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Abstract: The majority of network studies of human brain structural connectivity are based on single-
shell diffusion-weighted imaging (DWI) data. Recent advances in imaging hardware and software
capabilities have made it possible to acquire multishell (b-values) high-quality data required for better
characterization of white-matter crossing-fiber microstructures. The purpose of this study was to
investigate the extent to which brain structural organization and network topology are affected by the
choice of diffusion magnetic resonance imaging (MRI) acquisition strategy and parcellation scale. We
performed graph-theoretical network analysis using DWI data from 35 Human Connectome Project
subjects. Our study compared four single-shell (b = 1000, 3000, 5000, 10,000 s/mm2) and multishell
sampling schemes and six parcellation scales (68, 200, 400, 600, 800, 1000 nodes) using five graph
metrics, including small-worldness, clustering coefficient, characteristic path length, modularity
and global efficiency. Rich-club analysis was also performed to explore the rich-club organization
of brain structural networks. Our results showed that the parcellation scale and imaging protocol
have significant effects on the network attributes, with the parcellation scale having a substantially
larger effect. Regardless of the parcellation scale, the brain structural networks exhibited a rich-
club organization with similar cortical distributions across the parcellation scales involving at least
400 nodes. Compared to single b-value diffusion acquisitions, the deterministic tractography using
multishell diffusion imaging data consisting of shells with b-values higher than 5000 s/mm2 resulted
in significantly improved fiber-tracking results at the locations where fiber bundles cross each
other. Brain structural networks constructed using the multishell acquisition scheme including
high b-values also exhibited significantly shorter characteristic path lengths, higher global efficiency
and lower modularity. Our results showed that both parcellation scale and sampling protocol can
significantly impact the rich-club organization of brain structural networks. Therefore, caution should
be taken concerning the reproducibility of connectivity results with regard to the parcellation scale
and sampling scheme.

Keywords: structural connectivity; rich-club organization; multiscale parcellation; multishell sam-
pling; fiber tracking; DWI

1. Introduction

The human brain connectome has greatly expanded our understanding of how cog-
nitive processes emanate from a fundamental structural substrate [1]. In the past decade,
structural connectivity analysis using graph metrics has been widely used to investigate
the topological properties of brain structural networks derived from diffusion-weighted
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imaging (DWI) by modeling white-matter pathways connecting brain regions [2,3]. Many
studies have focused on graph measures of network segregation (e.g., clustering coefficient
and modularity) and measures of network integration (e.g., degree, characteristic path
length and global efficiency) to investigate the small-worldness property of the human
brain, exhibiting an optimal balance between the segregation and integration of informa-
tion [2,4]. In recent years, there has been growing interest in the more complex topological
properties of human brain networks. More specifically, the existence of a densely connected
cortical “rich club” of hubs, playing a crucial role in global brain communication through
short communication pathways, has been considered as the key characteristic of brain
networks exhibiting a hierarchical structure [5]. It is suggested that any damage to cortical
rich-club regions can cause large widespread disruption across large-scale brain networks
with a significant impact on cognition [6–9].

To investigate the rich-club organization of large-scale brain structural networks, a
brain graph is first constructed by gray-matter parcellation, in which parcels serve as nodes
and links represent large-scale fiber tracts connecting nodes [10]. The brain networks can
be represented at different spatial scales, from the microscopic (individual neurons) to
macroscopic (brain regions) scales [11]. In general, brain connectivity analysis at multiple
spatial scales can better capture the true hierarchical brain structure [11].

It has been shown that spatial scale and DWI acquisition protocols can significantly
affect the behavior and topological properties of brain networks constructed using single-
shell DWI data [2]. Advances in magnetic resonance imaging (MRI) have allowed white-
matter fiber tracking at a high spatial resolution [12,13]. Recently, the NIH Blueprint for
Neuroscience Research funded the MGH–USC consortium of the Human Connectome
Project (HCP) to build the CONNECTOM scanner [14], which is capable of acquiring
human diffusion MR data relying on contrasts from ultra-high b-values to resolve fine
details of white-matter microstructure, a feature that does not exist in standard gradient
MR systems, which are more sensitive to fast water diffusion and long-distance cortico-
cortical connectivity at the macroscopic scale [15]. The broad range of b-values (1000, 3000,
5000 and 10,000 s/mm2) of the MGH–USC Adult Diffusion Dataset allows investigating
patterns of structural connectivity by estimating slow water diffusion and shorter-range
fibers, the main requirement to investigate the effect of diffusion parameters on brain
structural networks and topology.

