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Abstract: Due to the upfront role of magnetic resonance imaging (MRI) for prostate cancer (PCa)
diagnosis, a multitude of artificial intelligence (AI) applications have been suggested to aid in the
diagnosis and detection of PCa. In this review, we provide an overview of the current field, including
studies between 2018 and February 2021, describing AI algorithms for (1) lesion classification and
(2) lesion detection for PCa. Our evaluation of 59 included studies showed that most research has
been conducted for the task of PCa lesion classification (66%) followed by PCa lesion detection (34%).
Studies showed large heterogeneity in cohort sizes, ranging between 18 to 499 patients (median
= 162) combined with different approaches for performance validation. Furthermore, 85% of the
studies reported on the stand-alone diagnostic accuracy, whereas 15% demonstrated the impact
of AI on diagnostic thinking efficacy, indicating limited proof for the clinical utility of PCa AI
applications. In order to introduce AI within the clinical workflow of PCa assessment, robustness
and generalizability of AI applications need to be further validated utilizing external validation and
clinical workflow experiments.

Keywords: artificial intelligence; machine learning; radiomics; deep learning; prostate neoplasms;
computer-aided diagnosis; magnetic resonance imaging

1. Introduction

With a worldwide estimation of 1.4 million new cases in 2020, prostate cancer (PCa)
is the second most common malignancy among men worldwide [1]. Despite the high
prevalence of PCa, PCa related deaths account for merely 10% of all cancer deaths with
five-year survival rate exceeding 98% for all PCa stages combined [2]. Considering the
high PCa prevalence and low mortality rate, accurate differentiation between aggressive
and non-aggressive PCa is of high importance to decrease overdiagnosis and overtreat-
ment. Artificial intelligence (AI) techniques may have the potential to highlight important
characteristics indicative of disease and therefore could provide significant aid in PCa
management [3].

In 2018 and 2019, several large prospective trials concluded that the use of magnetic
resonance imaging (MRI) prior to biopsy increases the detection of (more aggressive)
clinically significant (cs)PCa, while decreasing detection of (non-aggressive) clinically
insignificant (cis)PCa compared to transrectal ultrasound guided biopsy [4–7]. For this
reason, multiparametric (mp)MRI has been included in the guidelines of the European
Association of Urology (EAU) to be performed prior to biopsy [8]. It is recommended to
use the Prostate Imaging and Reporting and Data System (PI-RADSv2.1) to report prostate
MRI [9]. Suspicious lesions are graded from highly unlikely to highly likely for csPCa
using a five-point Likert scale.

Due to the upfront role of mpMRI in the diagnostic pathway of PCa, the workload of
prostate MRI examinations increases. Reporting these exams, however, requires substantial
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expertise and is limited by a steep learning curve and inter-reader variability [10–12].
Computer-aided detection and/or diagnosis (CAD) applications using AI may have a
role in overcoming these challenges and aid in improving the workflow of prostate MRI
assessment. Before AI-CAD applications for prostate MRI can be introduced within a
clinical workflow, current applications described within literature and corresponding
evidence for its potential use need to be investigated.

In this review we provide an overview of studies describing AI algorithms for prostate
MRI analysis from January 2018 to February 2021, in which we differentiate applications for
lesion classification and lesion detection for PCa. The study methodologies, data character-
istics, and level of evidence are described. We furthermore review commercially available
CAD software for PCa and discuss its clinical applications.

2. Background
Machine Learning and Deep Learning Approaches

AI encompasses various subsets of learning techniques and algorithms. Machine learn-
ing (ML) is a subset within AI comprising algorithms that learn and predict specific tasks
without explicit programming. For a long time, these ML techniques have served as the
main pipeline for CAD applications [13]. Contrary to classical rule-based algorithms, ML is
capable of learning and improving its task over time while being exposed to large and new
data [14].

ML algorithms learn and predict by extracting and utilizing features [15]. In the field
of prostate MRI, these features are mainly extracted from T2-weighted sequences and
DWI with ADC maps and may additionally be combined with clinical parameters such as
serum prostate-specific antigen (PSA) level and PSA density (PSAd). An expanding field
used for image feature selection is that of radiomics. Radiomics concern the extraction of
quantitative features from a region of interest (ROI), such as an annotation of a suspicious
lesion, to describe the distinctive attributes of the ROI. Both semantic features, such as size
and shape, as agnostic features, such as textures, are mined. The most significant features
are selected and used in the learning task of the ML algorithm [16].

In more recent years, a particular subset of ML, deep learning (DL), gained popularity
in CAD [13]. In contrast to classical ML algorithms, DL does not require prior feature extrac-
tion as the algorithm learns to extract complex and abstract features during training [14].
DL algorithms can be divided into typical algorithms utilizing one-dimensional feature in-
put, or convolutional neural networks (CNN), utilizing two- and three-dimensional feature
input, such as prostate mpMRI sequences. CNNs are often utilized within medical image
analysis [17]. Although DL algorithms may be implemented without prior feature selection,
these algorithms are limited by the need for extensive data for training. In addition, due to
their complex architecture, DL algorithms are less transparent and difficult to interpret,
which impedes widespread application [18].

3. Materials and Methods

The Pubmed and Cochrane libraries were searched for studies describing ML algo-
rithms for the characterization, detection, and grading of PCa on MRI. The search was
limited to articles written in English from 2018 to February 2021 using combined terms:
artificial intelligence, machine learning, prostate cancer, magnetic resonance imaging, and
corresponding synonyms for each term. The search was limited to these years to retrieve
articles most representative for the current research field. Additional references were
identified by manual search in the reference list of included papers. Duplicates, reviews,
conference abstracts, preceding articles of described algorithm, and articles not related to
the topic were excluded (Figure 1).
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Figure 1. Flow diagram for search strategy.

For categorization between various AI-CAD algorithms, studies were categorized
within two common tasks [13,19]:

1. Lesion classification algorithms, i.e., Computer-Aided Diagnosis (CADx) Within the first
group we included algorithms that classify manually annotated regions, such as
lesion segmentations. We discriminate between two-class classification algorithms,
utilizing either ML or DL, and multi-class classification algorithms.

2. Lesion detection algorithms, i.e., Computer-Aided Detection (CADe) The second group
included algorithms that detect and localize PCa lesions and provide the user with
probability maps, segmentations, and/or attention boxes as output. We discriminate
between algorithms providing two-class detection and multi-class detection.

For all studies, AI algorithm characteristics, MRI sequences used, study design and
cohort size, ground truth for PCa, and performance were extracted. Studies were graded
using an adaptation of the hierarchical model for diagnostic imaging efficacy from Fryback
and Thornbury, applicable for assessment of AI software in clinical practice (Table 1) [20,21].

Secondly, a search for commercially available CAD software for PCa was performed to
investigate current available products for clinical application. Applications were included if
CAD was suited for prostate MRI assessment and received Food and Drug Administration
(FDA) clearance and/or European Conformity (CE) marking. For included applications,
key features, market date, and literature evidence were assessed.
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Table 1. Hierarchical model of efficacy to assess the contribution of AI software to the diagnostic imaging process.
An adapted model from van Leeuwen et al. [21], based on Fryback and Thornbury’s hierarchical model of efficacy [20].

