
diagnostics

Article

Prediction of In-Hospital Cardiac Arrest Using Shallow and
Deep Learning

Minsu Chae 1, Sangwook Han 1, Hyowook Gil 2, Namjun Cho 2 and Hwamin Lee 3,*

����������
�������

Citation: Chae, M.; Han, S.; Gil, H.;

Cho, N.; Lee, H. Prediction of

In-Hospital Cardiac Arrest Using

Shallow and Deep Learning.

Diagnostics 2021, 11, 1255. https://

doi.org/10.3390/diagnostics11071255

Academic Editor: Leonid Chepelev

Received: 12 May 2021

Accepted: 8 July 2021

Published: 13 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Software Convergence, Soonchunhyang University, Asan 31538, Korea;
cmspr90@gmail.com (M.C.); hsw89417@gmail.com (S.H.)

2 Department of Internal Medicine, Soonchunhyang University, Cheonan Hospital, Cheonan 31151, Korea;
hwgil@sch.ac.kr (H.G.); chonj@schmc.ac.kr (N.C.)

3 Department of Computer Software Engineering, Soonchunhyang University, Asan 31538, Korea
* Correspondence: leehm@sch.ac.kr; Tel.: +82-41-530-4761

Abstract: Sudden cardiac arrest can leave serious brain damage or lead to death, so it is very
important to predict before a cardiac arrest occurs. However, early warning score systems including
the National Early Warning Score, are associated with low sensitivity and false positives. We
applied shallow and deep learning to predict cardiac arrest to overcome these limitations. We
evaluated the performance of the Synthetic Minority Oversampling Technique Ratio. We evaluated
the performance using a Decision Tree, a Random Forest, Logistic Regression, Long Short-Term
Memory model, Gated Recurrent Unit model, and LSTM–GRU hybrid models. Our proposed Logistic
Regression demonstrated a higher positive predictive value and sensitivity than traditional early
warning systems.

Keywords: in-hospital cardiac arrest; machine learning; deep learning

1. Introduction

During hospitalization, almost 3.7% of patients experience serious adverse events
such as cardiopulmonary arrest, unplanned intensive care unit (ICU) admissions, and
unexpected deaths [1]. The number of in-hospital cardiac arrests is increasing in the
United States and the Republic of Korea [2,3]. However, several studies have reported that
abnormal vital signs frequently precede these adverse events by several hours [4–6]. Many
hospitals operate rapid response teams (RRTs), which use uses medical alert systems to
respond quickly to such adverse events. There is evidence of decreased mortality and non-
ICU cardiac arrest rates with the use of RRTs; however, the effects of RRTs on ICU transfer
rates are equivocal [7]. Several risk scoring systems are used to identify patients at high
risk of serious adverse events including unexpected inpatient death. More than 100 early
warning systems (EWSs) are available to detect and manage clinical deterioration of
patients, including the Modified Early Warning Score (MEWS), VitalPAC™ Early Warning
Score (ViEWS), and the National Early Warning Score (NEWS) [8,9]. However, these
systems have low sensitivities and specificities [10–12].

Vähätalo et al. studied the association between silent myocardial infarction (MI)
and cardiac arrest [13]. They found that of 5869 cardiac arrest patients, 3122 (53.2%) had
coronary artery disease without prior knowledge [13]; of these 3122 patients, 1322 (42.3%)
had silent MI [13]. In addition, 67% of the patients had abnormal electrocardiography (ECG)
findings before cardiac arrest [13]. Miyazaki et al. analyzed the records of 46 cardiac arrest
patients aged 6 years or more and found that 21 (46%) had no history of arrhythmias [14].
In this study, we proposed a method to predict cardiac arrest in hospitalized patients by
analyzing biosignals measured through patch-type sensors and lab code data based on
shallow and deep learning.

Diagnostics 2021, 11, 1255. https://doi.org/10.3390/diagnostics11071255 https://www.mdpi.com/journal/diagnostics

https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0002-6482-3511
https://doi.org/10.3390/diagnostics11071255
https://doi.org/10.3390/diagnostics11071255
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/diagnostics11071255
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics11071255?type=check_update&version=2

Diagnostics 2021, 11, 1255 2 of 14

There are few cases of applying shallow and deep learning to predict cardiac ar-
rest. Kwon et al. [15] found that the sensitivities for predicting in-hospital cardiac arrest
were 0.3%, 23%, and 19.3%, respectively, for MEWS, Random Forest (RF), and Logistic
Regression (LR).

Dumas et al. investigated the possibility of predicting cardiac arrest by machine
learning in accordance with big data development [16]. Somanchi et al. developed a
cardiac arrest scoring system based on support-vector machines (SVM) using electronic
medical records (EMRs) [15]. The elements of this scoring system were age, sex, race, vital
signs, and laboratory data [17]. The vital signs and laboratory data were pulse oximetry,
hematocrit, sodium, heart rate, systolic blood pressure (SBP), hemoglobin, potassium,
alkaline phosphatase, diastolic blood pressure (DBP), glucose, magnesium, total protein,
temperature, calcium, creatinine, carbon, dioxide, phosphate, platelet count, albumin,
bilirubin, alanine aminotransferase, and aspartate aminotransferase [17]. Ong et al. de-
veloped a cardiac arrest model for use in critically ill patients within 72 h of presenting
to the emergency department based on SVM [18]. The elements of this model were heart
rate variability (HRV) with time and frequency domain, age, sex, medical history, heart
rate, blood pressure, respiratory rate, Glasgow coma scale, etiology, medication history,
and oxygen saturation [18]. Churpek et al. compared cardiac arrest patients to other
patients in the same ward [17], and found that the maximum respiratory rate, heart rate,
pulse pressure index, and minimum DBP were important predictors of cardiac arrest [19].
Churkpek et al. developed a cardiac arrest risk triage (CART) scoring system using time,
temperature, blood pressure, heart rate, oxygen saturation, respiratory rate, and mental
status [20]. Linu et al. developed an SVM for evaluating HRV and vital signs based on a
cardiac arrest model for use within 72 h [21]. Vital signs included heart rate, temperature,
SBP, DBP, pain score, Glasgow coma scale, respiratory rate, and oxygen saturation [21].
Murukesan et al. analyzed SVM and a probabilistic neural network (PNN) using HRV [22].
Kwon et al. developed a deep learning-based early warning system (DEWS) score. The
DEWS score-based recurrent neural network (RNN) used four vital signs: heart rate, SBP,
respiratory rate, and body temperature [15]. ElSaadyany et al. developed a wireless early
prediction system of cardiac arrest through the Internet of things (IoT) using heart rate,
ECG signal, body temperature, sex, age, and height [23]. The system predicted cardiac
arrest using abnormal body temperature or heart rate [23]. Ueno Ryo et al. developed
algorithms to predict cardiac arrest based on RF in patients [24]. They collected 8-hourly
vital signs and laboratory data for two days to obtain 24-h of data [24]. Sensitivity was
higher when only vital signs were used, but the use of vital signs and laboratory data gave
a higher positive predictive value (PPV) [24]. Hardt et al. investigated predicted risk for
clinical alerts based on deep learning using time series data [25]. Raghu et al. developed
algorithms to predict clinical risk based on shallow machine learning [26]. Viton et al.
developed algorithms for predictions using multivariate time series data based on deep
learning in healthcare [27]. Sbrollini et al. developed a deep learning model using ECG [28].
Ibrahim et al. performed shallow and deep learning algorithms using ECG [29].