In this study, we performed graph-theoretical network analysis to quantify the extent
to which the choice of parcellation scales and diffusion parameters (DWI sampling schemes
with different b-values) could affect the organization of brain structural networks and
topology. We further investigated the rich-club organization of brain structural networks
at different nodal scales and DWI schemes by exploring whether the use of higher b-values
could affect the estimation of short- to long-range white-matter streamlines.

2. Material and Methods
2.1. Processing Pipeline

The processing pipeline includes brain tissue segmentation, anatomical parcellation,
single/multishell brain tractography and structural connectivity analysis (Figure 1). The
whole processing procedure is detailed in the following sections.

2.2. Imaging Data and Preprocessing

Thirty-five healthy adult subjects (19/16 males/females, 20–59 years old; mean
age = 31.1 years old) were included in this study from the publicly available database of the
Human Connectome Project (MGH–USC HCP database, https://ida.loni.usc.edu/login.jsp,
accessed on 10 January 2020). Before data collection, informed written consent was ob-
tained from all participants, and the experiments were approved by the institutional review
board of Partners Healthcare [10].

https://ida.loni.usc.edu/login.jsp
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volumes for each subject with a phase-encoding direction from anterior to posterior. The 
structural scans were corrected for geometric distortions. The concatenated diffusion data 
of all 4 b-values (552 image volumes) were also corrected for head motions and eddy 
current distortion [14,16,17]. In this procedure, the diffusion gradient table was adjusted 
for the rigid rotational components of the motion estimates [14]. The defacing and de-
earing processes were finally carried out with FreeSurfer using face and ear delineation 
masks, respectively [14]. 

Figure 1. Processing pipeline for structural network analysis, including brain tissue segmentation, anatomical parcellation,
single/multishell brain tractography and structural connectivity analysis using graph-theoretical metrics.

All MR data, including anatomical (T1w and T2w) and diffusion-weighted (DW)
images, were acquired on the 3T CONNECTOM MRI scanner. The T1w images were
acquired with a 3D multi-echo magnetization-prepared rapid acquisition gradient echo
(ME-MPRAGE) sequence and a 1 mm isotropic-voxel resolution. The T2w images were
obtained with a T2-SPACE sequence at 0.7 mm isotropic resolution. The diffusion data
were collected with a SE-EPI sequence with an isotropic resolution of 1.5 mm and par-
allel imaging. For data acquisition, four shells were selected at b = 1000, 3000, 5000
and 10,000 s/mm2 with 64, 64, 128 and 256 diffusion directions, respectively. One sub-
ject (MGH_1020) was excluded due to incomplete acquisition (482 volumes instead of
552 b = 10,000 s/mm2 volumes).

A non-DW image (b = 0) was acquired at the beginning of each run, as well as every
13 image volumes, yielding 552 volumes in total, including 512 DW and 40 non-DW
volumes for each subject with a phase-encoding direction from anterior to posterior. The
structural scans were corrected for geometric distortions. The concatenated diffusion
data of all 4 b-values (552 image volumes) were also corrected for head motions and eddy
current distortion [14,16,17]. In this procedure, the diffusion gradient table was adjusted for
the rigid rotational components of the motion estimates [14]. The defacing and de-earing
processes were finally carried out with FreeSurfer using face and ear delineation masks,
respectively [14].

