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Abstract: Background: This study proposes a cardiovascular diseases (CVD) prediction model
using machine learning (ML) algorithms based on the National Health Insurance Service-Health
Screening datasets. Methods: We extracted 4699 patients aged over 45 as the CVD group, diagnosed
according to the international classification of diseases system (I20–I25). In addition, 4699 random
subjects without CVD diagnosis were enrolled as a non-CVD group. Both groups were matched
by age and gender. Various ML algorithms were applied to perform CVD prediction; then, the
performances of all the prediction models were compared. Results: The extreme gradient boosting,
gradient boosting, and random forest algorithms exhibited the best average prediction accuracy
(area under receiver operating characteristic curve (AUROC): 0.812, 0.812, and 0.811, respectively)
among all algorithms validated in this study. Based on AUROC, the ML algorithms improved the
CVD prediction performance, compared to previously proposed prediction models. Preexisting CVD
history was the most important factor contributing to the accuracy of the prediction model, followed
by total cholesterol, low-density lipoprotein cholesterol, waist-height ratio, and body mass index.
Conclusions: Our results indicate that the proposed health screening dataset-based CVD prediction
model using ML algorithms is readily applicable, produces validated results and outperforms the
previous CVD prediction models.

Keywords: cardiovascular disease; risk factors; algorithm; machine learning; artificial intelligence

1. Introduction

Cardiovascular disease (CVD) is the leading cause of death worldwide, accounting for
approximately 17.9 million deaths annually which is about 30% of all global deaths [1,2].
In Korea, CVD is rapidly increasing, because people’s lifestyle has changed, and the average
age of the population has increased significantly. Currently, CVD is one of the four major
diseases in Korea, and ranks second in the leading causes of death, followed by cancer [3].
As of 2019, the mortality rate per 100 thousand people of CVD was 26.7 [4].

Extensive efforts have been made to analyze the causes of CVD [5]. In general, factors
such as hypertension, diabetes, hyperlipidemia, and atherosclerosis have been noted
as major factors causing CVD [6]. In addition to physiological and genetic risk factors,
behavioral and psychosocial factors have also been known as CVD risk factors. Behavioral
factors include smoking, food intake, and physical activity. Psychosocial factors include
education, financial status, social support, stress, anxiety, and depression [7].
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Identifying the association between risk factors and CVD has been a topic of signif-
icant research interest, and several CVD risk prediction models have been proposed [8].
Popular models include the American College of Cardiology/American Heart Association
(ACC/AHA) risk model and the Framingham risk score [9,10]. The Korean heart study
(KHS), one of the largest CVD prediction studies in Korea, introduced a novel 10-year CVD
risk prediction model for the Korean population [3,11].

Previous studies on factors and predictive models for CVD have been mostly based
on high-quality cohort data obtained by screening or from medical records and patient
interviews [11,12]. However, establishing CVD predictive models using clinical data
has several limitations. In particular, considerable time and effort is required to acquire
and analyze the necessary data, also requiring considerable manpower. Additionally,
the methods involved are usually difficult to implement and expensive. To overcome
such limitations, it is critical to develop a novel and cost-effective tool for CVD risk
prediction [13]. Using the existing National Health Insurance Service-Health Screening
(NHIS-healS) database and applying machine learning (ML) algorithms for CVD prediction
can provide a heuristic way to build a cost-effective and reliable tool.

This study aimed to present a CVD prediction model using ML algorithms based on
nationwide health screening datasets. We also determined the importance of contribut-
ing factors related to the CVD prediction performance. Furthermore, we compared the
performance of our CVD risk prediction model with that of previous models.

2. Materials and Methods
2.1. Data Source and Subject Inclusion

The data used for this study were taken from the dataset of the National Health
Insurance Corporation (NHIC) for the years 2009 to 2013. The study used the following
databases from the NHIC: the NHIS-healS database, examiner’s qualification database, and
medical specification database. The study was reviewed and approved by the Institutional
Review Board of the National Health Insurance Service Ilsan Hospital (Approval No.
NHIS-2021-2-133). The study protocol was also approved by the National Health Insurance
data sharing service office.

After extracting the databases, we took the following approaches. First, the disease
code in the database was searched. Then, the value “1” was assigned to all users with CVD
diagnosis codes. Other users were assigned the value “0.” The CVD diagnosis codes were
specified using the International Classification of Diseases-10th system. The codes include
angina pectoris (I20), acute myocardial infarction (I21), subsequent myocardial infarction
(I22), certain current complications following acute myocardial infarction (I23), other acute
ischemic heart diseases (I24), and chronic ischemic heart disease (I25).

From the datasets we used, the overall number of subjects was 234,478 in 2013, and
the prevalence of CVD was 2.1% (4962 subjects). Because CVD prevalence differences exist
between age groups, we focused on subjects over 45 years old. Consequently, 4699 CVD
patients were extracted from the dataset. Then, we sampled the same number of non-
CVD subjects assigned the value “0” from the datasets using a random sampling method.
We confirmed the same statistical distribution, based on age groups and gender, as those
of the CVD group for the sampling, because CVD prevalence is largely affected by age
and gender [14]. Finally, a total of 9398 individual datasets were used for training and
validating the ML algorithms of the prediction model.