Level Explanation Typical Measures

Level 1t * Technical efficacy
Article demonstrates the technical feasibility of the software. Reproducibility, inter-software agreement, error rate.

Level 1c **
Potential clinical efficacy

Article demonstrates the feasibility of the software to be
clinically applied.

Correlation to alternative methods, potential
predictive value, biomarker studies.

Level 2
Diagnostic accuracy efficacy

Article demonstrates the stand-alone performance of
the software.

Standalone sensitivity, specificity, area under the
ROC ¶ curve, or Dice score.

Level 3 Diagnostic thinking efficacy
Article demonstrates the added value to the diagnosis.

Radiologist performance with/without AI, change
in radiological judgement.

Level 4
Therapeutic efficacy

Article demonstrates the impact of the software on the
patient management decisions.

Effect on treatment or follow-up examinations.

Level 5
Patient outcome efficacy

Article demonstrates the impact of the software on
patient outcomes.

Effect on quality of life, morbidity, or survival.

Level 6
Societal efficacy

Article demonstrates the impact of the software on society
by performing an economic analysis.

Effect on costs and quality adjusted life years,
incremental costs per quality adjusted life year.

* Level 1t = Level 1, technical; ** Level 1c = Level 1, clinical; ¶ ROC = receiver operating characteristic.

4. AI Algorithms for Prostate Cancer Classification and Detection

In total, 59 studies were included in this review (Figure 2). Thirty-nine articles (66%)
described lesion classification algorithms. Of these, 35 articles (59%) described two-class
lesion classification with 25 (42%) articles using an ML and 10 articles (17%) a DL approach.
Four articles (7%) were included for multi-class lesion classification. The 20 remaining arti-
cles (34%) described lesion detection algorithms, with 17 studies (29%) for two-class lesion
detection and 3 studies (5%) for multi-class lesion detection. Additionally, 6 commercially
available AI applications for prostate MRI with either FDA clearance and/or CE marking
were identified. In the next sections, topics will be summarized according to each category.

4.1. Lesion Classification (CADx)

In recent years, numerous ML and DL algorithms have been described for classification
(CADx) of suspicious prostate lesions on MRI. Its task is to classify a manually annotated
ROI in two or multiple classes, such as malignant versus benign tissue, classification
between csPCa and cisPCa, or multi-class classification according to lesion aggressiveness
(histopathological grading) or likelihood of csPCa (PI-RADS). Due to the different AI
architecture of ML and DL and the large number of included studies, we describe the
two-class lesion classification for ML and DL approaches separately.

4.1.1. Two-Class Lesion Classification with Machine Learning

In total, twenty-five studies described two-class lesion classification with a ML ap-
proach (Table 2).

Most of these algorithms follow a similar workflow (Figure 3). MR exams are used
as input, either multiparametric or single sequence MR. Suspicious regions are manually
or semiautomatically annotated by expert readers and used to extract image features.
Image features comprise semantic features such as size, shape, and vascularity and agnostic
features which describe the heterogeneity of the ROI through quantitative descriptors [16].
As shown in Table 2, image features may be extended with clinical variables such as PSAd.
Subsequently, features with a strong relationship with the output labels are selected and
used in the ML classification model. The output of the algorithm is a prediction score for
two-classes, such as malignant versus benign lesions, for annotated ROIs. Included studies
comprised cohort sizes ranging from 20 to 381 patients (median = 129). The gold standard
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for malignant lesions was obtained via prostate biopsy (19/25 (76%)) or after radical
prostatectomy (7/25 (28%)). For most studies, lesion classification was based on either
classification between malignant (ISUP ≥ 1) and benign lesions or csPCa (ISUP ≥ 2) vs.
cisPCa (ISUP 1).
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Diagnostics 2021, 11, 959 6 of 26

Table 2. Overview of machine learning algorithms for two-class lesion classification of prostate cancer (PCa) between 2018 and February 2021. For classification categories of clinically
significant (cs) and clinically insignificant (cis)PCa, ISUP grade is provided when available. Performance is indicated by the area under the ROC curve (AUC) when available,
otherwise deviating performance metrics are included. Definition of efficacy levels is shown in Table 1.

Study Input/Features Algorithm MR Sequences Study Type
(n = centers)

Cohort
(Patients)

Validation
Cohort/Total

Cohort
Classification

Categories Ground Truth AUC Other
Performance

Efficacy
Level

Akamine, 2020 [22] Quantitative MRI HC DWI, DCE retrospective
single center 52 N.A. benign vs. PCa

(not reported) prostatectomy -
Accuracy

96.3% (PZ)
97.8% (TZ)

2

Algohary, 2020 [23] Intensity and
texture features QDA T2W and ADC retrospective

multi center (4) 231 115/231

- low versus
high risk PCa
- low versus
intermediate
and high risk

PCa
(D’Amico

Classification)

biopsy

0.87 (low vs. high
risk PCa)

0.75 (low vs.
intermediate-high

risk PCa)

Accuracy
(L vs. H)

53% (model)
48% (readers)

2

Antonelli, 2019 [24]
Quantitative MRI

and intensity
features

LR and NB T2W, ADC and DCE retrospective
single center 164 30/164 cisPCa vs. csPCa

(ISUP ≥ 2) biopsy 0.83 (PZ)
0.75 (TZ)

Sensitivity at
50% threshold of

specificity
88% (model)

82% (readers)

2

Bleker, 2020 [25] Intensity and
texture features XGBoost T2W, DWI,

ADC and DCE
retrospective

public dataset ¶ 206 71/206
benign and/or

cisPCa vs. csPCa
(ISUP ≥ 2)

biopsy 0.870 [95%CI
0.980–0.754] 2

Bonekamp, 2018 [26]
Shape, intensity

and texture
features

RF T2W, DWI and ADC retrospective
single center 316 133/316

benign and/or
cisPCa vs. csPCa

(ISUP ≥ 2)
biopsy Lesion based

0.88

Sensitivity
97% (model)
88% (readers)

Specificity
58% (model)

50% (readers)

2

Brancato, 2021 [27]
Shape, intensity

and texture
features

LR T2W, ADC and DCE retrospective
single center 73 N.A.

benign versus
PCa

(ISUP ≥ 1)
biopsy

0.76 (PI-RADS = 3)
0.89 (upPI-RADS =

4) †
2

Chen, 2019 [28]
Shape, intensity,

and texture
features

RF T2W and ADC retrospective
single center 381 115/381

- benign versus
PCa

(ISUP ≥ 1)
- cisPCa vs.

csPCa
(ISUP ≥ 2)

biopsy

ISUP ≥ 1
0.999 (model)
0.867 (readers)

ISUP ≥ 2
0.931 (model)

0.763 (readers)

2

Dinh, 2018 [29,30]
Quantitative MRI

and intensity
features

Exponential
model ADC and DCE retrospective

single center 129 129 *
benign versus

PCa
(ISUP ≥ 2)

biopsy
0.95 [95% CI:

0.90–0.98] (CAD)
0.88 [95% CI:

0.68–0.96] (readers)
2

Ellmann, 2020 [31]

Quantitative MRI,
shape, intensity,

and clinical
features

XGBoost T2W, ADC and DCE retrospective
single center 124 24/124 benign vs. PCa

(ISUP ≥ 1) biopsy 0.913 (0.772–0.997) 2

Hectors, 2019 [32] Intensity and
texture features LR T2W, DWI and ADC Retrospective,

single center 64 N.A.
low vs. high risk

PCa
(ISUP ≥ 4)

prostatectomy 0.72 2

Kan, 2020 [33]

Quantitative MRI,
shape, intensity,

and clinical
features

RF T2W retrospective
multi center (2) 346 59/346 * benign vs. PCa

(ISUP ≥ 1) biopsy Lesion based
0.668 2
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Table 2. Cont.

