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Abstract: Duchenne muscular dystrophy (DMD) results in loss of ambulation and premature death.
Ultrasound provides real-time, safe, and cost-effective routine examinations. Deep learning allows
the automatic generation of useful features for classification. This study utilized deep learning
of ultrasound imaging for classifying patients with DMD based on their ambulatory function. A
total of 85 individuals (including ambulatory and nonambulatory subjects) underwent ultrasound
examinations of the gastrocnemius for deep learning of image data using LeNet, AlexNet, VGG-16,
VGG-16TL, VGG-19, and VGG-19TL models (the notation TL indicates fine-tuning pretrained models).
Gradient-weighted class activation mapping (Grad-CAM) was used to visualize features recognized
by the models. The classification performance was evaluated using the confusion matrix and receiver
operating characteristic (ROC) curve analysis. The results show that each deep learning model
endows muscle ultrasound imaging with the ability to enable DMD evaluations. The Grad-CAMs
indicated that boundary visibility, muscular texture clarity, and posterior shadowing are relevant
sonographic features recognized by the models for evaluating ambulatory function. Of the proposed
models, VGG-19 provided satisfying classification performance (the area under the ROC curve: 0.98;
accuracy: 94.18%) and feature recognition in terms of physical characteristics. Deep learning of
muscle ultrasound is a potential strategy for DMD characterization.

Keywords: Duchenne muscular dystrophy; deep learning; ultrasound imaging

1. Introduction

Duchenne muscular dystrophy (DMD), an X-linked recessive condition, is a rare
genetic disorder caused by the absence of functional dystrophin proteins due to gene muta-
tions [1]. The incidence of DMD is approximately 1 in 5000 male newborns [2]. Affected
boys initially exhibit progressive muscle weakness of the lower proximal extremities [3].
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The gradual muscle tissue loss and motor function deterioration eventually lead to am-
bulation loss, with respiratory and cardiac failure at the end stage of the disease [4,5].
Multidisciplinary care and health management are useful strategies to prolong lifespan,
improve quality of life, and reduce complications [4]. Several drugs, including corticos-
teroids, have been conditionally approved for their potential effect on muscle strength and
function [6]. Therefore, noninvasive approaches that reliably evaluate DMD are required
to support different integrated care plans.

Functional rating scales are commonly used for DMD assessment, including the 6 min
walk test and the North Star Ambulatory Assessment [7,8]. These functional measures
are limited to only ambulatory measurements and cannot provide quantitative and ob-
jective analyses of muscle tissues. Therefore, medical imaging techniques are a crucial
diagnostic tool for suspected muscular disorder. Among all imaging modalities, ultrasound
imaging offers a real-time, noninvasive, and point-of-care examination to measure muscle
size, structure, movement, and function [9]. To characterize tissues, ultrasound imaging
biomarkers must be developed to identify neuromuscular disease severity and progres-
sion [10]. For example, muscle ultrasound quantification has been proposed by using
either mean grayscale measurement of ultrasound B-scan [11,12] or backscattered analy-
sis [11,13] to detect clues associated with muscle pathology. Recent studies have indicated
that instantaneous frequency [14], envelope statistics [15], and information certainty [16] of
ultrasound backscattered signals are sensitive to variations in tissue microstructures and
beneficial for the assessment of DMD severity and ambulatory function.

Notably, quantitative ultrasound analysis requires rigidly fixed settings or a dedicated
system for hardware- and software-related reference values during scanning and data
acquisition [17]; such an analysis also requires researchers to comprehend the domain
knowledge of acoustics so that the clinical outcome can be explained physically [18]. In
comparison, deep learning based on a convolutional neural network (CNN) allows us
to automatically develop useful features for image classification [19]. A previous study
successfully used deep learning for the automated classification of myositis to significantly
improve diagnostic accuracy [20]. Deep learning also plays a critical role in computer-aided
detection and diagnosis to add the value of muscular ultrasound [21]. This implies that
deep learning may be able to endow muscle ultrasound with the ability to evaluate and
classify DMD. In addition, seeking relevant ultrasound features through deep learning to
fulfill interpretations of the underlying mechanisms and acoustic physics for classifying
individuals with ambulatory and nonambulatory DMD is of clinical importance and needs
to be explored.

This study investigated the performance of deep learning in ultrasound classification
of the ambulatory function of patients with DMD. A total of six CNN models were used
(please see the details in the next section), and gradient-weighted class activation mapping
(Grad-CAM) was constructed to visualize features recognized by the models. The VGG-19
model provided satisfactory classifications. Grad-CAM revealed that boundary visibility,
muscular texture clarity, and posterior shadowing in ultrasound imaging of the gastroc-
nemius muscle are major features associated with the ambulatory function of patients
with DMD.