In this study, we developed and validated deep learning-based artificial intelligence
algorithms for predicting adverse events including cardiopulmonary arrest, unplanned
ICU transfer, and unexpected death during hospitalization in Soonchunhyang University
Cheonan Hospital.

2. Materials

We performed a retrospective cohort study in Soonchunhyang University Cheonan
Hospital, a tertiary-care teaching hospital in the Republic of Korea. The study population
consisted of patients admitted to Soonchunhyang University Cheonan Hospital between
January 2016 and June 2019. Table 1 shows the characteristics of our study population.

Diagnostics 2021, 11, 1255 3 of 14

Table 1. Characteristics of the study population.

Characteristics Data

Study period January 2016–June 2019
Total patients, n 83,543

Patients with in-hospital cardiac arrest, n 1154
Number of features, n 13

Number of data for each patient, n 72
Sequence data slice size 8
Age, years, (mean ± SD) 57.5 ± 17.0

Males, n (%) 39,428 (47.2%)
Hospital Soonchunhyang University Cheonan Hospital

SD: standard deviation.

We divided the 8-h time series data from the 72-h time series data into 8-h steps. For
the shallow machine learning algorithm, we split the data by shuffling the training and
test data at a ratio of 9:1 and used the training data as the input for the stratified K-fold.
For deep learning, we split the data by shuffling the training and test data at a ratio of
9:1. Training data was split by shuffling the training and validation data at a ratio of 9:1.
Table 2 shows the input variables.

Table 2. Input variables.

Variable Description

Age Age at hospitalization
Sex Man (1) or woman (2)
DBP Diastolic blood pressure (30 ≤ DBP ≤ 300, mmHg)
SBP Systolic blood pressure (30 ≤ SBP ≤ 300, mmHg)

Body temperature Body temperature (30 ≤ BodyTemperature ≤ 45)
Respiratory rate Breaths per minute (3 ≤ Breath ≤ 60)
Blood Pressure Blood pressure (30 ≤ BloodPressure ≤ 300, mmHg)

Albumin Albumin values (Laboratory data)
Albumin check Presence of albumin (Present: 1, absent: 0)

Creatinine Creatinine values (Laboratory data)
Creatinine check Presence of creatinine (Present: 1, absent: 0)

Hb Hemoglobin values (Laboratory data)
Hb check Presence of HB (Present: 1, absent: 0)

SBP: systolic blood pressure; DBP: diastolic blood pressure; Hb: hemoglobin.

3. Methods

We divided the data into groups of 72 h so training, verification, and test data did not
mix during deep learning. The grouped data were divided into training, verification, and
test data, and sliced at 8-h intervals. Figure 1 shows the cardiac arrest prediction process.
We used TensorFlow, Keras, and scikit-learn for the prediction [30–32].

Because the Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and the
LSTM–GRU hybrid model are deep learning models for processing sequence data in three
dimensions (number of data, sequence length, and number of features), we reduced them
to two dimensions (number of data, number of features) for shallow machine learning.

3.1. Shallow Machine Learning Model
3.1.1. Decision Tree

Decision Tree (DT) was selected based on the input element. Figure 2 shows the
architecture of DT. In this study, DT predicted in-hospital cardiac arrest based on 8 h of
vital signs and laboratory data. DT showed the highest accuracy among the machine
learning algorithms. Although time series data are expressed in three dimensions, DT has
a two-dimensional input and does not consider the sequence of observations.

Diagnostics 2021, 11, 1255 4 of 14Diagnostics 2021, 11, x FOR PEER REVIEW 4 of 14

Figure 1. The process of cardiac arrest prediction: (1) data collection from the CSV file, (2) grouping of the data, (3) division
of the data into training, verification, and test data, (4) data slicing, (5) Synthetic Minority Oversampling Technique
(SMOTE) algorithm was performed on the training data, and (6) the machine learning algorithm.

3.1. Shallow Machine Learning Model
3.1.1. Decision Tree

Decision Tree (DT) was selected based on the input element. Figure 2 shows the ar-
chitecture of DT. In this study, DT predicted in-hospital cardiac arrest based on 8 h of vital
signs and laboratory data. DT showed the highest accuracy among the machine learning
algorithms. Although time series data are expressed in three dimensions, DT has a two-
dimensional input and does not consider the sequence of observations.

Figure 2. The architecture of Decision Tree (DT). The DT was classified by determining a range for
all features (e.g., sex, age, pulse, and systolic blood pressure) to predict cardiac arrest.

Figure 1. The process of cardiac arrest prediction: (1) data collection from the CSV file, (2) grouping of the data, (3) division
of the data into training, verification, and test data, (4) data slicing, (5) Synthetic Minority Oversampling Technique (SMOTE)
algorithm was performed on the training data, and (6) the machine learning algorithm.

Diagnostics 2021, 11, x FOR PEER REVIEW 4 of 14

Figure 1. The process of cardiac arrest prediction: (1) data collection from the CSV file, (2) grouping of the data, (3) division
of the data into training, verification, and test data, (4) data slicing, (5) Synthetic Minority Oversampling Technique
(SMOTE) algorithm was performed on the training data, and (6) the machine learning algorithm.

3.1. Shallow Machine Learning Model
3.1.1. Decision Tree

Decision Tree (DT) was selected based on the input element. Figure 2 shows the ar-
chitecture of DT. In this study, DT predicted in-hospital cardiac arrest based on 8 h of vital
signs and laboratory data. DT showed the highest accuracy among the machine learning
algorithms. Although time series data are expressed in three dimensions, DT has a two-
dimensional input and does not consider the sequence of observations.

Figure 2. The architecture of Decision Tree (DT). The DT was classified by determining a range for
all features (e.g., sex, age, pulse, and systolic blood pressure) to predict cardiac arrest.

Figure 2. The architecture of Decision Tree (DT). The DT was classified by determining a range for all features (e.g., sex, age,
pulse, and systolic blood pressure) to predict cardiac arrest.

3.1.2. Random Forest

RF is a DT-based ensemble model [33]. RFs sub-sample the dataset, perform DTs,
and select the DT with the highest accuracy. Figure 3 shows the architecture of RF. In this
study, RF performs a subsampling of 8-h of vital signs and laboratory data, and trains it

Diagnostics 2021, 11, 1255 5 of 14

on DTs. RF does not consider the sequence of observations. The number of subsamples is
denoted by n.