Study Input/Features Algorithm MR Sequences Study Type
(n = centers)

Cohort
(Patients)

Validation
Cohort/Total

Cohort
Classification

Categories Ground Truth AUC Other
Performance

Efficacy
Level

Kwon, 2018 [34] Intensity and
texture features RF T2W, DWI, ADC and

DCE
retrospective

public dataset ¶ 344 140/344
benign and/or

cisPCa vs. csPCa
(ISUP ≥ 2)

biopsy 0.82 2

Li, 2018 [35] Intensity features SVM IVIM, ADC, DCE retrospective
single center 48 N.A. cisPCa vs. csPCa

(ISUP ≥ 2) biopsy 0.91 [95% CI:
0.85–0.95] 2

Liu, 2019 [36] Intensity, texture,
and filter features LR DCE retrospective

single center 40 N.A.
low vs. high risk

PCa
(ISUP ≥ 3)

biopsy 0.93 2

Min, 2019 [37]
Shape, intensity,

texture, and filter
features

LR (features)
Linear model

(radiomics
signature)

T2W, DWI and ADC Retrospective,
single center 280 93/280 cisPCa vs. csPCa

(ISUP ≥ 2) biopsy 0.823 [95% CI:
0.67–0.98] 2

Orczyk, 2019 [38]
Quantitative MRI

and intensity
features

LR T2W, ADC, and DCE retrospective
single center 20 N.A.

benign and/or
cisPCa vs. csPCa

(ISUP ≥ 2)
biopsy 0.93 [95% CI:

0.82–1.00] 2

Qi, 2020 [39]
Shape, intensity,

texture, and filter
features

RF and
Multivariate

LR (radiomics
and clinical-
radiological

risk)

T2W, DWI and DCE retrospective
single center 199 66/199 benign vs. PCa

(ISUP ≥ 1) biopsy

0.902 [95% CI:
0.884–0.920]

(model)

0.933 [95% CI:
0.918–0.948]
(model with

clinical-
radiological
variables)

2

Toivonen, 2019 [40] Texture and filter
features LR T2W, DWI and

T2mapping
retrospective
single center 62 N.A. cisPCa vs. csPCa

(ISUP ≥ 2) prostatectomy 0.88 [95% CI:
0.82–0.95] 2

Transin, 2019 [29,41]
Quantitative MRI

and intensity
features

Exponential
model ADC and DCE retrospective

single center 74 74 *
benign and/or

cisPCa vs. csPCa
(ISUP ≥ 2)

biopsy and or
prostatectomy

0.78 [95% CI:
0.69–0.87] (model)

0.74 [95% CI:
0.62–0.86]
(readers)

2

Varghese, 2019 [42] Texture features
Quadratic

kernel based
SVM

T2W and ADC retrospective
single center 68 N.A.

low versus high
risk PCa

(ISUP ≥ 4)
biopsy

0.71 [SE 0.01]
(model)

0.73 (readers)
2

Viswanath, 2019 [43] Intensity, texture,
and filter features QDA T2W retrospective

multi center (3) 85 69/85 * benign vs. PCa
(not reported) prostatectomy

Three sites
validation

0.730, 0.686, 0.713
2

Woźnicki, 2020 [44]
Shape, intensity,

texture, and
clinical features

RF (benign vs
malignant)

SVM (csPCa
vs cisPCa)

T2W and ADC retrospective
single center 191 40/191

benign vs. PCa
(ISUP ≥ 1)

cisPCa vs. csPCa
(ISUP ≥ 2)

biopsy

ISUP ≥ 1
0.889 [95% CI:
0.751–0.990]

(model)
0.779 [95% CI:
0.603–0.922]

(readers)

ISUP ≥ 2
0.844 [95% CI:

0.6–1.0] (model)
0.668 [95% CI:
0.431–0.889]

(readers)

2
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Table 2. Cont.

Study Input/Features Algorithm MR Sequences Study Type
(n = centers)

Cohort
(Patients)

Validation
Cohort/Total

Cohort
Classification

Categories Ground Truth AUC Other
Performance

Efficacy
Level

Wu, 2019 [45]
Shape, intensity,

and texture
features

LR T2W and ADC retrospective
single center 90 N.A. benign vs. PCa

(ISUP ≥ 2) prostatectomy 0.989 [95% CI:
0.9773–1.0000] 2

Xu, 2019 [46]
Intensity, texture,
filter and clinical

features
LR T2W, DWI, and ADC retrospective

single center 331 99/331 benign vs. PCa
(not reported) prostatectomy 0.93 (model) 4 **

Zhang, 2020 [47]
Shape, intensity,

and texture
features

LR T2W, DWI, and ADC retrospective
multi center (2) 159 83/159 * cisPCa vs. csPCa

(ISUP ≥ 2) biopsy 0.84 [95% CI:
0.74–0.94] 4 **

HC = Hierarchical clustering. QDA = Quadratic discriminant analysis. LG = Logistic Regression. NB = Naïve Bayes. RF = Random Forest. SVM = Support Vector Machine. DWI = Diffusion weighted imaging.
DCE = Dynamic contrast enhanced. ADC = Apparent diffusion coefficient. IVIM = Intravoxel incoherent motion. PZ = Peripheral zone. TZ =Transition zone. ¶ PROSTATEx database [48]. * Validation performed
on an external dataset as compared to training. ** Efficacy level 4 was assigned for potential simulated therapeutic efficacy as determined with decision curve analysis. † upPI-RADS 4 = PI-RADS 3 lesions
upgraded to PI-RADS 4 due to positive DCE-MRI.
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Only a limited number of studies involved multicenter data (4/25 (16%)), whereas the
remaining studies utilized retrospectively collected data from a single center (21/25 (84%)).
In nine studies, the performance was assessed with cross-validation methods due to a
limited study cohort size. Sixteen studies assessed performance on unseen data. Kan et al.,
Viswanath et al., and Zhang et al. used data from a different institution for validation,
and Dinh et al. and Transin et al. repeated a validation of a prior validated algorithm
in a new and external cohort, providing assessment on the generalizability of the algo-
rithm [29,33,41,43,47]. In the work of Kan et al., validation on an internal test set yielded a
per lesion AUC for PCa characterization of 0.83. When tested on an external cohort, the per
lesion performance decreased to an AUC of 0.67, indicating the importance of external
validation for robust performance assessment [33,49].

