and
specificity, during the second classification phase, involving the revised feature set. How-
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ever, the primary reason for the rapid increase in performance is the SWLNGP algorithm.
This algorithm can identify both local and global variation within the gait signal, which
balances out the effects of noise. Therefore, the algorithm contributes heavily towards the
achievement of an accuracy of this magnitude.
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In comparison to other methods of feature extraction and machine-learning models
proposed by existing authors, the technique suggested in this study is considerably more
time-efficient. For example, Lee et al. [29] suggested using Wavelet Transforms and Fourier
Transforms for feature extraction. Although these algorithms are widely used for signal
processing, the mathematical operations involved in this algorithm make them more
complex and, in terms of processing, a huge dataset leads to time complexity. Furthermore,
the models suggested in [30,34] had only 74.32% and 89.92% accuracy, respectively.

Jane et al. [34] suggested the use of a Q-backpropagated time-delay neural network
with no feature extraction. Though the model had an acceptable accuracy of 91.53%, the
training of a complicated neural network may take more time when fed to a large number
of observations. Perumal et al. [3] recommended the use of Analysis of Variance (ANOVA)
tests combined with LDA, but this achieved an accuracy that peaked at 86.9%. Although
comparatively time-efficient, the performance was still lower. Ertrugul et al. [4] suggested
a pattern technique for the analysis of gait data; the research article focused on identifying
the optimum position for comparison. By combining extracted features with a Multi-Layer
Perceptron (MLP) classifier, the model achieved an accuracy of 88.89%.

However, the model proposed in this research has overtaken these reported per-
formances by a valid margin. Figure 9 shows a diagrammatical representation of the
performance metrics achieved by the discussed studies. In addition to canceling noise
during conversion, not only SWLNGP but all other pattern techniques were proved to be
time-efficient. In theory, these procedures do not involve any complex equations or evalua-
tions. The most complex operation performed during the execution of such a technique is
raising two to a certain power. As the data are processed nine cells at a time, the maximum
power is be raised to seven. As proof of this theoretical derivation, the average time taken
by each technique to analyze a single sensor input and process an entire patient record is
summarized in Table 7.
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Table 7. Time taken to convert sensor data by pattern techniques.

LBP SWLBP LGP SWLGP LNDP SWLNDP LNGP SWLNGP

Average time taken to
convert sensor data (s) 0.0060 0.0059 0.0084 0.0059 0.0054 0.0054 0.0054 0.0054

Average time taken per
patient file (s) 0.0960 0.0942 0.1351 0.0936 0.0864 0.0872 0.0869 0.0863

Examining the values presented in this work proves that the techniques are highly
time-efficient in converting signals and are almost instantaneous. This proves to be an
advantage, as the patient is not asked to wait for hours or days to obtain their results.
However, a neural network, depending on the complexity of the data provided, may take
days to train. Each time a classification is carried out on deployment, the model may
require training on the new dataset to include the latest prediction results. If the neural
network requires days or hours to train, it may hinder the process of testing for a consid-
erable amount of time. However, due to the convergence of gait signals and extraction
of certain features, the new dataset is significantly less complex. The reduction in the
complexity of the input ensures faster training times, as well as proof of this presumption:
the classification times reported in this work are summarized in Table 8.

Table 8. Time taken to classify both actual and revised dataset in seconds.

LBP SWLBP LGP SWLGP LNDP SWLNDP LNGP SWLNGP

All features
10-fold cross validation 5.66 4.70 5.69 5.34 4.89 4.91 5.53 5.46

Per training and
validation 0.57 0.47 0.57 0.53 0.49 0.49 0.55 0.55

Selected features
10-fold cross validation 3.79 3.65 3.55 3.63 3.72 3.44 3.21 3.09

Per training and
validation 0.38 0.36 0.35 0.36 0.37 0.34 0.32 0.31

Examining the time values represented in Table 7, the time taken to run a 10-fold
cross-validation, averaged for 10 runs, as well as the average time per single training and
validation for each algorithm is only seconds. This ensures that there would be no time
delay longer than a maximum of minutes before the model is ready for utilization if applied
in real-life situations. Continuous training of the model with new and old data for each
prediction means that the performance of the model may increase. A handful of reasons
could be provided for the marginal decrease in performance, one of them being that the
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dataset consists of gait data from multiple tasks. The Ga set of subjects performed tasks
varying from that of Si and Ju. The variation in tasks introduces different trends to the VRF,
diminishing the pattern technique’s ability to capture similar trends.