Diagnostics 2021, 11, x FOR PEER REVIEW 5 of 14

3.1.2. Random Forest
RF is a DT-based ensemble model [33]. RFs sub-sample the dataset, perform DTs, and

select the DT with the highest accuracy. Figure 3 shows the architecture of RF. In this
study, RF performs a subsampling of 8-h of vital signs and laboratory data, and trains it
on DTs. RF does not consider the sequence of observations. The number of subsamples is
denoted by n.

Figure 3. The architecture of Random Forest (RF). The RF was used as an input for multiple Deci-
sion Trees after subsampling the dataset and the results were aggregated.

3.1.3. Logistic Regression
LR calculates the probability through the sigmoid function. In this study, LR calcu-

lated the weight and bias based on 8 h of vital signs and laboratory data. LR was classified
by rounding off in-hospital cardiac arrest through the sigmoid function. LR input was in
two dimensions so LR did not consider the sequence of observations.

3.2. Deep Learning
We applied the dropout technique to the deep learning model to prevent overfitting

during training [34]. The dropout layer ignored some networks during training [34].

3.2.1. Long Short-Term Memory Model
The Long Short-Term Memory (LSTM) model is an RNN model proposed by

Hochreiter et al. [35]. The LSTM model solves the long-term dependency problem and
considers Input gate, Forget gate, Output gate, hidden state, and long-term memory cell.

Figure 4 shows the architecture of the LSTM model. In this study, the 8-h time series
data were input elements used for each step. The Forget gate deleted unnecessary long-
term memory by calculating previous long-term memory cells, previous outputs, and the
current input elements. The Input gate calculated the current long-term memory cell. The
current long-term memory was calculated using the result of the Forget gate, the current
input elements, and the previous results. The Output gate calculated the short-term result
using the result of the Input gate, the previous result, and the current input elements. The
LSTM model is complex because of multiple variables and gates, and the execution time
is slow because of the calculations in every step.

Figure 3. The architecture of Random Forest (RF). The RF was used as an input for multiple Decision Trees after subsampling
the dataset and the results were aggregated.

3.1.3. Logistic Regression

LR calculates the probability through the sigmoid function. In this study, LR calculated
the weight and bias based on 8 h of vital signs and laboratory data. LR was classified
by rounding off in-hospital cardiac arrest through the sigmoid function. LR input was in
two dimensions so LR did not consider the sequence of observations.

3.2. Deep Learning

We applied the dropout technique to the deep learning model to prevent overfitting
during training [34]. The dropout layer ignored some networks during training [34].

3.2.1. Long Short-Term Memory Model

The Long Short-Term Memory (LSTM) model is an RNN model proposed by
Hochreiter et al. [35]. The LSTM model solves the long-term dependency problem and
considers Input gate, Forget gate, Output gate, hidden state, and long-term memory cell.

Figure 4 shows the architecture of the LSTM model. In this study, the 8-h time series
data were input elements used for each step. The Forget gate deleted unnecessary long-
term memory by calculating previous long-term memory cells, previous outputs, and the
current input elements. The Input gate calculated the current long-term memory cell. The
current long-term memory was calculated using the result of the Forget gate, the current
input elements, and the previous results. The Output gate calculated the short-term result
using the result of the Input gate, the previous result, and the current input elements. The
LSTM model is complex because of multiple variables and gates, and the execution time is
slow because of the calculations in every step.

We organized the layers in the following order: LSTM layer→ dropout layer→ LSTM
layer→ dropout layer→ LSTM layer→ dropout layer→ LSTM layer→ dropout layer
→ dense layer. The dropout layer prevented overfitting by deactivating certain ratios
during learning.

Diagnostics 2021, 11, 1255 6 of 14
Diagnostics 2021, 11, x FOR PEER REVIEW 6 of 14

Figure 4. The architecture of the Long Short-Term Memory model. For each step, the input ele-
ments were trained in the LSTM model. The long-term cell (c) deleted unnecessary information for
each step, and stored it in the long-term memory cell while learning. The hidden status was h (i.e.,
short-term memory).

We organized the layers in the following order: LSTM layer → dropout layer →
LSTM layer → dropout layer → LSTM layer → dropout layer → LSTM layer → dropout
layer → dense layer. The dropout layer prevented overfitting by deactivating certain ra-
tios during learning.

3.2.2. Gated Recurrent Unit Model
The GRU model designed by Cho et al. [36] improved the processing time compared

to the LSTM model. The GRU model considers the Reset and the Update gates.
Figure 5 shows the architecture of the GRU model, which is similar to the LSTM

model. It calculates the hidden state, and at each step decides to store or ignore it. The
Reset gate calculates whether to consider the temporary hidden status. The Update gate
calculates whether to store the current result in the temporary hidden status. The number
of calculations for each step are reduced, and the structure is simpler than the LSTM
model. The execution time is faster than that of the LSTM model with similar results.

Figure 5. The architecture of the GRU model. For each step, the current result was calculated by
considering the weights, current input elements, and previous results or temporary hidden status.

We organized the layers in the following order: GRU layer → dropout layer → GRU
layer → dropout layer → GRU layer → dropout layer → GRU layer → dropout layer →
dense layer. For the LSTM–GRU hybrid model, we organized the layers in the following

Figure 4. The architecture of the Long Short-Term Memory model. For each step, the input elements were trained in the
LSTM model. The long-term cell (c) deleted unnecessary information for each step, and stored it in the long-term memory
cell while learning. The hidden status was h (i.e., short-term memory).

3.2.2. Gated Recurrent Unit Model

The GRU model designed by Cho et al. [36] improved the processing time compared
to the LSTM model. The GRU model considers the Reset and the Update gates.

Figure 5 shows the architecture of the GRU model, which is similar to the LSTM
model. It calculates the hidden state, and at each step decides to store or ignore it. The
Reset gate calculates whether to consider the temporary hidden status. The Update gate
calculates whether to store the current result in the temporary hidden status. The number
of calculations for each step are reduced, and the structure is simpler than the LSTM model.
The execution time is faster than that of the LSTM model with similar results.

Diagnostics 2021, 11, x FOR PEER REVIEW 6 of 14

Figure 4. The architecture of the Long Short-Term Memory model. For each step, the input ele-
ments were trained in the LSTM model. The long-term cell (c) deleted unnecessary information for
each step, and stored it in the long-term memory cell while learning. The hidden status was h (i.e.,
short-term memory).

We organized the layers in the following order: LSTM layer → dropout layer →
LSTM layer → dropout layer → LSTM layer → dropout layer → LSTM layer → dropout
layer → dense layer. The dropout layer prevented overfitting by deactivating certain ra-
tios during learning.

3.2.2. Gated Recurrent Unit Model
The GRU model designed by Cho et al. [36] improved the processing time compared

to the LSTM model. The GRU model considers the Reset and the Update gates.
Figure 5 shows the architecture of the GRU model, which is similar to the LSTM

model. It calculates the hidden state, and at each step decides to store or ignore it. The
Reset gate calculates whether to consider the temporary hidden status. The Update gate
calculates whether to store the current result in the temporary hidden status. The number
of calculations for each step are reduced, and the structure is simpler than the LSTM
model. The execution time is faster than that of the LSTM model with similar results.