Most of the included studies for ML based two-class lesion classification solely de-
scribed the stand-alone performance of the algorithm and did not investigate the influence
of CADx in a (prospective) clinical workflow, resulting in a level 2 efficacy (stand-alone
performance; see also Table 1). To aid in performance interpretation, ten out of twenty-
five studies compared their algorithm with visual scoring by radiologists. For example,
Antonelli et al. compared the performance of the algorithm with the assessment of three
radiologists to identify Gleason 4 components in suspicious MRI lesions. The algorithm
yielded a higher sensitivity at a 50% threshold for lesion classification in the peripheral
zone (0.93) compared with the mean sensitivity of the three radiologists (0.72) [24].

In order to investigate the added clinical value of AI based lesion classification, Xu et al.
and Zhang et al. introduced decision curve analysis (DCA) using retrospective data.
DCA analysis is utilized to assess the clinical utility and additional benefit for a prediction
algorithm e.g., assessment of an algorithm to reduce the number of unnecessary biopsies.
As a result, a simulated impact on patient management is provided which benefits the
interpretation of its clinical utility (efficacy level 4) [50]. Both Xu et al. and Zhang et al.
showed that, compared to the treat-all-patients scheme or the treat-none scheme, ML al-
gorithms could improve net benefit if the threshold probability of a patient or doctor was
higher than 10% [46,47].

4.1.2. Two-Class Lesion Classification with Deep Learning

In total, ten studies were included in which DL was used for two-class lesion classifi-
cation (Table 3).
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Table 3. Overview of deep learning (DL) algorithms for two-class lesion classification of prostate cancer (PCa) between 2018 and February 2021. For classification categories of clinically
significant (cs) and clinically insignificant (cis)PCa, ISUP grade is provided when available. Performance is indicated by the area under the ROC curve (AUC) when available, otherwise
deviating performance metrics are included. Definition of efficacy levels is shown in Table 1.

Study Input/Features Algorithm MR Sequences Study Type
(n = centers)

Cohort
(Patients)

Validation
Cohort/Total

Cohort
Classification

Categories Ground Truth AUC Other
Performance Efficacy Level

Aldoj, 2020 [51] MR: Spherical
VOI lesion

CNN: 3D
multi-channel

T2W, DWI, ADC
and DCE

retrospective
public dataset ¶ 200 25/200 cisPCa vs. csPCa

(ISUP ≥ 2) biopsy 0.897 ± 0.008 2

Chen, 2019 [52] MR: Patch lesion

Transfer
Learning (CNN:

Inception V3
and VGG-16)

T2W, ADC and
DCE

retrospective
public dataset ¶ 346 142/346 benign vs. PCa

(not reported) biopsy
0.81

(InceptionV3)
0.83 (VGG-16)

2

Deniffel, 2020 [53] MR: VOI
prostate CNN: 3D T2W, DWI, and

ADC
retrospective
single center 499 50/499

benign and/or
cisPCa vs. csPCa

(ISUP ≥ 2)
biopsy 0.85 [95% CI:

0.76–0.97]

Sensitivity
100% (calibrated

model)
84%

(PI-RADS ≥ 4)
95% (PI-RADS =

3 + PSAd)

Specificity
52% (calibrated

model)
61%

(PI-RADS ≥ 4)
35% (PI-RADS =

3 + PSAd)

4 **

Reda, 2018 [54]
MR: prostate
segmentation

and PSA
DL (SNCSAE) DWI retrospective

single center 18 N.A. benign vs. PCa
(ISUP ≥ 1) biopsy 0.98 [95% CI:

0.79–1] 2

Song, 2018 [55] MR: Patch lesion Deep CNN T2W, DWI,
and ADC

retrospective
public dataset ¶ 195 19/195 benign vs. PCa

(not reported) biopsy 0.944 [95% CI:
0.876–0.994] 4 **

Takeuchi, 2019 [56]
Intensity

features and
clinical variables

ANN: 5 hidden
layers T2W and DWI retrospective

single center 334 102/334 benign vs. PCa
(ISUP ≥ 1) biopsy 0.76 4 **

Wang, 2020 [57] MR: Patch lesion
DL MISN

(multi-input
selec. Network)

T2W, DWI,
ADC, and DCE

retrospective
public dataset ¶ 346 142/346 cisPCa vs. csPCa

(ISUP ≥ 2) biopsy 0.95 2

Yoo, 2019 [58] MR: Patch
prostate

Deep CNN with
RF DWI retrospective

single center 427 108/427
benign and/or

cisPCa vs. csPCa
(ISUP ≥ 2)

biopsy
Patient level
0.84 [95% CI:

0.76–0.91]
2

Yuan, 2019 [59] MR: Patch lesion
Transfer

learning (CNN:
AlexNet)

T2W and ADC

retrospective
single center
and public
dataset ¶

221 44 (20%)/221 cisPCa vs. csPCa
(ISUP ≥ 2) biopsy 0.896 2

Zhong, 2020 [60] MR: Patch lesion
Transfer

learning (CNN:
ResNet)

T2W and ADC retrospective
single center 140 30/140

benign and/or
cisPCa vs. csPCa

(ISUP ≥ 2)
prostatectomy

0.726 [95% CI:
0.575, 0.876]

(model)
0.711 [95% CI:
0.575–0.847]

(readers)

2

CNN = Convolutional Neural Network. SNCSAE = Stacked nonnegatively constrained sparse autoencoder. ANN = Artificial Neural Network. RF = Random Forest. DWI = Diffusion weighted imaging.
DCE = Dynamic contrast enhanced. ADC = Apparent diffusion coefficient. PSAd = Prostate specific antigen density. ¶ PROSTATEx database [48]. ** Efficacy level 4 was assigned for potential simulated
therapeutic efficacy as determined with decision curve analysis.
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Compared to ML, DL does not require feature selection as features are learned during
training (Figure 4). An ROI is annotated on MRI. As depicted in Table 3, ROIs encompass
patches or volumes around the lesion or prostate gland and may be extended with clinical
features. Selected ROIs are fed into a DL classification algorithm, in which features are
extracted and one of two classes is predicted for the corresponding input. Alternatively,
DL can be combined with ML in which a DL approach is used for feature extraction and a
ML algorithm for classification [58]. Of the included studies, cohort size ranged from 18 to
499 patients (median = 278). Ground truth was provided by biopsy (9/10 (90%)) or radical
prostatectomy (1/10 (10%)). Six out of the ten studies aimed to characterize benign tissue
from csPCa (ISUP ≥ 2) and four studies aimed to classify benign from malignant lesions
(ISUP ≥ 1).
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Of all studies, only a single study utilized multiple datasets without the use of external
data for performance validation. To overcome the limitation of smaller datasets, Chen et al.,
Yuan et al., and Zhong et al. utilized transfer learning [52,59,60]. With this approach, pre-
trained algorithms for a different classification task are applied within a different but related
learning task and therefore decrease the large labeled data requirement [14]. Chen et al.
utilized a pretrained network on diabetic retinopathy diagnosis, which was trained on a
dataset of 128,000 images [52]. Zhong et al. showed that higher AUC and accuracy could
be achieved with transfer learning (AUC = 0.726, accuracy = 0.723), compared with the DL
model without transfer learning (AUC = 0.687, accuracy = 0.702) [60].