2.2. Architecture of the Cardiovascular Disease Prediction Model

The architecture of the proposed CVD prediction model is shown in Figure 1. The en-
tire code of this study investigation is available on the Online Supplementary Materials.
The prediction model validated several ML algorithms and the best model was identified
by comparing the performance results after applying the listed algorithms to the datasets.
The performance was measured using the criteria of area under the receiver operating
characteristic curve (AUROC) scoring mechanism, applying four-fold cross-validation to
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the datasets. To offset any random sampling effect, the model reiterated the same val-
idation 30 times, the minimum number of iterations to produce the same result. Then,
each model represented the final performance comparison results in the average score
of AUROC values. Thirty-eight contributing factors were selected and used to build the
CVD prediction model (Table S1), and also to measure the relative feature significance
contributing to the performance of the model.
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Figure 1. Study process and architecture of the CVD prediction model.

2.3. Comparison of Prediction Model Performances

The AUROC, accuracy, confusion matrix, classification report, and F1 score were
calculated for performance comparison of the CVD prediction model using various ML
algorithms. The calculated AUROC value was selected as the main metric to compare the
performance of the prediction models. The algorithms used in this study were logistic
regression, decision tree, extra tree, K-nearest neighbors, random forest, gradient boosting,
adaptive boosting, extreme gradient (XG) boosting, support vector machine, and multi-
layer perceptron. The grid search method, supported by the scikit-learn package, was
applied to select the optimal hyperparameters of the predictive model algorithms.

2.4. Analysis of Contributing Factors Affecting the Prediction Performance

To enhance the prediction model’s performance, it is important to examine which
factors contribute the most to the performance of the model. Tree based ML algorithms
such as random forest support the feature importance method, which shows the relative
ranking of the highest contributing factors impacting the performance of the prediction
model. To reinforce the feature significance ranking analysis, another method called the
permutation importance method, which can be used in all the aforementioned ML algo-
rithms, is also used to compare the result of the feature importance method. In this study,
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these two methods running on the random forest algorithm were used simultaneously to
examine how each factor contributed to the performance of the CVD prediction model.

2.5. Statistical Analysis of Demographic Factors

Continuous variables were expressed as mean ± standard deviation (SD), and cat-
egorical variables were expressed as frequencies and proportions. Independent t-tests
were used to compare the continuous variables between the CVD and non-CVD groups.
Chi-square test or Fisher’s exact test were performed to compare the categorical variables
between the groups. All statistical analyses were performed using SPSS 22.0 (IBM Inc.,
Armonk, NY, USA).

3. Results
3.1. Baseline Characteristics of Subjects

The demographic features and CVD-related factors of both the non-CVD and CVD
groups are summarized in Table 1. Both groups were matched for age distribution and
gender. There were no significant differences in the heights and frequency of walking exer-
cise between the two groups. In the non-CVD group, the serum levels of total cholesterol
(TC) and low-density lipoprotein (LDL) cholesterol were significantly higher than those in
the CVD group. The number of subjects who never smoked was higher in the non-CVD
group. Current smoking subjects were also more commonly found in the non-CVD group
than the CVD group (18.1% and 16.0%, respectively). Regarding alcohol consumption, the
proportion of non-drinkers was higher in the CVD group than the non-CVD group (65.8%
and 62.8%, respectively). Overall, the non-CVD group also had more subjects with more
frequent alcohol consumption than subjects in the CVD group.

Table 1. Baseline characteristics and major contributing factors in the non-CVD and CVD groups.

Non-CVD Group
(n = 4699)

CVD Group
(n = 4699) p Value

Sex, n (%) 1.00 a

Male 2789 (59.4%) 2789 (59.4%)
Female 1910 (40.6%) 1910 (40.6%)

Age group, n (%) 1.00 b

45–49 248 (5.3%) 248 (5.3%)
50–54 556 (11.8%) 556 (11.8%)
55–59 658 (14.0%) 658 (14.0%)
60–64 893 (19.0%) 893 (19.0%)
65–69 730 (15.5%) 730 (15.5%)
70–74 957 (20.4%) 957 (20.4%)
75–79 411 (8.7%) 411 (8.7%)
80–84 210 (4.5%) 210 (4.5%)
≥85 36 (0.8%) 36 (0.8%)

Height (cm) 161.1 ± 9.0 161.1 ± 8.8 0.82 c

Weight (kg) 62.4 ± 10.4 64.1 ± 10.8 <0.001 c

Waist (cm) 82.8 ± 8.5 84.5 ± 8.5 <0.001 c

Total Cholesterol 196.63 ± 37.52 173.52 ± 40.06 <0.001 c

LDL Cholesterol 116.44 ± 34.55 96.13 ± 35.44 <0.001 c

HDL Cholesterol 50.85 ± 13.56 53.09 ± 16.71 <0.001 c

Triglyceride 135.07 ± 82.23 137.40 ± 85.16 0.18 c
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Table 1. Cont.