2.3. Structural Connectome Reconstruction

Deterministic fiber tracking was performed with DSI Studio (http://dsi-studio.labsolver.org,
accessed on 30 February 2021) using the generalized q-sampling imaging (GQI) method [18].

http://dsi-studio.labsolver.org
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To investigate the effect of sampling scheme on the organization of brain structural net-
works, four single-shell (with b-values of 1000, 3000, 5000 and 10,000 s/mm2) and multishell
(with b-values of [1000, 3000] s/mm2, [1000, 3000, 5000] s/mm2, [3000, 5000, 10,000] s/mm2

and [1000, 3000, 5000, 10,000] s/mm2) diffusion schemes were used. The optimal value
of the diffusion sampling length ratio was chosen for each scheme such that the fiber-
tracking algorithm could resolve crossing fibers in crossing regions (e.g., in lateral corpus
callosum) and also correctly estimate fiber directions in noncrossing regions (e.g., in the
mid-corpus callosum).

Using each of the eight sampling schemes, a deterministic fiber-tracking algorithm
was used to generate 1,000,000 streamlines for each subject by performing random seeding
within the entire white-matter volume. Quantitative anisotropy (QA) was calculated
for the orientation distribution function (ODF) peak in each voxel. QA enables direction-
specific thresholding during tractography and is therefore less susceptible to partial volume
effects and noise [19]. The angular threshold and step size were set to 45◦ and 0.75 mm,
respectively [20]. The fiber trajectories were smoothed by averaging the propagation
direction with a percentage of the previous directions, randomly selected from 0% to 95%.
Tracks shorter than 30 mm or longer than 300 mm were discarded. The lower bound was
set in DSI Studio to eliminate fiber fragments [21]. Finally, topology-informed pruning [22]
was applied with two iterations to remove false connections.

For multiscale parcellation, the T1w anatomical data were first partitioned into 68 struc-
turally defined regions using FreeSurfer (http://surfer.nmr.mgh.harvard.edu, accessed on
24 February 2021) according to the Desikan–Kiliany atlas [23]. Finer brain parcellations
were then generated with approximately equal-sized regions at five parcellation (nodal)
scales involving 200, 400, 600, 800 and 1000 parcels. We used FLIRT from FSL [24] to
coregister the parcellations to the diffusion space. For each subject, this procedure was used
to determine the optimal affine transformation between the T1w data (in which the parcels
were based) and the b0 volume using the nearest neighbor cost function. We applied the
resulting transformation to register the parcellations to the diffusion space.

2.3.1. Network Construction

For each subject, forty-eight structural brain networks were constructed using the
single- and multishell schemes at six nodal scales (i.e., 68, 200, 400, 600, 800, 1000) using
DSI Studio (http://dsi-studio.labsolver.org, accessed on 30 February 2021). Each structural
network W was represented by an N × N matrix, where N is the number of parcels (nodes),
and each entry wij represents the number of reconstructed streamlines connecting nodes
i and j. For structural connectivity analysis, an adjacency (binary) matrix U was then
constructed from each weighted network by a threshold defined as 0.1% (default threshold
in DSI Studio) of the maximum number of track counts in the matrix. This threshold was
used to discard spurious connections that were potentially influenced by noise. For the
rich-club analysis, a backbone structural connectivity matrix (UB) was computed for each
sampling scheme and nodal scale using the method described in [25]. In the backbone
matrices, an entry of 1 between each pair of parcels indicated a structural connection
between them in at least 75% of the subjects, and 0 otherwise.

2.3.2. Topological Properties

To quantify the effect of the parcellation scale and DWI scheme on the topological prop-
erties of the unweighted structural networks, five graph metrics, including small-worldness,
clustering coefficient, characteristic path length, modularity and global efficiency (see [10]
for a brief description), were computed from each connectivity matrix for the different
nodal scales and sampling schemes using the Brain Connectivity Toolbox implemented in
Matlab (MathWorks, Inc., Natick, Massachusetts, United States) [26]. The small-worldness
of each graph G was evaluated by computing the σ-ratio defined as:

σ =
γ

λ
γ =

CG
CR

λ =
IG
IR

(1)

http://surfer.nmr.mgh.harvard.edu
http://dsi-studio.labsolver.org
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where CG and IG denote the average clustering coefficient and the average path length of
the graph, respectively, and R represents a “random” graph, which was constructed for
the graph using the Erdős–Rényi (ER) model, in which both the graph and the random
graph had the same average nodal degree [2]. For R, the values of CR (average clustering
coefficient) and IR (average path length) were estimated as follows:

CR =
d
N

IR =
log(N)

log(d)
(2)

where d denotes the average nodal degree, and N is the number of nodes. Based on
the σ-ratio, G has the small-world property of γ > 1 and λ ≈ 1. These two conditions
were reduced to a single test σ > 1. We also used Newman’s method to estimate the
modularity for each connectivity matrix by maximizing the number of within-group edges
and minimizing the number of between-group edges in order to subdivide each network
into nonoverlapping delineated groups of nodes [27].

2.3.3. Rich-Club Coefficient for Unweighted Networks

To investigate the rich-club organization of the backbone networks (UB) constructed
for each sampling scheme and nodal scale, for each degree k varying from 1 to the maximum
degree in the network, a rich-club coefficient Φ(k) was computed as follows [1]:

Φ(k) =
2.E>k

N>k(N>k − 1)
(3)

where, after removing all nodes N with a degree less than k, E > k and N ≥ k represent the
number of connections between the remaining nodes in UB and the total number of possible
connections between the remaining nodes if they were fully connected, respectively. For
each backbone network, a normalized rich-club coefficient Φnorm(k) was then computed
with respect to Φrandom(k), computed as the average rich-club coefficient over m (herein
1000) random networks of equal size with similar connectivity distribution, generated
by randomizing the connections of the network while keeping the degree distribution
of the matrix intact [25]. For each network, a normalized coefficient Φnorm greater than
1 over a range of k reflects the existence of a rich-club organization for the network. A high
rich-club coefficient indicates that the hubs are well connected. In general, the choice of the
k level is arbitrary and study dependent [1,25]. For illustrative purposes, we selected the
k level in a way to have 20% of each network’s nodes ranked as rich club to identify the
rich-club spatial distribution for each parcellation scale and imaging scheme. Brain regions
exhibiting the rich-club property were also identified in the backbone brain structural
networks constructed for each sampling scheme and nodal scale.

In each network, nodes and connections were further classified into rich-club/non-
rich-club nodes and rich-club/feeder/local connections, defined as connections linking
members of the rich club, rich-club nodes to non-rich-club nodes, and non-rich-club nodes,
respectively [1].

2.4. Statistical Test

To assess the statistical significance of rich-club organization, permutation testing
was used [28,29]. The distribution of Φrandom(k) computed over 1000 random topologies
yielded a null distribution of rich-club coefficients. For the range of k within the rich-club
zones, it was tested whether Φ significantly exceeded Φrandom (averaged over the examined
range of k) by assigning a p value computed as the percentage of Φrandom that exceeded
Φ. At each parcellation scale, the topological properties of the unweighted networks
constructed for different sampling schemes at the subject level were compared using the
nonparametric Friedman test to investigate the significance (with p < 0.05) of differences
between the networks.
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3. Results

The average streamline length for the single- and multishell DWI schemes ranged
between 65.6 (single shell with b = 1000 s/mm2) and 70.1 mm (three shells with b = 3000,
5000, 10,000 s/mm2) (Table 1). As shown, the average streamline length increased with
b-values higher than 3000 s/mm2. The normalized QA followed an inverse trend.

Table 1. Average streamline length (SL) and normalized quantitative anisotropy (nQA, mean ± S.D.) for the single- and
multishell sampling schemes.

Single-Shell Sampling Schemes Multishell Sampling Schemes

b = 1000 b = 3000 b = 5000 b = 10,000 b = 1000,
3000

b = 1000,
3000,
5000

b = 3000,
5000, 10,000

b = 1000,
3000, 5000,

10,000

SL (mm)
(mean ± S.D.) 65.6 ± 2.9 66.9 ± 2.6 69.2 ± 2.8 69.9 ± 1.9 66.9 ± 2.9 68.6 ± 2.7 70.1 ± 2.8 69.5 ± 2.6

nQA (a.u.)
(mean ± S.D.) 0.142 ± 0.028 0.123 ± 0.017 0.112 ± 0.011 0.104 ± 0.022 0.125 ± 0.019 0.116 ± 0.013 0.106 ± 0.009 0.109 ± 0.009