Figure 5. The architecture of the GRU model. For each step, the current result was calculated by
considering the weights, current input elements, and previous results or temporary hidden status.

We organized the layers in the following order: GRU layer → dropout layer → GRU
layer → dropout layer → GRU layer → dropout layer → GRU layer → dropout layer →
dense layer. For the LSTM–GRU hybrid model, we organized the layers in the following

Figure 5. The architecture of the GRU model. For each step, the current result was calculated by considering the weights,
current input elements, and previous results or temporary hidden status.

Diagnostics 2021, 11, 1255 7 of 14

We organized the layers in the following order: GRU layer→ dropout layer→ GRU
layer→ dropout layer→ GRU layer→ dropout layer→ GRU layer→ dropout layer→
dense layer. For the LSTM–GRU hybrid model, we organized the layers in the following
order: LSTM layer → dropout layer → LSTM layer → dropout layer → GRU layer →
dropout layer→ GRU layer→ dropout layer→ dense layer.

3.3. Synthetic Minority Oversampling Technique

Cardiac arrest is less common than other cases, so our dataset was unbalanced. Under
and oversampling techniques can be employed to reduce data imbalance. Undersampling
decreases the majority data, and some information may be deleted [37,38]. Oversam-
pling increases the minority data and leads to overfitting [38,39]. They should only be
applied to the training dataset because they adjust datasets. Figure 6 shows the use of
SMOTE based on the neighboring data; SMOTE is an oversampling technique proposed by
Chawlas et al. [40].

Diagnostics 2021, 11, x FOR PEER REVIEW 7 of 14

order: LSTM layer → dropout layer → LSTM layer → dropout layer → GRU layer →
dropout layer → GRU layer → dropout layer → dense layer.

3.3. Synthetic Minority Oversampling Technique
Cardiac arrest is less common than other cases, so our dataset was unbalanced. Under

and oversampling techniques can be employed to reduce data imbalance. Undersampling
decreases the majority data, and some information may be deleted [37,38]. Oversampling
increases the minority data and leads to overfitting [38,39]. They should only be applied
to the training dataset because they adjust datasets. Figure 6 shows the use of SMOTE
based on the neighboring data; SMOTE is an oversampling technique proposed by Chaw-
las et al. [40].

Figure 6. Example of Synthetic Minority Oversampling Technique. Blue is majority data, red is
minority data, and purple is the generated minority data. Each generated minority data was gen-
erated from two minority data.

The SMOTE algorithm was performed on each minority dataset using the K Nearest
Neighbors (KNN) algorithm.

3.4. K-Fold Cross-Validation
K-Fold Cross-Validation is a method that cross-verifies the dataset. K-Fold Cross-

Validation partitions the k data subset in the original dataset. It improves performance by
verifying each partitioned dataset. The stratified K-fold Cross-Validation maintains the
ratio of the majority dataset to the minority dataset. Through cross-validation, we learned
not to depend on a specific partition in the learning process. We applied stratified K-fold
to DT, RF, and LR, and k was set as 4, 5 and 10, respectively.

3.5. Material Preprocessing
For this study, we extracted raw data from the electronic health records (EHRs) of

Soonchunhyang University Cheonan Hospital. Vital signs and laboratory data were meas-
ured by a medical sensor. We parsed patient information, vital signs, and laboratory data
according to the measurement time for all patients from raw data. We changed the meas-
urement interval time to an hour because measurement time intervals were different for
each patient. We replaced the missing values with the last measured values. We also used
72 h data because the hospitalization period was different for each patient. Patients who
were admitted or discharged outside the study period; patients under 18 years of age;
patients with death or cardiac arrest within 8 h after admission were excluded. For cardiac
arrest, we extracted vital signs and laboratory data for 72 h before cardiac arrest. For all
other patients, we extracted vital signs and laboratory data for the first to 72 h after hos-
pitalization.

Figure 6. Example of Synthetic Minority Oversampling Technique. Blue is majority data, red
is minority data, and purple is the generated minority data. Each generated minority data was
generated from two minority data.

The SMOTE algorithm was performed on each minority dataset using the K Nearest
Neighbors (KNN) algorithm.

3.4. K-Fold Cross-Validation

K-Fold Cross-Validation is a method that cross-verifies the dataset. K-Fold Cross-
Validation partitions the k data subset in the original dataset. It improves performance by
verifying each partitioned dataset. The stratified K-fold Cross-Validation maintains the
ratio of the majority dataset to the minority dataset. Through cross-validation, we learned
not to depend on a specific partition in the learning process. We applied stratified K-fold to
DT, RF, and LR, and k was set as 4, 5 and 10, respectively.

3.5. Material Preprocessing

For this study, we extracted raw data from the electronic health records (EHRs)
of Soonchunhyang University Cheonan Hospital. Vital signs and laboratory data were
measured by a medical sensor. We parsed patient information, vital signs, and laboratory
data according to the measurement time for all patients from raw data. We changed the
measurement interval time to an hour because measurement time intervals were different
for each patient. We replaced the missing values with the last measured values. We also
used 72 h data because the hospitalization period was different for each patient. Patients
who were admitted or discharged outside the study period; patients under 18 years of
age; patients with death or cardiac arrest within 8 h after admission were excluded. For
cardiac arrest, we extracted vital signs and laboratory data for 72 h before cardiac arrest.

Diagnostics 2021, 11, 1255 8 of 14

For all other patients, we extracted vital signs and laboratory data for the first to 72 h
after hospitalization.

4. Results
4.1. Performance Evaluation Method

Performance evaluation was based on the accuracy, PPV, and sensitivity. Although the
evaluation methods usually use accuracy, we used PPV and sensitivity for the performance
evaluation. There were four types of data prediction results: (1) true positive (TP): predicted
cardiac arrest in cardiac arrest cases; (2) false positive (FP): predicted cardiac arrest in non-
cardiac arrest cases (higher the FP, lower the PPV); (3) false negative (FN): did not predict
cardiac arrest in cardiac arrest cases (higher the FN, lower the sensitivity); (4) true negative
(TN): did not predict cardiac arrest in non-cardiac arrest cases. PPV was calculated using
Equation (1)

PPV =
TP

TP + FP
(1)

Negative predictive value (NPV) was calculated using Equation (2)

NPV =
TN

FN + TN
(2)

Sensitivity was calculated using Equation (3)

Sensitivity =
TP

TP + FN
(3)

Specificity was calculated using Equation (4)

Specificity =
TN

FP + TN
(4)

In the case of classification, both PPV and sensitivity have weights, the F1 score was
calculated using Equation (5), and the PPV and sensitivity were weighted at a 1:1 ratio.