Similarly to the ML algorithms, most described DL algorithms in Table 3 provided the
stand-alone performance of the algorithm (efficacy level 2). Deniffel et al. and Zhong et al.
compared the performance of the algorithm with visual assessment by radiologists improv-
ing the interpretability of the algorithm performance [53,60]. Furthermore, Deniffel et al.,
Song et al., and Takeuci et al. performed DCA to assess clinical utility of DL to avoid
unnecessary biopsy [53,55,56]. The algorithm of Deniffel et al. was additionally calibrated
prior to performance assessment to match the observed probability of csPCa within the
algorithm, to the true probability of csPCa in the population. Uncalibrated algorithm
performance may result in reduced clinical net benefit [53,61]. Deniffel et al. showed
that the calibrated performance of a CNN model can reduce the number of biopsies as
compared to using PI-RADSv2 alone or combined with PSAd [53].

4.1.3. Multi-Class Lesion Classification

Several recent algorithms have introduced multi-class lesion classification, utiliz-
ing both conventional ML as DL algorithms, to assess lesion aggressiveness (n = 4 studies,
Table 4).
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Table 4. Overview of machine learning (ML) and deep learning (DL) algorithms for multi-class lesion classification of prostate cancer (PCa) between 2018 and February 2021. Performance is
indicated by the area under the ROC curve (AUC) when available, otherwise deviating performance metrics are included. Definition of efficacy levels is shown in Table 1.

Study Input/Features Algorithm MR Sequences Study Type
(n = centers) Cohort (Patients)

Validation
Cohort/Total

Cohort
Ground Truth

AUC per
Classification

Category
Other

Performance
Efficacy
Level

Abraham, 2019 [62] MR: Patch lesion
CNN: VGG-16.
Ordinal Class

Classifier
T2W, DWI and ADC

retrospective
single public

dataset ¶
112 N.A. biopsy

ISUP 1 = 0.626
ISUP 2 = 0.535
ISUP 3 = 0.379
ISUP 4 = 0.761
ISUP 5 = 0.847

Quadratic
weighted kappa

0.473 [95% CI:
0.27755–0.66785]

2

Brunese, 2020 [63]
Shape, intensity

and texture
features

Deep CNN TW2
retrospective

multiple public
datasets ¶¶, †

72 N.A. biopsy

Accuracy:
normal = 0.96
ISUP 1 = 0.98
ISUP 2 = 0.96
ISUP 3 = 0.98
ISUP 4 = 0.97

2

Chaddad, 2018 [64] Texture features RF T2W and ADC
retrospective
single public

dataset ¶
99

20 lesions / 40
lesions (per

Gleason Group)
biopsy

ISUP 1 ≤ 0.784
ISUP 2 = 0.824
ISUP 3 ≥ 0.647

2

Jensen, 2019 [65] Texture features KNN T2W, DWI, and ADC
retrospective
single public

dataset ¶
99 70 lesions / 182

lesions biopsy

ISUP 1 = 0.87 (PZ),
0.85 (TZ)

ISUP 2 = 0.88 (PZ),
0.89 (TZ)

ISUP 1 + 2 = 0.96
(PZ), 0.83 (TZ)

ISUP 3 = 0.98 (PZ),
0.94 (TZ)

ISUP 4 + 5 = 0.91
(PZ), 0.87 (TZ)

2

CNN = Convolutional Neural Network. RF = Random Forest. KNN = k-nearest Neighbor. DWI = Diffusion weighted imaging. ADC = Apparent diffusion coefficient. PZ = Peripheral zone. TZ =Transition zone.
¶ PROSTATEx database [48]. ¶¶ PROSTATE-DIAGNOSIS database [66]. † Fused Radiology-Pathology Prostate Dataset [67].
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Assessment of the aggressiveness is important for PCa management. The histopatho-
logical grade is defined by the International Society of Urological Pathology (ISUP) [68].
Patients with cisPCa (often ISUP 2 or lower) are eligible for active surveillance (AS) whereas
men with higher grade lesions (ISUP > 2) are advised to undergo invasive treatment, such as
radical prostatectomy or radiotherapy [8,69]. Multi-class lesion classification algorithms
utilize ML or DL techniques to grade input ROIs in different groups according to lesion ag-
gressiveness (Figure 5). Of the included studies, cohort size ranged from 72 to 112 patients
(median = 99) and all studies used prostate biopsy as ground truth.
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divided into multiple classes utilizing multiple labels within the ML and DL algorithm output. As output, annotations are
graded according to the various labels (groups 1, 2, 3 . . . n).

Abraham et al. classified lesion patches into the five different ISUP categories using a
CNN. The algorithm utilized an ordinal classifier, ordering lesions based on aggressiveness
as within Gleason grading [62]. Brunese et al., Chaddad et al., and Jensen et al. utilized a
ML pipeline for lesion grading, in which radiomic features are used for lesion categorization
into different ISUP grades [63–65].

Only the study of Jensen et al. included multiple datasets from various sites [65].
Due to the smaller cohorts, two studies utilized cross-validation methods for validation.
Both Chaddad et al. and Jensen et al. utilized independent data for algorithm valida-
tion [64,65]. No included study investigated additional value of CADx in a clinical setting
and solely provided stand-alone performance of the algorithm (efficacy level 2).

4.2. Lesion Detection (CADe)

Besides classification of predefined ROIs on prostate MRI, several algorithms have
been described that automatically detect suspicious PCa lesions (CADe). The general
pipeline for these algorithms is displayed in Figure 6. Compared to lesion classification
algorithms, no prior lesion annotation is necessary for classification as the AI method
classifies the image on a voxel-level compared to a ROI. For this reason, PCa detection
algorithms could aid in automated prostate MRI assessment, by presenting suspicious
areas with probability maps and or segmentations to the reader. Studies described detec-
tion algorithms for two classes (e.g., malignant versus benign) and multi-class detection,
in which malignant tissue is detected and classified according to its aggressiveness.
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Alkadi, 
2019 [70] 

MR image 
Deep 
CNN 

T2W 

retrospec-
tive single 
public da-

taset ¶¶ 

19 
(2356 
slices) 

707 
(30%)/23
56 slices 

PCa 
(not re-
ported) 

biopsy 0.995  2 

Arif, 2020 
[71] 

MR image 
Deep 
CNN 

T2W, 
DWI and 

ADC 

retrospec-
tive single 

center 
292 194/292 

csPCa 
(ISUP ≥ 2) 

biopsy 

0.65 (lesion > 
0.03 cc) 

0.73 (lesion > 
0.1 cc) 

0.89 (lesion > 
0.5 cc) 

 2 
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Ebadian, 
2019 [72] 
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tures 
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and or 

prostatec-
tomy 

Patient level 
0.831 (CADe) 
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deh, 2020 
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texture, and 

filter fea-
tures 
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tive single 

center 
16 N.A. 
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Figure 6. Deep learning (DL) and machine learning (ML) workflow of algorithms for two-class lesion detection for
prostate cancer (PCa) using an axial T2-weighted sequence. As input, multiparametric or single MR sequences are
utilized. During this, training features are trained and used to classify image voxels within benign or malignant classes.
Algorithms provide a probability map for prostate cancer likelihood. Based on a threshold within the probability map (e.g.,
probability > 0.5), prostate cancer segmentations (red) or attention boxes based on prostate cancer segmentations (yellow)
may be extracted.