Figure 2 shows the effect of the sampling protocol on the tractography results of the
corpus callosum (marked by yellow circles) containing crossing fibers. To obtain these
results, the optimal value of the diffusion sampling length ratio (r) was determined for
each sampling scheme using the optimization procedure specified in DSI Studio. As
shown, the schemes with b-values higher than 5000 s/mm2 have better-resolved crossing
configurations inside the voxels due to the higher angular resolution that can be achieved
at higher b-values. In addition, visual inspection showed erroneous fiber tractography
results (false fiber tracts marked by red circles) for the schemes with lower b-values
(1000 and 3000 s/mm2). Overall, the inclusion of DW directions with higher b-values in
the tractography procedure improved the tractography results at the locations where fiber
bundles cross each other. Furthermore, our study shows that the three- and four-shell
sampling schemes provided better tractography results for resolving crossing fibers with
fewer false positives.
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Figure 2. Effect of sampling schemes on fiber-tracking results at crossing regions (e.g., corpus
callosum marked by yellow circles). Red circles show regions including false-positive fibers. The
optimal values of the diffusion sampling length ratio (r) were determined for each DWI scheme using
the optimization procedure specified in DSI Studio.
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3.1. Graph Measures

Our results showed an increasing trend for the small-worldness curves (σ) with an in-
creasing number of nodes for each DWI scheme (Figure 3). The networks constructed using
the single-shell scheme with b = 1000 or 10,000 s/mm2 exhibited higher small-worldness in
comparison with other b-values regardless of the nodal scale. In this category, the lowest
small-worldness was obtained with b = 5000 s/mm2. Among the multishell imaging
schemes, the networks constructed using the three-shell (b = 3000, 5000, 10,000 s/mm2)
and two-shell (b = 1000, 3000 s/mm2) sampling schemes exhibited the highest and lowest
small-worldness, respectively. Overall, the imaging schemes that included shells with
b-values higher than 5000 s/mm2 exhibited significantly lower small-worldness. Moreover,
the networks constructed at finer nodal scales displayed significantly (p < 0.05) higher
small-worldness with larger confidence intervals across subjects in comparison with lower
nodal scales.
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To investigate whether the increase in small-worldness was due to an increase in
clustering coefficient or a decrease in path length, we explored the trend of these metrics
with an increasing number of nodes with respect to 1000 randomized networks generated
for each structural network. As shown (Figure 4), both the normalized clustering coefficient
and path length curves displayed upward trends. However, the normalized clustering
coefficient showed a higher rate of increase with an increasing number of nodes, with
lower values observed for the sampling schemes that included shells with b-values higher
than 5000 s/mm2.
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with the exception of those marked by black circles.

Modularity also showed an increasing trend with the nodal scale, demonstrating the
tendency of the structural networks to form more communities at finer nodal scales, espe-
cially for the networks constructed using the single-shell schemes (Figure 5). Regardless
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of the nodal scale, the multishell sampling schemes that included shells with b-values
higher than 5000 s/mm2 exhibited lower values of modularity in comparison with the
single-shell or other multishell sampling schemes. Regardless of the sampling scheme, the
statistical comparison showed significant differences (p < 0.05) between the modularity
values computed for the networks at different nodal scales.
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The global efficiency declined exponentially with the nodal scale (Figure 6). Among
the single-shell schemes, the networks constructed using b-values of 3000 s/mm2 and
10,000 s/mm2 exhibited the highest and lowest global efficiency regardless of the nodal
scale, respectively. Among the multishell sampling schemes, the networks constructed
using two shells (with b = 1000, 3000 s/mm2) and three shells (with b = 3000, 5000,
10,000 s/mm2) exhibited the lowest and highest efficiency, respectively. Significant dif-
ferences (p < 0.05) in global efficiency were observed between the single- and multishell
schemes at different nodal scales. Overall, the inclusion of b-values higher than 5000 s/mm2

increased the global efficiency of the structural networks.