2. Materials and Methods
2.1. Study Population

Considering the difficulty in enrolling newly added patients for rare diseases, this
study was approved by the Institutional Review Board of National Taiwan University
Hospital (Approval code: 201503025RINC; approval date: 30 March 2015) to allow the
reuse of the database collected in the previous studies [14,16]. All participants signed
informed consent forms, and experiments were conducted according to the approved
guidelines. A total of 85 participants aged between 2 and 24 years were recruited. The
DMD diagnostics of each patient was confirmed through muscle biopsy or genetic testing.
DMD was classified into four stages based on severity: normal control (n = 12; no history
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of weakness or neuromuscular disorders), stage 1 (n = 41; ambulatory), stage 2 (n = 20;
early nonambulatory), and stage 3 (n = 12; late nonambulatory). The demographic data of
participants and stage definitions were summarized in Table 1.

Table 1. Patient demographic data and DMD stage definitions. DMD was diagnosed through muscle biopsy or genetic
testing and classified into four stages according to clinical symptoms.

Stage Clinical Symptoms Age (Years) (Range) Number of Subjects

Normal No weakness:
No neuromuscular disorders or weakness

10.75 ± 4.59
(3–18) 12

Stage 1

Presymptomatic:
Subtle symptoms of delayed walking or delayed speech
(but often unnoticed).
Early ambulatory:
Showing a Gowers’ sign (patients need to support
themselves with hands to get up from the floor), waddling
type walking (gait), and walking on their toes.
Late ambulatory:
Walking becomes increasingly difficult (labored gait) and
climbing stairs and getting up from the floor are more
problematic.

7.92 ± 2.33
(2–13) 41

Stage 2

Early non-ambulatory:
Patients start to need to use a wheelchair; they may be
able to wheel the chair themselves and typically their
postures can be maintained even scoliosis is possible.

12.68 ± 2.05
(9–16) 20

Stage 3
Late non-ambulatory:
Upper limb function and maintenance of good posture are
increasingly difficult, and complications are more likely.

17.08 ± 2.90
(13–24) 12

2.2. Ultrasound Data Acquisition

A clinical ultrasound system (t3000; Terason, Burlington, MA, USA) equipped with
a linear array transducer (Model 12L5A; Terason) was used for standard-care ultrasound
examinations and data acquisition. The central frequency of the transducer was 7 MHz,
and the pulse length was 0.7 mm. Through the sagittal scanning approach, the partici-
pants underwent scanning of the gastrocnemius muscle, which was recommended as an
appropriate location for DMD evaluations [15]. During examinations, the focal length
and imaging depth were set as 2 and 4 cm, respectively. Ultrasound scans that excluded
acoustic shadowing artifacts and large vessels were performed by a skilled physician to
acquire raw image data consisting of 128 backscattered radiofrequency (RF) signals at a
sampling rate of 30 MHz. For each raw datum, the absolute values of the Hilbert transform
of each backscattered RF signal were calculated to obtain the envelope image, which was
then compressed using logarithmic compression to obtain ultrasound B-mode images at a
dynamic range of 40 dB.

2.3. Data Augmentation

Each B-scan datum was labeled according to DMD diagnosis. The data were divided
into training and test sets (the training-to-test ratio in the sample size was at least 3).
Considering the limited sample size owing to the rarity of DMD, data augmentation of
the training data set was performed through horizontal flipping, random cropping, and
translation (lateral direction of the sound beam) for each DMD stage. The amounts of data
used for labeling, training, and tests are shown in Table 2.
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Table 2. Sample size and amount of data for labeling, training, and tests of ultrasound images for
patients with DMD.

Subjects Number of Subjects Number of Subjects
(Training, Test)

Amount of Training Data
(after Augmentation)

Normal control 12 (10, 2) 250
Stage 1 41 (32, 9) 800
Stage 2 20 (16, 4) 400
Stage 3 12 (10, 2) 250