Furthermore, the Ju subset of the subject records had an inconsistent number of
samples, not the standard time samples for 120s. Hence, due to the lack of data in the
Ju subset, the techniques may not identify patterns as efficiently as possible. A possible
enhancement of this study could be the introduction of regression algorithms to predict
the H & Y scale. The gaitpdb dataset utilized in this study had the H & Y score of each
subject. By utilizing the revised dataset, finalized as the optimum feature set, regression
algorithms may then be implemented to forecast the H & Y scale of a subject. This could
also contribute to the indirect enhancement of the accuracy of the model. The confusion
matrix for the maximum accuracy is given Figure 9.

The accuracy obtained in this study is greater than the results obtained by [3,4,29,30,34]
and is represented in Figure 8 and Table 9.

Table 9. Comparison between performance metrics achieved by other pattern techniques.

Reference Methods Accuracy (%) Sensitivity (%) Specificity (%)

Lee et al. [29]
Wavelet transforms for feature extraction and
classification by weighted fuzzy
membership functions.

74.32 81.63 73.77

Dailiri [30]

Short-time Fourier Transforms were employed for feature
extraction and reduced by chi-square method before
classification by Support
Vector Machines.

89.92 91.71 91.20

Jane et al. [34]

Time series data of a patient’s gait were directly fed to the
model. The model comprises a Q-Back propagated
time-delay Neural Network trained using a Q-learning
back propagation algorithm.

91.53 - -

Perumal and Sankar
[3]

ANOVA test performed on VRF from the left foot.
Various classifiers were implemented, and Linear
Discriminant Analysis was chosen.

86.9 - -

Ertugrul et al. [4]
1-D Shifted LBP was used in feature extraction and
multiple classifiers were tested. Multilayer Perceptron
was the highest performing classifier.

88.89 88.9 82.2

The proposed study Features extracted using Symmetrically Weighted Local
Neighbour Gradient Pattern were classified by ANN. 96.28 96.57 95.94

The confusion matrix for the proposed local pattern-transformation-based feature
extraction technique for recognition of Parkinson’s gait signals is shown in Figure 10.
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4. Conclusions

In this work, the classification of the PD patients was carried out using one-dimensional
VRF sampled data, which were collected from 16 channels at regular time intervals. Eight
different pattern recognition techniques were proposed for the diagnosis of Parkinson’s
disease using gait signals. In the proposed algorithms, the gradient values were extracted
from the signals as the statistical features for the classification of PD in its early stage. To
differentiate between PD and control (healthy) patients, the extracted features were tested
using the Kruskal–Wallis test to check the importance of each feature. By testing the identi-
cal distribution of every feature, a p-score was obtained. The features obtaining a p-value of
less than 0.05 were considered statically significant and represent strong evidence against
the null hypothesis. According to the result obtained from this analysis, a few features were
selected for classification. The proposed algorithms were analyzed for 16 different channels
and features using the ANN classifier, and the Stochastic Gradient training function was
shown to be superior. The ANN classifier achieved a maximum accuracy of 96.28% for
classifying PD and non-PD subjects using gait signals. In further analysis, these techniques
were proven to be time-efficient, and revising the datasets significantly diminished the
training time for the ANN. However, the inconsistency of samples and variations, caused
due to a diversity of tasks, contributed towards the reduction in performance. To enhance
the performance, it is possible to implement regression procedures to predict the H & Y
scores, and the disease severity can also be diagnosed.
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