3.2. Rich-Club Organization of Structural Brain Networks

The rich-club coefficients φ(k) of the backbone structural brain networks (black lines
in Figure 7) increased with the nodal scale for the single-shell and multishell sampling
schemes. For simplicity, we only demonstrated the results for four sampling schemes. For
the other schemes, similar trends of changes were observed. The normalized rich-club
coefficient φnorm (k) (shown in red) also displayed an upward trend. The intervals, in
which the networks exhibited a rich-club organization, are shown in gray (p < 0.05, with
permutation testing), with k levels within the range of 12 to 22 (Table 2). To compare the
spatial distribution of rich-club nodes across different nodal scales and sampling schemes,
we selected the k level in a way to have 20% of each network’s nodes ranked as rich club.
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As reported in Table 2, the k level increased at finer nodal scales. The inclusion of
shells with higher b-values also slightly increased the k level. The proportion of rich-
club connections increased with the nodal scale regardless of the sampling scheme used
for connectivity analysis. An inverse trend was observed for feeder and local connec-
tions. The proportion of local connections decreased more slowly with k in comparison
with that found for feeder connections across different sampling schemes. As shown
(Figures 8 and 9), rich-club nodes were mostly distributed in precuneus, superiorparietal,
superiorfrontal, superiortemporal and precentral regions in both hemispheres of the brain.
The spatial distributions of rich-club nodes were similar across different nodal scales that
comprised at least 400 nodes especially for the multishell sampling schemes.

Table 2. K level and proportion of rich club (RC), feeder (FC) and local (LC) connections linking rich-club members, rich-club
nodes to non-rich-club nodes, and non-rich-club nodes, respectively, for the single-shell and multishell sampling schemes.

Nodal Scale
68 200 400 600 800 1000

Si
ng

le
-s

he
ll

sa
m

pl
in

g
sc

he
m

es

b = 1000

k level 12 12 14 14 15 15
RC 15.2 17.2 25.6 29.9 35.9 40.4
FC 48.1 39.2 33.6 29.2 26.6 22.8
LC 36.7 43.6 40.8 40.9 37.4 36.8

b = 3000

k level 13 14 15 16 16 17
RC 15.9 20.2 25.2 28.2 34.3 36.8
FC 45.3 33.6 32.2 31.9 27.1 26.5
LC 38.9 46.2 42.5 39.8 38.6 36.6

b = 5000

k level 15 15 16 16 16 17
RC 13.3 19.6 24.5 26.7 31.4 35.1
FC 50 33.9 32.1 33.2 30.8 26.9
LC 36.6 46.5 43.4 40.1 37.8 37.9

b = 10,000

k level 14 14 14 13 14 14
RC 18.5 19.2 25.4 27.9 34.7 37.9
FC 40.6 35.7 34.3 33.5 29.9 27.9
LC 40.9 45.1 40.3 38.5 35.4 34.1
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Table 2. Cont.

Nodal Scale
68 200 400 600 800 1000

M
ul

ti
sh

el
ls

am
pl

in
g

sc
he

m
es

b = 1000, k level 14 14 15 16 17 17
3000 RC 14.5 19.6 23.7 28 33.3 36.9

FC 45.2 33.9 33 31.6 28.3 26.2
LC 40.3 46.5 43.3 40.4 38.4 36.9

b = 1000, 3000, k level 15 16 17 17 18 19
5000 RC 14.7 17.8 22.6 25.1 30.7 34.2

FC 45.2 36.8 34.1 34.1 30 27.5
LC 40.1 45.3 43.3 40.8 39.3 38.3

b = 3000, 5000, k level 15 18 18 19 21 22
10,000 RC 13.3 16.8 21.4 25.4 30.5 32.8

FC 45.8 38.3 35.1 32.6 28.9 28
LC 40.9 44.9 43.5 42 40.6 39.2

b = 1000, 3000, k level 15 17 18 18 19 20
5000, 10,000 RC 12.9 17.4 22.5 24.3 30.4 33.3