2.4. Deep Learning Approaches

In this study, LeNet, AlexNet, and VGG models were used as deep learning ap-
proaches. LeNet is the classic CNN architecture initially developed for pattern recognition
tasks [22]. LeNet consists of two sets of convolutional and average pooling layers, then two
fully connected layers, and finally a softmax classifier, providing reductions in run-time
complexity for rapid training and testing [22,23]. AlexNet may be treated as an extension
model of LeNet, comprising five convolutional layers, three maximum pooling layers,
two normalization layers, two fully connected layers, and a softmax layer. Furthermore,
AlexNet incorporates rectified linear units as activation functions, which are now the most
common choice in CNNs [24]. Compared with AlexNet, a VGG network was developed to
provide much deeper networks and much smaller filters in order to learn more complicated
image features; this network is popular for medical data analysis [24]. The VGG-16 and
VGG-19 models are two common VGG architectures. VGG-16 is composed of five convo-
lutional blocks (including 13 convolutional layers and 3 maximum pooling layers), three
fully connected layers, and one softmax layer. VGG-19 consists of 16 convolution layers, 5
maximum pooling layers, 3 fully connected layers, and 1 softmax layer. In addition, the
VGG-16 and VGG-19 models pretrained using natural image data sets (ImageNet) were
also used for investigations (denoted by VGG-16TL and VGG-19TL, respectively). For each
CNN architecture, the first two fully connected layers were modified to have 1024 nodes
each, and the output layer was adjusted to have two nodes for the binary classification of
DMD (ambulatory and nonambulatory subjects). In the training phase, 50 epochs and four-
fold cross-validation were used for predicting the test data set. To highlight the relevant
ultrasound features of DMD used for predictions, Grad-CAM for each model was obtained
using the class-specific gradient information flowing into the final convolutional layer to
yield a coarse localization map of the important regions in the image [25]. Data training
and tests performed using different models are presented in Figure 1.
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2.5. Statistical Analysis

To evaluate the performance of each CNN model in classifying participants into
ambulatory and nonambulatory groups (normal control and stage 1 DMD versus DMD
stages 2 and 3), the sensitivity, specificity, accuracy, precision, and F1-scores were calculated
using the confusion matrix. Furthermore, the receiver operating characteristic (ROC)
curve analysis was conducted to obtain the area under the ROC curve (AUROC) with a
95% confidence interval. Analyses were performed using MATLAB (R2019a, MathWorks,
Natick, MA, USA) and SigmaPlot (version 12.0, Systat Software, Inc., San Jose, CA, USA).

3. Results

The typical ultrasound B-mode images of gastrocnemius muscles in normal controls
and patients with different stages of DMD are shown in Figure 2. The brightness of
an ultrasound B-scan image increases as the DMD stage increases, indicating that the
amplitude of backscattered signals is proportional to DMD severity [16]. The boundaries,
structures, and morphological texture were visible and clear in the images for healthy
controls and individuals with stage 1 DMD (ambulatory patients); however, the images of
gastrocnemius muscles of individuals with DMD stages 2 and 3 (nonambulatory patients)
exhibited blurred speckle patterns and hyperechoic regions. In particular, the inferior
boundary was not clear, and accompanying shadowing regions were noted. The Grad-
CAM images obtained from LeNet, AlexNet, and VGG-based models corresponding to
different DMD stages are shown for comparison with ultrasound B-scans. The highlighted
regions (the weights of importance) in the Grad-CAM images of healthy controls and
individuals with DMD stage 1 appear in the gastrocnemius and are distributed close to
inferior and superior boundaries. For Grad-CAM images of individuals with DMD stages
2 and 3, the highlighted regions appear around the inferior boundary and extend to the
shadowing area of the B-mode image.
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The confusion matrix of predicting ambulatory function of the patients with DMD
for each model is shown in Figure 3. Among the proposed models, VGG-19 provided the
highest true positive and true negative rates in the test dataset (accuracy: 94.18%; precision:
85.71%; sensitivity: 100%; specificity: 90.91%; F1-score: 0.92). VGG-19 also had the highest
diagnostic performance (AUROC: 0.98) in the functional classification of DMD, as shown
in Figure 4 and Table 3.
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19TL. VGG-19 as well as its pretrained version offered higher AUROCs compared with other
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Diagnostics 2021, 11, 963 7 of 10

Table 3. Performance metrics for differentiating ambulatory and nonambulatory patients through deep learning of
ultrasound imaging data using the proposed models. Compared with LeNet, AlexNet, VGG-16, and VGG-16TH, VGG-19 as
well as its pretrained version offered better performance in terms of confusion matrix data.