F1 Score = 2× PPV × Sensitivity
PPV + Sensitivity

(5)

4.2. Performance Evaluation According to SMOTE Ratio

We used the LSTM model based on generated sequence data for each patient between
40 and 72 h for 8 h at 1-h intervals. We performed a performance evaluation using SMOTE
ratio. Table 3 shows the results of the performance evaluation. The case ratio of 1:0.05 was
the highest PPV.

4.3. Results of Shallow Machine Learning

We performed binary classification using DecisionTreeClassifier, RandomForestClas-
sifier, and LogisticRegression provided by Scikit-learn [41–43]. Table 4 shows the perfor-
mance evaluation based on test data.

4.4. Results of LSTM Model

We performed a performance evaluation based on the unit size of the LSTM model
as shown in Table 5. We highlighted the highest PPV, NPV, sensitivity, specificity, and F1
scores. We decided on a unit size of 96 because it was the highest F1 score.

4.5. Results of GRU Model

We conducted performance evaluation using the unit size of the GRU model as shown
in Table 6. We highlighted the highest PPV, NPV, sensitivity, specificity, and F1 scores. We
decided on a unit size of 128 because it was the highest F1 score.

Diagnostics 2021, 11, 1255 9 of 14

Table 3. Performance evaluation for the SMOTE ratio. The highest positive predictive value was
observed at a ratio of 1:0.05 and highest negative predictive value was observed at a ratio of 1:0.07.
The highest sensitivity was observed at a ratio of 1:0.07 and highest specificity was observed at a
ratio of 1:0.05. The highest F1 score was observed at a ratio of 1:0.07.

Ratio PPV NPV Sensitivity Specificity F1 Score

1:1 20.78% 99.12% 37.46% 98.01% 26.73%
1:0.08 38.14% 99.10% 35.17% 99.20% 36.59%
1:0.07 41.47% 99.20% 42.43% 99.16% 41.95%
1:0.06 41.49% 99.14% 38.57% 99.24% 39.98%
1:0.055 39.83% 99.14% 38.16% 99.20% 38.98%
1:0.05 43.28% 99.11% 35.86% 99.34% 39.22%
1:0.045 36.13% 99.08% 33.74% 99.17% 34.89%
1:0.025 36.82% 99.06% 32.80% 99.21% 34.69%

PPV: positive predictive value; NPV: negative predictive value.

Table 4. Performance evaluation of shallow machine learning performed by changing the value of k
in the stratified K-fold. The highest PPVs in DT, RF, and LR were 10, 5, and 10, respectively.

Algorithm K PPV NPV Sensitivity Specificity F1 Score

DT
4 43.99% 98.97% 25.80% 99.54% 32.52%
5 45.02% 98.98% 26.67% 99.55% 33.50%
10 46.80% 99.01% 28.99% 99.54% 35.80%

RF
4 97.20% 98.94% 23.48% 99.99% 37.82%
5 98.22% 98.95% 24.25% 100.00% 38.94%
10 96.44% 98.98% 26.18% 99.99% 41.19%

LR
4 5.12% 99.57% 75.07% 80.60% 9.59%
5 5.12% 99.57% 74.98% 80.60% 9.58%
10 5.14% 99.57% 76.33% 80.35% 9.64%

DT: Decision Tree; RF: Random Forest; LR: Logistic Regression; PPV: positive predictive value; NPV: negative
predictive value.

Table 5. Performance evaluation of LSTM model. We evaluated the performance according to LSTM
layer unit size. The highest PPV was 96 and highest NPV was 32. The highest sensitivity was 64 and
highest specificity was 96. The highest F1 score was 96.

Unit Size PPV NPV Sensitivity Specificity F1 Score

16 27.77% 99.05% 31.98% 98.84% 29.73%
32 33.80% 99.08% 32.56% 99.11% 33.17%
64 32.71% 99.06% 34.01% 99.02% 33.35%
96 38.37% 99.06% 32.66% 99.27% 35.28%

128 35.45% 99.06% 32.46% 99.18% 33.91%
PPV: positive predictive value; NPV: negative predictive value.

Table 6. Performance evaluation of the GRU model according to the GRU layer unit size. The highest
PPV was 128 and highest NPV was 32. The highest sensitivity was 32 and highest specificity was 128.
The highest F1 score was 128.

Unit Size PPV NPV Sensitivity Specificity F1 Score

16 26.28% 99.07% 33.62% 98.68% 29.50%
32 28.75% 99.19% 42.61% 98.53% 34.33%
64 32.05% 99.11% 36.33% 98.93% 34.06%
96 32.05% 99.11% 36.33% 98.93% 32.50%

128 34.59% 99.09% 34.59% 99.09% 34.69%
PPV: positive predictive value; NPV: negative predictive value; GRU: gated recurrent unit.

Diagnostics 2021, 11, 1255 10 of 14

4.6. Results of LSTM–GRU Hybrid Model

We performed a performance evaluation based on the unit size of the LSTM–GRU
model as shown in Table 7. We highlighted the highest PPV, NPV, sensitivity, specificity,
and F1 scores. We decided on a unit size of 96 because it was the highest F1 score.

Table 7. Performance evaluation of the LSTM–GRU model according to the GRU and LSTM layer
unit sizes. The highest PPV was 128 and highest NPV was 96. The highest sensitivity was 96 and
highest specificity was 16. The highest F1 score was 96.

Unit Size PPV NPV Sensitivity Specificity F1 Score

16 31.79% 98.62% 22.51% 99.33% 26.36%
32 23.34% 99.06% 33.33% 98.47% 27.46%
64 27.39% 99.06% 32.66% 98.79% 29.79%
96 30.53% 99.14% 38.65% 98.77% 34.12%

128 35.30% 99.06% 32.37% 99.17% 33.77%
PPV: positive predictive value; NPV: negative predictive value.

4.7. Result of the Performance Evaluation of Shallow and Deep Learning

Based on the results of Section 4.2, we set the ratio of SMOTE to 1:0.05 in the shallow
and deep learning model. We performed the shallow machine learning algorithm using
a stratified K-fold algorithm with k values of 4, 5, and 10 in Section 4.3. The values of k
for DT, RF, and LR were 10, 5 and 10, respectively. We performed the LSTM, GRU, and
LSTM–GRU hybrid models with unit sizes 16, 32, 64, 96, and 128 in Section 4.4–4.6. The unit
sizes for LSTM, GRU, and LSTM–GRU hybrid models were 96, 128, and 128, respectively.
Table 8 shows the result of the performance evaluation of each algorithm. We highlighted
the highest PPV, NPN, sensitivity, specificity, and F1 score.

Table 8. Performance evaluation of shallow and deep learning. The highest PPV was DT, highest
NPV was LR, highest sensitivity was LR, highest specificity was RF, and highest F1 score was RF.

Algorithm PPV NPV Sensitivity Specificity F1 Score

DT 46.80% 99.01% 28.99% 99.54% 35.80%
RF 98.22% 98.95% 24.25% 100.00% 38.94%
LR 5.14% 99.57% 76.33% 80.35% 9.64%

LSTM model 38.37% 99.06% 32.66% 99.27% 35.28%
GRU model 34.59% 99.09% 34.59% 99.09% 34.69%
LSTM–GRU

hybrid model 30.53% 99.14% 38.65% 98.77% 34.12%

DT: Decision Tree; RF: Random Forest; LR: Logistic Regression; PPV: positive predictive value; NPV: negative
predictive value.