4.2.1. Two-Class Lesion Detection

In total, seventeen studies for two-class lesion detection were included (Table 5).
Of these seventeen studies, six studies (35%) used conventional ML techniques,

whereas the largest group utilized DL (11/17 studies (65%)). Cohort sizes ranged from
16 to 360 patients (median = 163). Ground truth was provided by either prostate biopsy
(11/17 studies (65%)), radical prostatectomy (3/17 studies (18%)), or a combination of both
(3/17 studies (18%)). Lesion detection was either determined on a cut-off at ISUP ≥ 1 or
ISUP ≥ 2.

Most of the studies validated the performance of an original algorithm, whereas five
studies performed a new validation study on existing CADe applications, assessing the
robustness and generalizability of the algorithm.
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Table 5. Overview of machine learning (ML) and deep learning (DL) algorithms for two-class lesion detection of prostate cancer (PCa) between 2018 and February 2021. Threshold for
detection of PCa or clinically significant (cs)PCa is defined by the ISUP grade if applicable. Performance is indicated by the area under the ROC curve (AUC) when available, otherwise
deviating performance metrics are included. Definition of efficacy levels is shown in Table 1.

Study Input/Features Algorithm MR Sequences Study Type
(n = centers)

Cohort
(Patients)

Validation
Cohort/Total

Cohort
Detection
Threshold Ground Truth AUC Other

Performance
Efficacy
Level

Alkadi, 2019 [70] MR image Deep CNN T2W
retrospective
single public

dataset ¶¶

19
(2356 slices)

707 (30%)/2356
slices

PCa
(not reported) biopsy 0.995 2

Arif, 2020 [71] MR image Deep CNN T2W, DWI and
ADC

retrospective
single center 292 194/292 csPCa

(ISUP ≥ 2) biopsy

0.65
(lesion > 0.03 cc)

0.73
(lesion > 0.1 cc)

0.89
(lesion > 0.5 cc)

2

Bagher-Ebadian,
2019 [72]

Texture and
filter features

ANN:
feed-forward

multilayer
perceptron

T2W, DWI and
ADC

retrospective,
single center 117 19/117 * PCa

(not reported) biopsy 94% 2

Gaur, 2018
[73,74]

Shape, intensity,
and texture

features
RF T2W, DWI and

ADC

retrospective
multi center (9)
(5 centers data)

216 216 * csPCa
(ISUP ≥ 2)

biopsy and or
prostatectomy

Patient level
0.831 (CADe)

0.819 (readers)
3

Gholizadeh, 2020
[75]

Intensity,
texture, and

filter features
SVM T2W, DWI, ADC

and DTI
retrospective
single center 16 N.A. PCa

(ISUP ≥ 2) biopsy 0.93 ± 0.03 2

Greer, 2018
[74,76]

Shape, intensity,
and texture

features
RF T2W, DWI and

ADC

retrospective
multi center (8)
(single center

data)

163 163 * csPCa
(ISUP ≥ 2) prostatectomy

PI-RADS ≥ 3
0.849 [95% CI:

79.0–89.5]
(CADe)

0.882 [95% CI:
83.4–92.1]
(readers)

3

Ishioka, 2018
[77] MR image CNN: Unet with

ResNet50 T2W retrospective
single center 335 34/335 PCa

(ISUP ≥ 1) biopsy Two validation
0.645, 0.636 2

Khalvati, 2018 [78]
Shape, intensity,

and texture
features

SVM T2W, DWI, ADC,
CDI

retrospective
single center 30 N.A. PCa

(ISUP ≥ 1) biopsy Accuracy
86% 2

Lee, 2019 [79] MR image
CNN:

UconvGRU
(2D image slices)

T2W, ADC and
DCE

prospective
single center

(retrospective
reading)

16 N.A. csPCa
(ISUP ≥ 2) prostatectomy F1 score:

0.5323 2

McGarry, 2020
[80,81]

Intensity
features

Partial
least-squares

regression
models

T2W, delta T1,
DWI and ADC

retrospective
single center 48 20/48 csPCa

(ISUP ≥ 2) prostatectomy 0.8 [95% CI:
0.66–0.90] 2

Mehralivand, 2020
[73,82]

Shape, intensity,
and texture

features
RF T2W, DWI and

ADC
retrospective

multi center (5) 236 236 * csPCa
(ISUP ≥ 2)

biopsy and or
prostatectomy

Lesion level
0.775 (CADe)

0.749 (readers)
3

Sanyal, 2020 [83] MR image CNN: U-net T2W, DWI and
ADC

retrospective
single center 77 20/77 csPCa

(ISUP ≥ 2) biopsy 0.86 (ISUP ≥ 2)
0.88 (ISUP = 1) 2
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Table 5. Cont.

Study Input/Features Algorithm MR Sequences Study Type (n =
centers)

Cohort
(Patients)

Validation
Cohort/Total

Cohort
Detection
Threshold Ground Truth AUC Other

Performance
Efficacy
Level

Schelb, 2021 [84,85] MR image CNN: U-net T2W, DWI and
ADC

retrospective,
single center 259 259 * csPCa

(ISUP ≥ 2) biopsy

Sensitivity
(PI-RADS ≥ 3,
PI-RADS ≥ 4)

99%, 83%
(model)

98%. 84%
(readers)

Specificity
(PI-RADS ≥ 3,
PI-RADS ≥ 4)

24%, 55%
(model)

17%, 58%
(readers)

2

Sumathipala, 2018
[86] MR image

Deep CNN:
Holistically

Nested Edge
Detector

T2W, DWI and
ADC

retrospective
multi center (6) 186 47/186 PCa

(not reported)
biopsy and or
prostatectomy 0.97 ± 0.01 2

Wang, 2018 [87] MR image CNN: dual-path
multimodal T2W, ADC

retrospective
single center and
public dataset ¶

360 N.A. csPCa
(ISUP ≥ 2) biopsy 0.979 ± 0.009 2

Xu, 2019 [88] MR image CNN: ResNets T2W, DWI and
ADC

retrospective
single public

dataset ¶
346 103/346 csPCa

(ISUP ≥ 2) biopsy 0.97 2

Zhu, 2020 [89,90] Intensity and
texture features ANN T2W, DWI and

ADC
retrospective,
single center 153 153 * csPCa

(ISUP ≥ 2) biopsy

0.89 [95% CI:
0.83–0.94]
(CADe)

0.83 [95% CI:
0.76–0.88]
(readers)

3

CNN = Convolutional Neural Network. ANN = Artificial Neural Network (ANN). RF = Random Forest. SVM = Support Vector Machine. DWI = Diffusion weighted imaging. DCE = Dynamic contrast enhanced.
ADC = Apparent diffusion coefficient. DTI = Diffusion tensor imaging. CDI = Correlated diffusion imaging. CADe = Computer aided detection. * Validation performed on an external dataset as compared to
training. ¶ PROSTATEx database [48]. ¶¶ I2CVB dataset [91].
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McGarry et al. performed a follow-up study on a previously reported radiology-
pathology mapping algorithm for high-grade PCa detection [81]. The follow-up study
showed introduction of variability in model performance using different pathologists
to annotate lesions [80]. Schelb and colleagues simulated clinical deployment of a prior
developed DL algorithm for detection of csPCa [84,85]. In this study, a new cohort of
259 patients was included for validation of the algorithm. Schelb et al. concluded that
similar performance compared to PI-RADS assessment by radiologists was observed, i.e.,:
sensitivity of 0.84 for PI-RADS ≥ 4 versus 0.83 for DL and that regular quality assurance of
the model should be desired to maintain its performance [84].