Model LeNet AlexNet VGG-16 VGG-16TL VGG-19 VGG-19TL

Accuracy, % 82.35 88.24 88.24 88.24 94.18 94.18
Precision, % 80.00 75.00 83.33 83.33 85.71 85.71

Sensitivity, % 66.67 100.00 78.82 78.82 100.00 100.00
Specificity, % 90.91 81.82 90.91 90.91 90.91 90.91

F1-score 0.73 0.86 0.83 0.83 0.92 0.92
AUROC (95% CI) 0.91 (0.75–1.00) 0.95 (0.87–1.00) 0.95 (0.87–1.00) 0.95 (0.85–1.00) 0.98 (0.94–1.00) 0.97 (0.90–1.00)

AUROC area under the receiver operating characteristic (ROC) curve, CI: confidence interval.

4. Discussion
4.1. The Significance of This Study

This is the first study to explore the feasibility of using deep learning of ultrasound
imaging in predicting the ambulatory status of patients with DMD. Both the basic archi-
tectures and pretrained CNN models used for validating the proposed research idea are
well-developed deep learning solutions that benefit reduction in the technical barrier in
practical uses to accelerate clinical applications. The results obtained from the clinical
data set of DMD show that deep learning endowed ultrasound imaging with the ability
to evaluate DMD and perform feature recognition in terms of physical characteristics.
Comparatively, VGG-19 offered satisfactory performance and confusion matrix data in
detecting changes in the ambulatory function of patients with DMD.

4.2. Considerations on Ultrasound Evaluations of DMD

The progression of DMD involves two critical periods, namely when dystrophia occurs
and when patients lose their ambulation. Free-acting capability is an important index for
life quality, mental health, and disease management of patients, and therefore, prolonging
ambulatory function is the major aim of DMD treatment [26]. Moreover, evaluation and
prediction of change in ambulatory function are helpful for individual treatment planning,
including corticosteroid adjustment and rehabilitation in multidisciplinary care, which
are imperative for alleviating muscle atrophy, skeletal deformities, and motor function
deterioration [27,28]. Clinically, observations on strength loss (e.g., hip extension and ankle
dorsiflexion) are typically used as the primary evaluation of ambulation loss in patients
with DMD [29]. To compensate for muscle weakness, patients with DMD naturally develop
compensatory movements; however, before compensatory movements are used, structural
changes in muscle may exist already to gradually influence muscular function and the
corresponding image features. Evidently, the gastrocnemius muscle is more sensitive
to reflecting progressive changes in the muscle architecture in ambulatory boys with
DMD [15]. A previous study also suggested that the gastrocnemius is the earliest affected
muscle and could be useful for disease monitoring in ambulatory boys [30]. In other words,
ultrasound image patterns of the gastrocnemius muscle may be critical clues in ultrasound
assessment of ambulatory function in DMD patients.

4.3. Physical Interpretations of Deep Learning in Ultrasound Imaging of DMD

Deep learning should be used carefully in dealing with medical problems because an
accurate classification of medical data is not all that is required [31]. Identifying physical
characteristics that are beneficial for clinical interpretations of the disease is essential for
further understanding related mechanisms. A previous study suggested opening the
black box of artificial intelligence to extend domain knowledge [32]. Grad-CAM allows
CNN-based models to be more transparent by visualizing input areas with details that are
useful for prediction. By using the Grad-CAM technique, we explained the image pattern
recognized by CNN models and better comprehended how these CNN models characterize
DMD. The Grad-CAM results indicate that boundary visibility, muscular texture clarity, and
posterior shadowing are highlighted features in ultrasound imaging of the gastrocnemius
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recognized by the models for evaluating ambulatory function, as shown in the Results
section. Recall that the echo intensity of ultrasound B-scans for normal muscles is relatively
low, and dystrophic muscles behave similarly to hyperechoic tissue due to intramuscular
fat infiltration and fibrosis [33,34]. In addition, fatty infiltration increases the strength of
backscattered signals, resulting in decreased ultrasound beam energy for tissue penetration
(i.e., acoustic attenuation) [35,36]. In this circumstance, the speckle pattern was blurred and
hyperechoic, and the shadowing effect occurred under the inferior boundary of muscle
when DMD severity increased. Owing to advancements in deep learning, the above
acoustically structural features can be now recognized by deep learning to assist in the
physical interpretation of imaging findings when sonographic examinations of DMD
are performed for quantitative classification. Notably, Grad-CAM images obtained from
different models performed differently in visualizing each sonographic feature. As shown
in Figure 2, LeNet and AlexNet were relatively sensitive to the shadowing effect caused by
acoustic attenuation; VGG-based models tended to recognize features related to boundary
visibility and muscular texture clarity. Because the current results show that VGG-19
outperformed the other proposed models, boundary visibility and muscular texture clarity
may be clues that are more relevant to ambulatory function for DMD patients.