The shallow and deep learning model had a higher PPV than the traditional EWSs.
RF had the highest PPV among shallow and deep learning results. However, apart from
LR, shallow and deep learning showed lower sensitivities than the traditional EWSs.

5. Discussion

We performed in-hospital cardiac arrest prediction based on shallow and deep learn-
ing. Sbrollini et al. [28] and Ibrahim et al. [29] developed deep learning methods for serial
ECG analysis and had high performance in the detection of heart failure. However, in order
to measure ECG signals, patients need to wear ECG measuring equipment. It is practically
impossible for all patients to wear ECG measuring equipment for cardiac arrest. To over-
come this limitation, we used vital signs and laboratory data instead of ECG for cardiac
arrest prediction. Kwon et al. [15] proposed the DEWS based on vital signs. Since vital
signs and laboratory data are periodically inspected to check the condition of inpatients, it
is easy to obtain these data. Table 9 shows the performance of the EWS and the proposed
methods in this study. Our proposed LR had the highest F1 score.

Diagnostics 2021, 11, 1255 11 of 14

Table 9. Results of EWS and our methods. Our proposed LR had higher PPV and sensitivity than traditional EWS.

Algorithm PPV NPV Sensitivity Specificity F1 Score

Traditional EWS
[15]

SPTTS 0.4% 99.9% 60.7% 77.0% 0.8%
MEWS ≥ 3 0.5% 99.9% 63.0% 79.9% 1.0%
MEWS ≥ 4 0.6% 99.9% 49.3% 86.8% 1.2%
MEWS ≥ 5 0.6% 99.9% 37.3% 90.6% 1.3%

Joon-myoung
Kwon et al. [15]

RF 0.4% 99.9% 75.3% 69.9% 0.8%
LR 0.2% 99.9% 76.3% 34.6% 0.4%

DEWS ≥ 2.9 0.5% 99.9% 75.7% 76.5% 1.0%
DEWS ≥ 3 0.5% 99.9% 75.3% 77.0% 1.0%

DEWS ≥ 7.1 0.8% 99.9% 63.0% 87.0% 1.5%
DEWS ≥ 8.0 0.8% 99.9% 60.7% 88.3% 1.6%
DEWS ≥ 18.2 1.4% 99.9% 49.3% 94.6% 2.8%
DEWS ≥ 52.8 3.7% 99.9% 37.3% 98.4% 7.1%

Ueno Ryo et al. [24] RF (vital signs, medical patients) 0.47% 99.7% 80.30% 78.30% 0.9%
RF (vital signs and lab data,

medical patients) 0.52% 99.7% 79.60% 80.90% 1.0%

Ibrahim Lujain
et al. [29]

CNN model - - 88.1% 93.2% 89.9%
RNN model - - 78.0% 87.8% 82.2%%

XGBoost - - 93.5% 99.4% 97.1%

Our methods

DT 46.80% 99.01% 28.99% 99.54% 35.80%
RF 98.22% 98.95% 24.25% 100.00% 38.94%
LR 5.14% 99.57% 76.33% 80.35% 9.64%

LSTM model 38.37% 99.06% 32.66% 99.27% 35.28%
GRU model 34.59% 99.09% 34.59% 99.09% 34.69%

LSTM–GRU hybrid model 30.53% 99.14% 38.65% 98.77% 34.12%

MEWS: modified early warning score; DEWS: deep learning-based early warning system; DT: Decision Tree; RF: Random Forest;
LR: Logistic Regression; PPV: positive predictive value; NPV: negative predictive value.

Although our proposed deep learning model had low sensitivity, it had a higher
PPV than the EWS. Existing cardiac arrest prediction studies using deep learning have
limitations in comparing the absolute performance of each method because the target
patients are different.

The dataset in our study had two limitations. First, the data was measured at different
time intervals for each patient depending on the patient’s condition. We changed the
measurement interval to one hour, increasing the number of missing values that had to be
replaced by the last measured value. Second, the data were collected from only Soonchun-
hyang University Cheonan Hospital; therefore, the study population was homogenous.
In addition, the SMOTE algorithm depends on the PPV. Recently, IoT-based healthcare
and hospital data management have been studied [44,45]. In the future, it is expected
that improved cardiac arrest prediction models can be developed using IoT-based sensors
in hospitals.

6. Conclusions

We proposed an in-hospital cardiac arrest prediction model based on shallow and
deep learning for patients in Soonchunhyang University Cheonan Hospital. We demon-
strated improved performance based on the SMOTE ratio (1:0.05). We also demonstrated
improved performance based on the unit size in deep learning models (LSTM: 96; GRU:
128, and LSTM–GRU hybrid: 96). We developed an LR-based cardiac arrest prediction
model that showed a better performance than the traditional EWSs. In the future, we aim
to extract important features for in-hospital cardiac arrest prediction through correlation
analysis to PPV and sensitivity. We plan to test our shallow and deep learning model in
Soonchunhyang University Cheonan Hospital and verify the results in Soonchunhyang
University Bucheon Hospital, Soonchunhyang University Seoul Hospital, and Soonchun-
hyang University Gumi Hospital.

Diagnostics 2021, 11, 1255 12 of 14

Author Contributions: Conceptualization, H.L. and H.G.; methodology, M.C. and H.L.; software,
M.C. and S.H.; validation, N.C., H.G. and H.L.; formal analysis, M.C.; investigation, S.H.; resources,
H.G. and N.C.; data curation, N.C.; writing—original draft preparation, M.C.; writing—review
and editing, H.L. and H.G.; visualization, M.C.; supervision, H.L.; project administration, H.G.;
funding acquisition, H.G. and H.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was supported by the Bio and Medical Technology Development Program
and Basic Science Research Program of the National Research Foundation (NRF) funded by the
Korean government (MSIT) (No. NRF-2019M3E5D1A02069073 & NRF-2021R1A2C1009290) and
Soonchunhyang University Research Fund.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki and approved by the Institutional Review Board of Soonchunhyang Univer-
sity Cheonan Hospital (Cheonan, Korea) (IRB-No: 2020-02-016, approval date: 16 February 2020).

Informed Consent Statement: Patient consent was waived because of the retrospective design of
the study.

Data Availability Statement: Data sharing not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Brennan, T.A.; Leape, L.L.; Laird, N.M.; Hebert, L.; Localio, A.R.; Lawthers, A.G.; Newhouse, J.P.; Weiler, P.C.; Hiatt, H.H.