Multiple studies investigated the added diagnostic value of CADe (efficacy level 3).
Zhu et al. performed a study in which integration of CADe with structured MR reports of
prostate mpMRI was evaluated [89]. A DL algorithm was trained to create probability maps
of csPCa which were visualized during reporting of prostate MRI. The AUC increased from
0.83 to 0.89 with CADe assistance during reading. Furthermore, with CADe, 23/89 lesions
were correctly upgraded versus 6/89 lesions incorrectly downgraded [89].

Gaur et al. and Greer et al. utilized multi-center studies to evaluate the additional
value of CADe for PCa [73,76]. Readers were first asked to assess mpMRI sequences
without AI assistance. For the second session, readers were instructed to perform PCa
detection with probability maps created by CADe, in combination with the full mpMRI
sequences. In 2020, Mehralivand et al. performed a second multi-center study utilizing
the AI technique previously utilized by Gaur et al. [73,82]. Instead of probability maps,
attention boxes for csPCa were provided to reduce the compromised interaction between
the radiologists and the AI system. The lesion based AUC did not significantly increase
with CADe assisted reading (0.749 for MRI and 0.775 for CADe assistance) [82].

4.2.2. Multi-Class Lesion Detection

Three articles were included for multi-class detection (Table 6).
Study cohorts comprised 417, 162, and 48 patients, respectively. Ground truth was

provided by either prostate biopsy (2/3 studies (67%)) or radical prostatectomy (1/3 stud-
ies (33%)).

Cao et al. detected and classified lesions in six grade groups: normal tissue, and ISUP
1 to ISUP 5 [92]. The authors implemented a multi-class DL algorithm with ordinal
encoding incorporating both T2W and ADC images. Vente and colleagues described a 2D
DL segmentation approach in which zonal masks were implemented along mpMRI [93].
Their work assigned different classes to lesions according to the probability of the output
layer, with a higher ISUP group correlating to a higher probability. A quadratic-weighted
kappa score of 0.13 was achieved, indicating the still difficult task for lesion detection
combined with grading [93].

In the study of Winkel et al., an algorithm combining both detection and classification
of lesions according to PI-RADSv2.1 was investigated [94]. In their work, a prototype
DL-based CADe application was validated in a prospective PCa screening study involving
48 patients. The algorithm firstly detects lesion candidates, then reduces false positive
candidates followed by a classification algorithm according to PI-RADSv2.1. Kappa statis-
tics were applied to assess the AI solution agreement with PI-RADSv2.1 classification by
radiologists. A weighted kappa of 0.42 was observed, showing moderate agreement with
PI-RADS scoring [94].
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Table 6. Overview of algorithms for multi-class detection of prostate cancer between 2018 and February 2021. Performance is indicated by the area under the ROC curve (AUC) when
available. Definition of efficacy levels is shown in Table 1.

Study Input/Features Algorithm MR Sequences Study Type
(n = centers) Cohort (Patients)

Validation
Cohort/Total

Cohort
Ground Truth AUC per Detection

Category
Other

Performance
Efficacy
Level

Cao, 2019 [92] MR images CNN: FocalNet
(multi-class) T2W, ADC retrospective

single center 417 N.A. prostatectomy
ISUP 2 ≥ 0.81 ± 0.01
ISUP 3 ≥ 0.79 ± 0.01
ISUP 4 ≥ 0.67 ± 0.04
ISUP 5 ≥ 0.57 ± 0.02

2

Vente, 2021 [93] MR images and
zonal masks CNN: 2D U-Net T2W, ADC

retrospective
public dataset ¶ 162 63/162 biopsy

Quadratic
weighted kappa

0.13 ± 0.27
2

Winkel, 2020 [94] MR images Deep CNN:
multi network T2W, DWI and ADC

prospective single
center

(retrospective
reading)

48 48 * biopsy

weighted kappa
(CADe with

PI-RADS
classification)

0.42

Lesion level
Sensitivity

PI-RADS 5 = 100%
PI-RADS 4 = 73%
PI-RADS 3 = 43%

2

CNN = Convolutional neural network. DWI = Diffusion weighted imaging. ADC = Apparent diffusion coefficient. CADe = Computer aided detection. * Validation cohort comprises an external dataset. ¶

PROSTATEx database [48].
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All studies were assigned an efficacy level of 2. Although Winkel et al. utilized a
prospective study design for validation of the AI performance, no combination of AI-
assisted lesion detection within a clinical workflow was performed [94]. The prospective
aspect of the study, providing unique validation data, does provide stronger evidence
for the algorithm [95]. Both Cao et al. and Winkel et al. incorporated comparison with
radiological assessment [92,94]. Cao et al. showed a non-significant difference between
the radiologists (sensitivity of 83.9% and 80.7%) and their algorithm (sensitivity of 80.5%
and 79.2%), for the detection of histopathology-proven PCa lesions and csPCa lesions [92].
Winkel et al. showed that both the AI technique and the radiologist were able to identify
all biopsy-verified PCa lesions [94].

4.3. Commercial CAD Algorithms for Prostate MRI

For CAD to be used in clinical practice, it needs to be approved by local authorities.
In the United States the Food and Drug Administration (FDA) clears medical devices and
in Europe a CE mark is necessary. For prostate MR analysis there are now six products
commercially available, of which three are FDA cleared, one is CE marked and two prod-
ucts are both [96,97] (Table 7). The aim of these products is to optimize the prostate reading
workflow and/or enhance lesion detection. The most important AI-based feature in five of
these products is prostate segmentation to acquire volumetric information and calculate
PSAd (OnQ Prostate, Cortechs.ai; PROView, GE Medical Systems; Quantib Prostate, Quan-
tib; qp-Prostate, Quibim). One product claims to provide an image level probability for the
presence of cancer including heatmaps to aid the radiologist in PCa detection (JPC-01K,
JLK Inc.). Only a single product describes AI based multi-class lesion detection (CADe),
classifying lesion candidates according to PI-RADSv2.1 (Prostate MR, Siemens Healthi-
neers). The performance of a prototype of this product was validated within the work of
Winkel et al. (Table 6) [94]. Further scientific evidence on the performance or efficacy of the
products is limited.

Table 7. Commercially available AI applications for prostate MRI with FDA clearance and/or CE marking prior Febru-
ary 2021.