4.4. Comparisons with the Proposed Models

Notably, obtaining comprehensively annotated medical data on patients with DMD
is challenging. Transfer learning (i.e., fine-turning CNN models pretrained on a large
annotation data set) is conventionally believed to be a useful method for training deeper
networks without overfitting and improving performance and training time [37]. However,
we found that pretrained models (VGG-16TH, VGG-19TH) did not significantly outperform
those without transfer learning (LeNet, AlexNet, VGG-16, and VGG-19) in classifying
the ambulation status of individuals. Probably due to the nature of ultrasound images
of muscle tissues, the transfer learning technique based on natural image data sets could
not provide the deep learning model with the ability to recognize changes in sonographic
features. It is a challenging problem to improve performance by transferring knowledge
from another domain to the medical ultrasound domain [37]. Comparatively, using a much
deeper network (VGG-19) was more useful in enhancing the performance of deep learning
in learning DMD-related image features, as shown in the comparisons in Table 3. This may
be due to the fact that shallow networks are good at memorization, but do not perform
well for generalization. Multiple layers are beneficial for learning features at various
levels of abstraction, achieving better image pattern characterization and classification [38].
However, using much deeper networks may be unable to promise state-of-the-art results
for all medical applications; for example, increasing complexity and depth of networks
for the classification of chest radiographs is not necessarily a requirement to achieve more
outstanding performance [39].

4.5. Limitations of This Study

This study has some limitations. First, the sample size was small because of the
rarity of DMD. A large sample size is useful for data augmentation and necessary for
further investigations of multiclass classifications. Second, the image data used in this
study were obtained through reconstructions of raw RF signals (without any signal and
image processing). However, clinical ultrasound systems allow adjustment of imaging
parameters and settings, making the image quality system-dependent. The effects of
system characteristics on deep learning–based classification should be further clarified.
Furthermore, a cross-platform investigation should be considered in future research.

5. Conclusions

This study has demonstrated the value of deep learning in muscle ultrasound evalua-
tions of individuals with DMD by clinical data analysis. The results indicate that the basic
architectures and pretrained CNN models performed well in differentiating individuals
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with ambulatory and nonambulatory DMD. Boundary visibility, muscular texture clarity,
and posterior shadowing in ultrasound imaging of the gastrocnemius were recognized
by the models as major features associated with the ambulatory function of patients with
DMD. Compared with the other proposed models, VGG-19 outperformed in classifying
ambulatory function and recognizing sonographic features of DMD. The current clinical
findings indicate that deep learning endows ultrasound imaging with the diagnostic ability
to characterize DMD by providing interpretations of the underlying imaging physics. In
the future, deep learning of muscle ultrasound may be a potential strategy to benefit the
clinical evaluation and monitoring of disease progression for patients with DMD.

Author Contributions: Conceptualization, P.-H.T. and W.-C.W.; methodology, A.-H.L. and J.-R.C.;
validation, J.-R.C. and S.-H.L.; formal analysis and investigation, J.-R.C., S.-H.L., and C.-H.L.; re-
sources, P.-H.T. and W.-C.W.; data curation, C.-H.L., C.-W.L., and J.-Y.S.; writing—original draft
preparation, A.-H.L. and J.-R.C.; writing—review and editing, P.-H.T. and W.-C.W.; supervision,
P.-H.T. and W.-C.W. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Ministry of Science and Technology in Taiwan (Grant
No. MOST 109-2223-E-182-001-MY3) and the Chang Gung Memorial Hospital at Linkou in Taiwan
(Grant Nos. CMRPD1K0421 and CMRPD1H0381).

Institutional Review Board Statement: The study was conducted according to the guidelines of
the Declaration of Helsinki, and approved by the Institutional Review Board of National Taiwan
University Hospital (Approval code: 201503025RINC; approval date: 30 March 2015).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available on request by contacting
the corresponding author.

Conflicts of Interest: The authors declare no conflict of interests.

References
1. Emery, A.E. The muscular dystrophies. Lancet 2002, 359, 687–695. [CrossRef]
2. Mendell, J.R.; Lloyd-Puryear, M. Report of MDA muscle disease symposium on newborn screening for Duchenne muscular

dystrophy. Muscle Nerve 2013, 48, 21–26. [CrossRef] [PubMed]
3. Parsons, E.P.; Clarke, A.J.; Bradley, D.M. Developmental progress in Duchenne muscular dystrophy: Lessons for earlier detection.