Incidence of Adverse Events and Negligence In Hospitalized Patients—Results of the Harvard Medical Practice Study I. N. Engl.
J. Med. 1991, 324, 370–376. [CrossRef]

2. Holmberg, M.J.; Ross, C.E.; Fitzmaurice, G.M.; Chan, P.S.; Duval-Arnould, J.; Grossestreuer, A.V.; Yankama, T.; Donnino, M.W.;
Andersen, L.W. Annual incidence of adult and pediatric in-hospital cardiac arrest in the United States. Circ. Cardiovasc. Qual.
Outcomes 2019, 12, e005580. [CrossRef] [PubMed]

3. Juyeon, A.; Kweon, S.; Yoon, H. Incidences of Sudden Cardiac Arrest in Korea, 2019; Korea Disease Control and Prevention Agency:
Seoul, Korea, 2021.

4. Andersen, L.W.; Kim, W.; Chase, M.; Berg, K.M.; Mortensen, S.J.; Moskowitz, A.; Novack, V.; Cocchi, M.N.; Donnino, M.W. The
prevalence and significance of abnormal vital signs prior to in-hospital cardiac arrest. Resuscitation 2016, 98, 112–117. [CrossRef]

5. Schein, R.M.H.; Hazday, N.; Pena, M.; Ruben, B.H.; Sprung, C.L. Clinical Antecedents to In-Hospital Cardiopulmonary Arrest.
Chest 1990, 98, 1388–1392. [CrossRef] [PubMed]

6. Buist, M.; Bernard, S.; Nguyen, T.V.; Moore, G.; Anderson, J. Association between clinically abnormal observations and subsequent
in-hospital mortality: A prospective study. Resuscitation 2004, 62, 137–141. [CrossRef]

7. Hall, K.K.; Lim, A.; Gale, B. The Use of Rapid Response Teams to Reduce Failure to Rescue Events: A Systematic Review.
J. Patient Saf. 2020, 16, S3–S7. [CrossRef]

8. Churpek, M.M.; Yuen, T.C.; Edelson, D.P. Risk stratification of hospitalized patients on the wards. Chest 2013, 143, 1758–1765.
[CrossRef] [PubMed]

9. Prytherach, D.R.; Smith, G.B.; Schmidt, P.E.; Featherstone, P.I. ViEWS—towards a national early warning score for detecting adult
inpatient deterioration. Resuscitation 2010, 81, 932–937. [CrossRef] [PubMed]

10. Smith, G.B.; Prytherch, D.R.; Schmidt, P.E.; Featherstone, P.I.; Higginsc, B. A review, and performance evaluation, of single-
parameter “track and trigger” systems. Resuscitation 2008, 79, 11–21. [CrossRef]

11. Smith, G.B.; Prytherch, D.R.; Schmidt, P.E.; Featherstone, P.I. Review and performance evaluation of aggregate weighted ‘track
and trigger’systems. Resuscitation 2008, 77, 170–179. [CrossRef]

12. Romero-Brufau, S.; Huddleston, J.M.; Naessens, J.M.; Johnson, M.G.; Hickman, J.; Morlan, B.W.; Jensen, J.B.; Caples, S.M.; Elmer,
J.L.; Schmidt, J.A.; et al. Widely used track and trigger scores: Are they ready for automation in practice? Resuscitation 2014, 85,
549–552. [CrossRef]

13. Vähätalo, J.H.; Huikur, H.V.; Holmström, L.T.A.; Kenttä, T.V.; Haukilaht, M.A.E.; Pakanen, L.; Kaikkonen, K.S.; Tikkanen, J.;
Perkiömäki, J.S.; Myerburg, R.J.; et al. Association of Silent Myocardial Infarction and Sudden Cardiac Death. JAMA Cardiol.
2019, 4, 796–802. [CrossRef]

14. Miyazaki, A.; Sakaguchi, H.; Ohuchi, H.; Yasuda, K.; Tsujii, N.; Matsuoka, M.; Yamamoto, T.; Yazaki, S.; Tsuda, E.; Yamada, O.
The clinical characteristics of sudden cardiac arrest in asymptomatic patients with congenital heart disease. Heart Vessel. 2015, 30,
70–80. [CrossRef]

15. Kwon, J.; Lee, Y.; Lee, Y.; Lee, S.; Park, J. An algorithm based on deep learning for predicting in-hospital cardiac arrest. J. Am.
Heart Assoc. 2018, 7, e008678. [CrossRef]

16. Dumas, F.; Wulfran, B.; Alain, C. Cardiac arrest: Prediction models in the early phase of hospitalization. Curr. Opin. Crit. Care
2019, 25, 204–210. [CrossRef]

http://doi.org/10.1056/NEJM199102073240604
http://doi.org/10.1161/CIRCOUTCOMES.119.005580
http://www.ncbi.nlm.nih.gov/pubmed/31545574
http://doi.org/10.1016/j.resuscitation.2015.08.016
http://doi.org/10.1378/chest.98.6.1388
http://www.ncbi.nlm.nih.gov/pubmed/2245680
http://doi.org/10.1016/j.resuscitation.2004.03.005
http://doi.org/10.1097/PTS.0000000000000748
http://doi.org/10.1378/chest.12-1605
http://www.ncbi.nlm.nih.gov/pubmed/23732586
http://doi.org/10.1016/j.resuscitation.2010.04.014
http://www.ncbi.nlm.nih.gov/pubmed/20637974
http://doi.org/10.1016/j.resuscitation.2008.05.004
http://doi.org/10.1016/j.resuscitation.2007.12.004
http://doi.org/10.1016/j.resuscitation.2013.12.017
http://doi.org/10.1001/jamacardio.2019.2210
http://doi.org/10.1007/s00380-013-0444-9
http://doi.org/10.1161/JAHA.118.008678
http://doi.org/10.1097/MCC.0000000000000613

Diagnostics 2021, 11, 1255 13 of 14

17. Somanchi, S.; Adhikari, S.; Lin, A.; Eneva, E.; Ghani, R. Early prediction of cardiac arrest (code blue) using electronic medical
records. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Sydney,
Australia, 10–13 August 2015; pp. 2119–2126.

18. Ong, M.E.H.; Ng, C.H.L.; Goh, K.; Liu, N.; Koh, Z.X.; Shahidah, N.; Xhang, T.T.; Chong, W.F.; Lin, Z. Prediction of cardiac arrest in
critically ill patients presenting to the emergency department using a machine learning score incorporating heart rate variability
compared with the modified early warning score. Crit. Care 2012, 16, R108. [CrossRef]

19. Churpek, M.M.; Yuen, T.C.; Huber, M.T.; Park, S.; Hall, J.B.; Edelson, D.P. Predicting cardiac arrest on the wards: A nested
case-control study. Chest 2012, 141, 1170–1176. [CrossRef]

20. Churpek, M.M.; Yuen, T.C.; Park, S.; Meltzer, D.O.; Hall, J.B.; Edelson, D.P. Derivation of a cardiac arrest prediction model using
ward vital signs. Crit. Care Med. 2012, 40, 2102–2108. [CrossRef]

21. Liu, N.; Lin, Z.; Cao, J.; Koh, Z.; Zhang, T.; Huang, G.; Ser, W.; Ong, M.E.H. An intelligent scoring system and its application to
cardiac arrest prediction. IEEE Trans. Inf. Technol. Biomed 2012, 16, 1324–1331. [CrossRef]

22. Murukesan, L.; Murugappan, M.; Iqbal, M.; Saravanan, K. Machine learning approach for sudden cardiac arrest prediction based
on optimal heart rate variability features. J. Med. Imaging Health Inform. 2014, 4, 521–532. [CrossRef]

23. ElSaadany, Y.; Majumder, A.J.A.; Ucci, D.R. A wireless early prediction system of cardiac arrest through IoT. In Proceedings of the
2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC), Turin, Italy, 4–8 July 2017; pp. 690–695.