FC 46.9 35.5 32.7 34.7 29.3 27.9
LC 40.2 47.1 44.7 41.1 40.4 38.8
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Figure 7. Rich-club curves (φ and φrandom) as a function of degree (K) for each backbone structural network and its
corresponding random networks for the single-shell (b = 1000 s/mm2), two-shell (b = 1000, 3000 s/mm2), three-shell
(b = 1000, 3000, 5000 s/mm2) and four-shell (b = 1000, 3000, 5000, 10,000 s/mm2) sampling schemes at the nodal scales
comprising (a) 68, (b) 200, (c) 400, (d) 600, (e) 800 and (f) 1000 nodes. The figures show the rich-club coefficient values for
φnorm (red), φ (black) and φrandom (light gray).
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4. Discussion

In this study, we investigated the extent to which the brain structural organization
was impacted by the parcellation scale (number of nodes) and the imaging protocols based
on single-shell or multishell sampling schemes. For fiber tracking, we used GQI, shown to
be an efficient method for solving complex crossing-fiber configurations. In this method,
QA is calculated as an indicator of the population of spins in a particular direction. The
QA-aided tractography has been shown to outperform the fractional anisotropy-aided
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tractography, especially in low SNR conditions [29]. At the group level, the topological
properties and rich-club organization of the structural brain networks showed significant
dependence on both the nodal scale and imaging scheme. The parcellation scale, however,
affected more strongly the topology of the constructed brain structural networks. This
finding is consistent with the results reported in [2,30].

With regard to the nodal scale, we calculated five graph metrics including small-
worldness, characteristic path length, clustering coefficient, global efficiency and modu-
larity, attributes widely used to characterize brain networks [2,25]. We found significant
differences (with p < 0.05) between the values of the graph metrics derived from the single-
and multi-shell-based brain structural networks across all parcellation scales. Increasing
the number of nodes from 68 to 1000 resulted in significant increases (with p < 0.05) in
small-worldness due to increases in the clustering coefficient. This trend of changes is
probably due to the increase in the sparsity (ratio of the number of nodes-to-links) of brain
structural networks [2]. We also found a significant increase in the sparsity of the networks
with increasing the number of nodes from 68 to 1000. This seems to be the main reason
for increasing the number of clusters of nodes located within the same neighborhood in
large sparse networks [2]. To reduce the effect of the sparsity across different nodal scales,
a proportional thresholding method, a strategy largely used in functional studies, can be
used to adjust the sparsity rate across different networks according to the most sparse
network (i.e., the network with the finest nodal scale). This approach is less employed
in brain structural connectivity studies due to the fact that the brain structural networks
are intrinsically sparse (as opposed to functional networks) [2]. To reduce the number of
disconnected nodes in structural networks at finer scales, it has been suggested to increase
the streamlined sampling rate and/or dilate gray matter [30]. This strategy might, however,
increase the number of fibers falsely reconstructed due to the thicker cortex or higher
streamline sampling rates, which might consequently change the networks’ topological
properties. We further found that the networks’ modularity increased when the number of
parcels increased. This might cause slower data transfer resulting in lower global efficiency,
especially for larger brain networks. This is also reflected in the reduced efficiency observed
in the brain structural networks at finer nodal scales.

With regard to the impact of the imaging protocol, the network metrics also showed
dependence on the sampling scheme, although with a reduced effect compared to the nodal
scale. Our results are in agreement with those reported by Zalesky et al. [2], who have
shown differences between the topological attributes derived from the diffusion tensor
imaging (DTI) and high angular resolution diffusion-weighted imaging (HARDI)-based
brain structural networks in three healthy subjects. We further compared the topological
properties of the single- and multi-shell-based networks. Overall, we found significant
decreases (up to 17%) in small-worldness, modularity and clustering coefficient and a
significant increase (by 11% on average) in global efficiency for the brain structural networks
constructed using the multishell sampling schemes in comparison with the single-scheme
imaging protocols, with larger differences observed at finer nodal scales. The connectivity
measures obtained using the sampling schemes that included shells with b-values higher
than 5000 s/mm2 were largely different from those obtained using the other single-shell or
multishell imaging schemes, more likely due to longer white-matter streamlines generated
with high b-values (Table 1). The presence of longer cortico-cortical connections in the brain
network can significantly reduce the path length and therefore increase global efficiency. We
further found lower modular values for the networks constructed by the single-shell and
multishell sampling schemes including shells with high b-values (≥5000 s/mm2) across
different nodal scales. In this case, the resulting networks exhibited higher efficiencies and
tended to form fewer modules or communities connected through longer path lengths
between high-degree nodes (hubs).