Eur. J. Paediatr. Neurol. 2004, 8, 145–153. [CrossRef]
4. Verhaart, I.E.; Aartsma-Rus, A. Therapeutic developments for Duchenne muscular dystrophy. Nat. Rev. Neurol. 2019, 15, 373–386.

[CrossRef]
5. Bach, J.R.; O’Brien, J.; Krotenberg, R.; Alba, A.S. Management of end stage respiratory failure in Duchenne muscular dystrophy.

Muscle Nerve 1987, 10, 177–182. [CrossRef]
6. Guiraud, S.; Davies, K.E. Pharmacological advances for treatment in Duchenne muscular dystrophy. Curr. Opin. Pharmacol. 2017,

34, 36–48. [CrossRef] [PubMed]
7. McDonald, C.M.; Henricson, E.K.; Han, J.J.; Abresch, R.T.; Nicorici, A.; Elfring, G.L.; Atkinson, L.; Reha, A.; Hirawat, S.; Miller,

L.L. The 6-minute walk test as a new outcome measure in Duchenne muscular dystrophy. Muscle Nerve 2010, 41, 500–510.
[CrossRef] [PubMed]

8. Mazzone, E.S.; Messina, S.; Vasco, G.; Main, M.; Eagle, M.; D’Amico, A.; Doglio, L.; Politano, L.; Cavallaro, F.; Frosini, S.; et al.
Reliability of the North star ambulatory assessment in a multicentric setting. Neuromuscul. Disord. 2009, 19, 458–461. [CrossRef]
[PubMed]

9. Van Alfen, N.; Gijsbertse, K.; de Korte, C.L. How useful is muscle ultrasound in the diagnostic workup of neuromuscular diseases?
Curr. Opin. Neurol. 2018, 31, 568–574. [CrossRef] [PubMed]

10. Mul, K.; Horlings, C.G.; Vincenten, S.C.; Voermans, N.C.; van Engelen, B.G.; van Alfen, N. Quantitative muscle MRI and
ultrasound for facioscapulohumeral muscular dystrophy: Complementary imaging biomarkers. J. Neurol. 2018, 265, 2646–2655.
[CrossRef]

11. Shklyar, I.; Geisbush, T.R.; Mijialovic, A.S.; Pasternak, A.; Darras, B.T.; Wu, J.S.; Rutkove, S.B.; Zaidman, C.M. Quantitative muscle
ultrasound in Duchenne muscular dystrophy: A comparison of techniques. Muscle Nerve 2015, 51, 207–213. [CrossRef]

12. Jansen, M.; van Alfen, N.; van der Sanden, M.W.N.; van Dijk, J.P.; Pillen, S.; de Groot, I.J.M. Quantitative muscle ultrasound is a
promising longitudinal follow-up tool in Duchenne muscular dystrophy. Neuromuscul. Disord. 2012, 22, 306–317. [CrossRef]

13. Zaidman, C.M.; Connolly, A.M.; Malkus, E.C.; Florence, J.M.; Pestronk, A. Quantitative ultrasound using backscatter analysis in
Duchenne and Becker muscular dystrophy. Neuromuscul. Disord. 2010, 20, 805–809. [CrossRef]

http://doi.org/10.1016/S0140-6736(02)07815-7
http://doi.org/10.1002/mus.23810
http://www.ncbi.nlm.nih.gov/pubmed/23716304
http://doi.org/10.1016/j.ejpn.2004.01.009
http://doi.org/10.1038/s41582-019-0203-3
http://doi.org/10.1002/mus.880100212
http://doi.org/10.1016/j.coph.2017.04.002
http://www.ncbi.nlm.nih.gov/pubmed/28486179
http://doi.org/10.1002/mus.21544
http://www.ncbi.nlm.nih.gov/pubmed/19941337
http://doi.org/10.1016/j.nmd.2009.06.368
http://www.ncbi.nlm.nih.gov/pubmed/19553120
http://doi.org/10.1097/WCO.0000000000000589
http://www.ncbi.nlm.nih.gov/pubmed/30028736
http://doi.org/10.1007/s00415-018-9037-y
http://doi.org/10.1002/mus.24296
http://doi.org/10.1016/j.nmd.2011.10.020
http://doi.org/10.1016/j.nmd.2010.06.019


Diagnostics 2021, 11, 963 10 of 10

14. Weng, W.C.; Lin, C.W.; Shen, H.C.; Chang, C.C.; Tsui, P.H. Instantaneous frequency as a new approach for evaluating the clinical
severity of Duchenne muscular dystrophy through ultrasound imaging. Ultrasonics 2019, 94, 235–241. [CrossRef]