24. Ueno, R.; Xu, L.; Uegami, W.; Matsui, H.; Okui, J.; Hayashi, H.; Miyajima, T.; Hayashi, Y.; Pilcher, D.; Jones, D. Value of laboratory
results in addition to vital signs in a machine learning algorithm to predict in-hospital cardiac arrest: A single-center retrospective
cohort study. PLoS ONE 2020, 15, e0235835. [CrossRef]

25. Hardt, M.; Rajkomar, A.; Flores, G.; Dai, A.; Howell, M.; Corrado, G.; Cui, C.; Hardt, M. Explaining an increase in predicted risk
for clinical alerts. In Proceedings of the ACM CHIL ‘20: ACM Conference on Health, Inference, and Learning, Toronto, ON,
Canada, 2–4 April 2020; pp. 80–89.

26. Raghu, A.; Guttag, J.; Young, K.; Pomerantsev, E.; Dalca, A.V.; Stultz, C.M. Learning to predict with supporting evidence:
Applications to clinical risk prediction. In Proceedings of the ACM CHIL ‘21: ACM Conference on Health, Inference, and
Learning, Virtual Event, 8–10 April 2021; pp. 95–104.

27. Viton, F.; Elbattah, M.; Guérin, J.; Dequen, G. Heatmaps for Visual Explainability of CNN-Based Predictions for Multivariate Time
Series with Application to Healthcare. In Proceedings of the IEEE International Conference on Healthcare Informatics (ICHI),
Oldenbug, Germany, 30 November–3 December 2020.

28. Sbrollini, A.; Jongh, D.M.C.; Haar, C.C.T.; Treskes, R.W.; Man, S.; Burattini, L.; Swenne, C.A. Serial electrocardiography to detect
newly emerging or aggravating cardiac pathology: A deep-learning approach. Biomed Eng. Online 2019, 18, 15. [CrossRef]

29. Ibrahim, L.; Mesinovic, M.; Yang, K.; Eid, M.A. Explainable prediction of acute myocardial infarction using machine learning and
shapley values. IEEE Access 2020, 8, 210410–210417. [CrossRef]

30. Chollet, F. Keras. GitHub Repository. 2015. Available online: https://github.com/fchollet/keras (accessed on 2 March 2020).
31. Tensorflow: A system for large-scale machine learning. In Proceedings of the 12th (USENIX) Symposium on Operating Sys-tems

Design and Implementation (OSDI 16), Savannah, GA, USA, 2–4 November 2016; pp. 265–283.
32. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.;

Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. JMLR 2011, 12, 2825–2830.
33. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
34. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks

from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.
35. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neurl Comput. 1997, 9, 1735–1780. [CrossRef]
36. Cho, K.; Merrienboer, B.V.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase Representations

using RNN Encoder–Decoder for Statistical Machine Translation. In Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing, Doha, Qatar, 25–29 October 2014; pp. 1724–1734.

37. Vuttipittayamongkol, P.; Elyan, E. Neighbourhood-based undersampling approach for handling imbalanced and overlapped
data. Inf. Sci. 2020, 509, 47–70. [CrossRef]

38. García, V.; Sánchez, J.S.; Mollineda, R.A. On the effectiveness of preprocessing methods when dealing with different levels of
class imbalance. Knowl. Based Syst. 2012, 25, 13–21. [CrossRef]

39. Douzas, G.; Fernando, B.; Felix, L. Improving imbalanced learning through a heuristic oversampling method based on k-means
and SMOTE. Inf. Sci. 2018, 465, 1–20. [CrossRef]

40. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Over-sampling Technique. J. Artif. Intell.
Res. 2002, 16, 321–357. [CrossRef]

41. sklearn.tree.DecisionTreeClassifier—Scikit-Learn 0.24.1 Documentation. Available online: https://scikit-learn.org/stable/
modules/generated/sklearn.tree.DecisionTreeClassifier.html (accessed on 1 November 2020).

42. sklearn.ensemble.RandomForestClassifier—Scikit-Learn 0.24.1 Documentation. Available online: https://scikit-learn.org/stable/
modules/generated/sklearn.ensemble.RandomForestClassifier.html (accessed on 1 November 2020).

43. sklearn.linear_model.LogisticRegression—Scikit-Learn 0.24.1 Documentation. Available online: https://scikit-learn.org/stable/
modules/generated/sklearn.linear_model.LogisticRegression.html (accessed on 1 November 2020).

http://doi.org/10.1186/cc11396
http://doi.org/10.1378/chest.11-1301
http://doi.org/10.1097/CCM.0b013e318250aa5a
http://doi.org/10.1109/TITB.2012.2212448
http://doi.org/10.1166/jmihi.2014.1287
http://doi.org/10.1371/journal.pone.0235835
http://doi.org/10.1186/s12938-019-0630-9
http://doi.org/10.1109/ACCESS.2020.3040166
https://github.com/fchollet/keras
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1162/neco.1997.9.8.1735
http://doi.org/10.1016/j.ins.2019.08.062
http://doi.org/10.1016/j.knosys.2011.06.013
http://doi.org/10.1016/j.ins.2018.06.056
http://doi.org/10.1613/jair.953
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html

Diagnostics 2021, 11, 1255 14 of 14

44. Yoo, H.; Park, C.R.; Chung, K. IoT-Based Health Big-Data Process Technologies: A Survey. KSII Trans. Internet Inf. Syst. 2021,
15, 974–992.

45. Mohemmed, S.M.; Rahamathulla, P.M. Cloud-based Healthcare data management Framework. KSII Trans. Internet Inf. Syst. 2020,
14, 1014–1025.

	Introduction
	Materials
	Methods
	Shallow Machine Learning Model
	Decision Tree
	Random Forest
	Logistic Regression

	Deep Learning
	Long Short-Term Memory Model
	Gated Recurrent Unit Model

	Synthetic Minority Oversampling Technique
	K-Fold Cross-Validation
	Material Preprocessing

	Results
	Performance Evaluation Method
	Performance Evaluation According to SMOTE Ratio
	Results of Shallow Machine Learning
	Results of LSTM Model
	Results of GRU Model
	Results of LSTM–GRU Hybrid Model
	Result of the Performance Evaluation of Shallow and Deep Learning

	Discussion
	Conclusions
	References