Company Product Key (AI) Features Market Date FDA CE

Cortechs.ai
OnQ Prostate
(previously
RSI-MRI+)

prostate segmentation, enhanced DWI map 11–2019 510(k) cleared, Class II

GE Medical
Systems PROView

prostate segmentation and volumetry,
AI supported lesion segmentation,

workflow optimization
11–2020 510(k) cleared, Class II

JLK Inc. JPC-01K image level probability for cancer presence,
heatmap/contour of malignancy location 04–2019 Class I

Quantib Quantib Prostate
prostate segmentation and volumetry,

AI supported lesion segmentation,
workflow optimization

10–2020 510(k) cleared, Class II Class IIb

Quibim qp-Prostate (regional) prostate segmentation and
volumetry, workflow optimization 02–2021 510(k) cleared, Class II

Siemens
Healthineers Prostate MR

prostate segmentation and volumetry,
lesion detection and classification,

workflow optimization
05–2020 510(k) cleared, Class II Class IIa

5. Discussion

In this review, we identified current AI algorithms for PCa lesion classification (CADx)
and detection (CADe). The narrative showed that most of the recent work is performed on
lesion classification using ML applications with radiomics features. The included studies
showed large differences in cohort sizes, ranging from 18 to 499 patients (median = 162),
with different approaches for validation of algorithm performance. Few studies show
efficacy levels higher than level 2, illustrating the limited evidence of AI PCa applications
on the clinical impact and utility.

The majority of the included studies (50/59 (85%)) describe the stand-alone perfor-
mance of algorithms and evaluate diagnostic accuracy with the AUC (efficacy level 2).
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While the AUC provides the ability to benchmark different algorithms and reader per-
formances, in order to assess improved treatment, physicians are more interested in AI
performance benchmarked against experienced readers to assess clinical utility [95]. Only a
few studies (9/59 (15%)) address an efficacy level 3 or higher by validating the CAD
within a clinical workflow (efficacy level 3) or assessing the clinical utility of PCa CAD by
implementation of a DCA (efficacy level 4). While Deniffel et al., Song et al., Takeuchi et al.,
Xu et al., and Zhang et al. did show slight net-benefit on reducing unnecessary biopsies,
studies utilizing CAD in a clinical workflow did not show significant improvement in
PCa characterization and or detection [46,47,53,55,56]. This is in concordance with a recent
meta-analysis on ML classification of csPCa, where the authors did not find an improved
PCa detection using CAD in a clinical workflow [98].

The reported performances from included studies require careful interpretation.
For example, only a limited number of prospective studies were found and cohort sizes
were relatively small, ranging from 18 to 499 study subjects (median = 162). It is ques-
tionable if these relatively small datasets are sufficient to train robust and generalizable
AI. To illustrate, the prototype CADe system validated by Winkel et al. was trained on
2170 biparametric prostate MR examinations, obtained from eight different institutions.
A commercially available AI-CADe system for breast cancer detection was trained on
189,000 mammograms, obtained from four different vendors [94,99]. In addition, regard-
ing reproducibility and generalizability, a limited number of the included studies utilized
external validation. Supplementary Figures S1–S3 illustrate the observed heterogeneity
in cohort sizes and validation approaches. From a clinical perspective, it is of utmost
importance to validate the predictive performance of an algorithm on external data in
an extensive cohort [95]. Although multiple studies utilized a split-sample approach,
in which a subset of data was solely reserved for validation, and therefore could assess
the validity of the algorithm, split-set validation does not provide an accurate assessment
of the generalizability. Utilization of test data from different institutions and potentially
different MR systems could provide more generalizable results [49,100]. Liu et al. sys-
tematically reviewed 82 articles regarding the diagnostic accuracy of DL algorithms for
disease classification in medical imaging evaluated against health-care professionals [101].
In their work, a major finding was the limited amount of publications presenting exter-
nally validations and performance comparison with health-care professionals on the same
samples [101]. Castillo et al. systematically reviewed literature regarding ML classification
of csPCa on MRI. Their work confirms the lack of homogeneous reporting and external
validation. The authors therefore advocate for prospective study designs to assess added
clinical value on external and new patient data combined with standardized reporting
methods [98]. A possible solution to introduce more comparable results is to set up a chal-
lenge in which the algorithms are all validated on the same dataset. In this way, validation
and benchmarking of algorithms remains centralized. An example of this approach is the
grand-challenge platform (https://grand-challenge.org, accessed on 3 May 2021), in which
various challenges are introduced for AI-based medical imaging tasks.

Within this work, distinction between ML techniques and DL techniques was made.
Especially in the classification group (CADx), a large subset of studies utilized ML com-
bined with a radiomics workflow. Compared to DL, radiomics is often favored due to
the transparency in features used to learn a classification task, as compared to the ‘black-
box’ phenomenon observed within DL [18]. Although the radiomics pipeline facilitates
transparency for AI decision making, and therefore could aid in trustworthy AI, robust-
ness of these algorithms needs yet to be assessed in larger studies [102]. A limitation
for the radiomics pipeline is the reproducibility of imaging data. Factors such as inter-
reader agreement for manually selected ROIs, variability due to different vendors and
imaging protocols, and high amounts of correlated and clustered features, may limit the
reproducibility and generalizability of these models [102,103].

This review has several limitations. The first limitation is the inclusion period be-
tween 2018 and February 2021. Due to this criterion, a multitude of proof-of-concept

https://grand-challenge.org
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studies regarding PCa classification utilizing radiomics features were included. However,
studies published prior to 2018 on traditional ML techniques for distinguishing benign
versus PCa and multi-class classification or detection according to tumor aggressiveness,
were excluded. Our rationale was that multi-reader studies or extended validation studies
on AI algorithms developed before 2018 would be observed in more recent years. This was
also observed for multiple included studies, in which traditional ML algorithms developed
prior to 2018 were evaluated in multi-reader studies between 2018 and 2021 [73,76,82,89].
Future work could include publications prior to 2018 to reduce bias towards radiomics algo-
rithms and introduce more work on traditional ML algorithms. This, however, would also
limit the relevance of the current scientific field on AI for PCa assessment. Secondly, due to
the observed heterogeneity within the cohort sizes and validation approaches, no meta-
analysis on performance assessment was implemented and no comparison between various
methods, such as ML and DL could be addressed with adequate support. To overcome
this, performance could be assessed by grouping various AI approaches weighting the
corresponding cohort sizes and validation approaches. This, however, exceeded the aims
and objectives of this review and can be addressed in future work.

Many of the AI features, such as PCa detection and diagnosis, studied in literature have
not yet found their way into commercial products. Current commercial CAD applications
are mostly focused on prostate segmentation and volumetrics to improve the workflow
for reporting and only a single application was observed with AI supported detection and
lesion classification. This finding provides insights into the gap between academic results
and clinical practice and may partly explain the lack of evidence on the impact of AI in
clinical practice. Recent studies on CAD prototypes from, e.g., Winkel et al. indicate the
future direction of commercial CAD applications, in which AI solutions for classification
and detection of PCa lesions are gaining interest. The same authors have performed a new
study on CAD implementation, which has been published after the inclusion period of
studies within this review, underlining the rapid development within this field [104]. It is
expected that future work on PCa CAD applications for lesion classification and detection
will continue, with initiatives to centralize and combine data from multiple institutions to
increase generalizability and robustness of PCa CAD arising [105].

6. Conclusions

Multiple AI algorithms for PCa classification and detection are being investigated
in current literature. Although stand-alone performance of the algorithms shows to be
promising for future implementation in clinical workflow, work on the generalizability
and robustness still needs to be performed to assess the clinical benefit and utility of AI
in this field. Future work should focus on increased cohort sizes, external validation,
and benchmarking performance with expert readers to aid the development of repro-
ducible and interpretable AI. In addition, studies incorporating CAD within a clinical
workflow are necessary to demonstrate clinical utility and will guide the next steps for PCa
CAD applications.
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