15. Weng, W.C.; Tsui, P.H.; Lin, C.W.; Lu, C.H.; Lin, C.Y.; Shieh, J.Y.; Lu, F.L.; Ee, T.W.; Wu, K.W.; Lee, W.T. Evaluation of muscular
changes by ultrasound Nakagami imaging in Duchenne muscular dystrophy. Sci. Rep. 2017, 7, 1–11. [CrossRef] [PubMed]

16. Yan, D.; Li, Q.; Lin, C.W.; Shieh, J.Y.; Weng, W.C.; Tsui, P.H. Clinical evaluation of duchenne muscular dystrophy severity using
ultrasound small-window entropy imaging. Entropy 2020, 22, 715. [CrossRef] [PubMed]

17. Pillen, S.; Boon, A.; Van Alfen, N. Muscle ultrasound. Handb. Clin. Neurol. 2016, 136, 843–853. [PubMed]
18. Chen, J.R.; Chao, Y.P.; Tsai, Y.W.; Chan, H.J.; Wan, Y.L.; Tai, D.I.; Tsui, P.H. Clinical value of information entropy compared with

deep learning for ultrasound grading of hepatic steatosis. Entropy 2020, 22, 1006. [CrossRef] [PubMed]
19. Xu, J.; Xue, K.; Zhang, K. Current status and future trends of clinical diagnoses via image-based deep learning. Theranostics 2019,

9, 7556–7565. [CrossRef]
20. Burlina, P.; Billings, S.; Joshi, N.; Albayda, J. Automated diagnosis of myositis from muscle ultrasound: Exploring the use of

machine learning and deep learning methods. PLoS ONE 2017, 12, e0184059. [CrossRef]
21. Shin, Y.; Yang, J.; Lee, Y.H.; Kim, S. Artificial intelligence in musculoskeletal ultrasound imaging. Ultrasonography 2021, 40, 30–44.

[CrossRef]
22. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86,

2278–2324. [CrossRef]
23. Khan, S.; Yong, S.P. A Deep Learning Architecture for Classifying Medical Images of Anatomy Object. In Proceedings of the

2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), Kuala Lumpur,
Malaysia, 12–15 December 2017.

24. Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; van der Laak, J.A.W.M.; van Ginneken, B.; Sanchez,
C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88. [CrossRef]

25. Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual Explanations from Deep Networks
via Gradient-based Localization. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29
October 2017.

26. Matthews, E.; Brassington, R.; Kuntzer, T.; Jichi, F.; Manzur, A.Y. Corticosteroids for the treatment of Duchenne muscular
dystrophy. Cochrane Database Syst. Rev. 2016, CD003725. [CrossRef]

27. Birnkrant, D.J.; Bushby, K.; Bann, C.M.; Apkon, S.D.; Blackwell, A.; Brumbaugh, D.; Case, L.E.; Clemens, P.R.; Hadjiyannakis,
S.; Pandya, S.; et al. Diagnosis and management of Duchenne muscular dystrophy, part 1: Diagnosis, and neuromuscular,
rehabilitation, endocrine, and gastrointestinal and nutritional management. Lancet Neurol. 2018, 17, 251–267. [CrossRef]

28. Bushby, K.; Finkel, R.; Birnkrant, D.J.; Case, L.E.; Clemens, P.R.; Cripe, L.; Kaul, A.; Kinnett, K.; McDonald, C.; Pandya, S.; et al.
Diagnosis and management of Duchenne muscular dystrophy, part 2: Implementation of multidisciplinary care. Lancet Neurol.
2010, 9, 177–189. [CrossRef]

29. Bakker, J.P.; De Groot, I.J.; Beelen, A.; Lankhorst, G.J. Predictive factors of cessation of ambulation in patients with Duchenne
muscular dystrophy. Am. J. Phys. Med. Rehabil. 2002, 81, 906–912. [CrossRef] [PubMed]

30. Kinali, M.; Arechavala-Gomeza, V.; Cirak, S.; Glover, A.; Guglieri, M.; Feng, L.; Hollingsworth, K.G.; Hunt, D.; Jungbluth, H.;
Roper, H.P.; et al. Muscle histology vs MRI in Duchenne muscular dystrophy. Neurology 2011, 76, 346–353. [CrossRef] [PubMed]

31. Riaz, H.; Park, J.; Choi, H.; Kim, H.; Kim, J. Deep and densely connected networks for classification of diabetic retinopathy.
Diagnostics 2020, 10, 24. [CrossRef]