As also reported in [31], single-fiber situations can be reconstructed by all single-
shell sampling schemes regardless of b-values. However, the inclusion of higher b-values
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(≥5000 s/mm2) can significantly improve the tractography results obtained using deter-
ministic tractography at the locations where fiber bundles cross each other [20,32].

Finally, consistent with the findings of other studies [15,25,33], our results confirmed
the rich-club organization for the brain structural networks, regardless of the imaging pro-
tocol and the parcellation scale used for network construction. The existence of a densely
connected neural “rich club” of hubs has shown to play a crucial role in global brain com-
munication through short communication pathways [1,15,25,33]. In networks exhibiting a
rich-club organization, interactions between nodes are defined in a hierarchical manner
from high-ranked rich-club connections to feeder or local connections. We, however, found
that the spatial distributions of rich-club nodes were similar across the nodal scales that
comprised at least 400 nodes. For the networks constructed using the multishell schemes,
the rich-club cortical distribution showed patterns with significantly reduced spatial extent
in comparison with the single-shell schemes. The proportion of rich-club connections
also increased with increasing nodal scale regardless of the sampling scheme used for
connectivity analysis (Table 2). An inverse trend was observed for feeder connections. The
proportion of local connections showed a tendency to decrease with the nodal scale. In
line with other findings [1], [15,25], we found that high-degree brain regions, including
precuneus, superiorfrontal, superiorparietal and precentral regions, were identified as hubs
in the structural networks across different parcellation scales and imaging protocols. It
is suggested that any damage to cortical rich-club regions can cause disturbance across
large-scale brain networks with a significant impact on cognition [8]. Due to their central
role in information integration in large brain networks, rich club regions are also suggested
to be generally vulnerable to neurological and psychiatric disorders [34].

Overall, our findings show that both the parcellation scale and sampling scheme
can significantly affect the reproducibility of connectivity results. Therefore, comparison
between different studies on structural brain network organization should be performed by
taking into account the nodal scales and acquisition protocols used for connectivity analysis.

A limitation of our study is that we used deterministic fiber tracking that can generate
many false-negative streamlines [35,36]. The deterministic fiber-tracking algorithms may
also reconstruct physiologically unrealistic pathways [37]. This limitation can be overcome
with probabilistic tracking, which incorporates anatomical information based on the dis-
tribution of possible directions into the tracking process. Another limitation concerns the
dataset used in our study. The MGH–USC adult diffusion dataset was acquired using
echo-planar pulse sequences, which are prone to image artifacts and distortions, which
may affect structural connectivity results. Other pulse sequences such as field map cor-
rection, reversed gradient and PROPELLER DTI could be used to minimize the effect of
susceptibility distortions on structural connectivity analysis [38,39]. These issues highlight
an important focus for future investigations.

5. Conclusions

The main goal of our study was to investigate whether the topological properties of
brain structural networks depend on the diffusion sampling scheme and the nodal scale. At
the group level, the topological properties and rich-club organization of the structural brain
networks showed significant dependence on both the nodal scale and imaging scheme. The
parcellation scale, however, affected more strongly the topology of the constructed brain
structural networks. Using the multiscale approach, we could evaluate the reproducibility
of connectivity results across different parcellation scales, a critical step recommended
in other studies [11]. Our results suggest that caution should be taken when comparing
results from studies on structural network organization with regard to the parcellation
scale and acquisition protocol. Further investigations should be performed to determine
the optimal nodal scale and sampling scheme required to construct networks biologically
closer to real brain structural networks [2].
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