32. Castelvecchi, D. Can we open the black box of AI? Nat. News 2016, 538, 20–23. [CrossRef]
33. Pillen, S.; Tak, R.O.; Zwarts, M.J.; Lammens, M.M.Y.; Verrijp, K.N.; Arts, I.M.P.; van der Laak, J.A.; Hoogerbrugge, P.M.; van

Engelen, B.G.M.; Verrips, A. Skeletal muscle ultrasound: Correlation between fibrous tissue and echo intensity. Ultrasound Med.
Biol. 2009, 35, 443–446. [CrossRef]

34. Brockmann, K.; Becker, P.; Schreiber, G.; Neubert, K.; Brunner, E.; Bönnemann, C. Sensitivity and specificity of qualitative muscle
ultrasound in assessment of suspected neuromuscular disease in childhood. Neuromuscul. Disord. 2007, 17, 517–523. [CrossRef]
[PubMed]

35. Sandford, N.L.; Walsh, P.; Matis, C.; Baddeley, H.; Powell, L.W. Is ultrasonography useful in the assessment of diffuse parenchymal
liver disease? Gastroenterology 1985, 89, 186–191. [CrossRef]

36. Joseph, A.E.A.; Saverymuttu, S.H. Ultrasound in the assessment of diffuse parenchymal liver disease. Clin. Radiol. 1991, 44,
219–221. [CrossRef]

37. Liu, S.; Wang, Y.; Yang, X.; Lei, B.; Liu, L.; Li, S.X.; Ni, D.; Wang, T. Deep learning in medical ultrasound analysis: A review.
Engineering 2019, 5, 261–275. [CrossRef]

38. Zhong, G.; Ling, X.; Wang, L.N. From shallow feature learning to deep learning: Benefits from the width and depth of deep
architectures. WIREs Data Min. Knowl. Discov. 2018, 9, e1255. [CrossRef]

39. Bressem, K.K.; Adams, L.C.; Erxleben, C.; Hamm, B.; Niehues, S.M.; Vahldiek, J.L. Comparing different deep learning architectures
for classification of chest radiographs. Sci. Rep. 2020, 10, 13590. [CrossRef] [PubMed]

http://doi.org/10.1016/j.ultras.2018.09.004
http://doi.org/10.1038/s41598-017-04131-8
http://www.ncbi.nlm.nih.gov/pubmed/28667314
http://doi.org/10.3390/e22070715
http://www.ncbi.nlm.nih.gov/pubmed/33286487
http://www.ncbi.nlm.nih.gov/pubmed/27430445
http://doi.org/10.3390/e22091006
http://www.ncbi.nlm.nih.gov/pubmed/33286775
http://doi.org/10.7150/thno.38065
http://doi.org/10.1371/journal.pone.0184059
http://doi.org/10.14366/usg.20080
http://doi.org/10.1109/5.726791
http://doi.org/10.1016/j.media.2017.07.005
http://doi.org/10.1002/14651858.CD003725.pub4
http://doi.org/10.1016/S1474-4422(18)30024-3
http://doi.org/10.1016/S1474-4422(09)70272-8
http://doi.org/10.1097/00002060-200212000-00004
http://www.ncbi.nlm.nih.gov/pubmed/12447089
http://doi.org/10.1212/WNL.0b013e318208811f
http://www.ncbi.nlm.nih.gov/pubmed/21263136
http://doi.org/10.3390/diagnostics10010024
http://doi.org/10.1038/538020a
http://doi.org/10.1016/j.ultrasmedbio.2008.09.016
http://doi.org/10.1016/j.nmd.2007.03.015
http://www.ncbi.nlm.nih.gov/pubmed/17537637
http://doi.org/10.1016/0016-5085(85)90761-9
http://doi.org/10.1016/S0009-9260(05)80182-5
http://doi.org/10.1016/j.eng.2018.11.020
http://doi.org/10.1002/widm.1255
http://doi.org/10.1038/s41598-020-70479-z
http://www.ncbi.nlm.nih.gov/pubmed/32788602

	Introduction 
	Materials and Methods 
	Study Population 
	Ultrasound Data Acquisition 
	Data Augmentation 
	Deep Learning Approaches 
	Statistical Analysis 

	Results 
	Discussion 
	The Significance of This Study 
	Considerations on Ultrasound Evaluations of DMD 
	Physical Interpretations of Deep Learning in Ultrasound Imaging of DMD 
	Comparisons with the Proposed Models 
	Limitations of This Study 

	Conclusions 
	References