Non-CVD Group
(n = 4699)

CVD Group
(n = 4699) p Value

Previous CVD, n (%) <0.001 b

No 4576 (97.4%) 2336 (49.7%)
Yes 123 (2.6%) 2363 (50.3%)

Previous Stroke, n (%) 0.008 b

No 4607 (98.0%) 4568 (97.2%)
Yes 92 (2.0%) 131 (2.8%)

Previous Hypertension, n (%) <0.001 a

No 2949 (62.8%) 2364 (50.3%)
Yes 1750 (37.2%) 2335 (49.7%)

Previous Diabetes, n (%) <0.001 a

No 4047 (86.1%) 3680 (78.3%)
Yes 652 (13.9%) 1019 (21.7%)

Previous Hyperlipidemia, n (%) <0.001 a

No 4414 (93.9%) 4222 (89.8%)
Yes 285 (6.1%) 477 (10.2%)

FH of CVD, n (%) <0.001 b

No 4587 (97.6%) 4284 (91.2%)
Yes 112 (2.4%) 415 (8.8%)

FH of Stroke, n (%) <0.001 a

No 4409 (93.8%) 4273 (90.9%)
Yes 290 (6.2%) 426 (9.1%)

Smoking Type, n (%) <0.001 a

Never Smoking 2823 (60.1%) 2732 (58.1%)
Past Smoking 1025 (21.8%) 1215 (25.9%)

Current Smoking 851 (18.1%) 752 (16.0%)

Drinking (days/week), n (%) <0.001 b

0 2953 (62.8%) 3219 (68.5%)
1 634 (13.5%) 516 (11.0%)
2 450 (9.6%) 395 (8.4%)
3 290 (6.2%) 258 (5.5%)
4 115 (2.4%) 91 (1.9%)
5 70 (1.5%) 86 (1.8%)
6 59 (1.3%) 44 (0.9%)
7 128 (2.7%) 90 (1.9%)

Walk 30 min (days/week), n (%) 0.27 a

0 1503 (32.0%) 1482 (31.5%)
1 337 (7.2%) 322 (6.9%)
2 507 (10.8%) 506 (10.8%)
3 584 (12.4%) 651 (13.9%)
4 355 (7.6%) 328 (7.0%)
5 423 (9.0%) 410 (8.7%)
6 304 (6.5%) 270 (5.7%)
7 686(14.6%) 730 (15.5%)

CVD: cardiovascular disease, LDL: low-density lipoprotein, HDL: high-density lipoprotein, FH: family history, min: minutes. a Chi-square
test. b Fisher’s exact test. c Independent t-tests.
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3.2. Comparisons of Prediction Model Performance

To compare the accuracy of the performance of the CVD prediction model, we vali-
dated the ML algorithms using 38 contributing factors based on AUROC values (Figure 2).
The XG boosting, gradient boosting, and random forest algorithms exhibited the best
average prediction accuracy among all utilized algorithms (AUROC: 0.812, 0.812, and 0.811,
respectively). In addition, they also presented the best maximum prediction performance
(AUROC: 0.822, 0.821, and 0.821, respectively). The results of the CVD prediction model
performance for the algorithms are summarized in Table 2.
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Table 2. Results of the prediction performance for each algorithm.

Trials Mean SD Min 25% 50% 75% Max

eXtream Gradient
Boosting 30 0.812 0.005 0.803 0.810 0.812 0.815 0.822

Gradient Boosting 30 0.812 0.005 0.800 0.809 0.812 0.816 0.821
Random Forest 30 0.811 0.005 0.799 0.809 0.811 0.815 0.821

Multi-layer Perceptron 30 0.808 0.006 0.794 0.805 0.808 0.812 0.817
Adaptive Boosting 30 0.806 0.005 0.798 0.802 0.806 0.810 0.818
Logistic Regression 30 0.805 0.005 0.793 0.801 0.805 0.808 0.814

Extra-Trees 30 0.802 0.005 0.791 0.799 0.803 0.806 0.811
K-nearest Neighbors 30 0.792 0.005 0.779 0.789 0.794 0.796 0.802

Decision Tree 30 0.789 0.005 0.780 0.786 0.790 0.793 0.796
Support Vector

Machine 30 0.782 0.006 0.766 0.779 0.783 0.786 0.793

SD: standard deviation, Min: minimum result, Max: maximum result.

3.3. Contributing Factors for the Prediction Model Performance

The significance of contributing factors analyzed by the feature importance method is
shown in Figure 3. The significance of contributing factors analyzed by the permutation
importance method is shown in Figure 4.
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Of the 38 variables considered in this study, previous CVD history was the most
important factor contributing to the performance of the CVD prediction model, followed
by TC, LDL cholesterol, waist-height ratio (WHtR), and body mass index (BMI). The top five
contributing factors demonstrated the same ranking order when applying both methods of
feature importance and permutation importance.

The other factors related to medical and behavioral features presented a lower signifi-
cance of contribution to the prediction performance than the top five factors, representing a
slightly different contribution ranking order upon applying both methods. In the analysis
of the feature important method, triglyceride and high-density lipoprotein cholesterol
followed the top five factors. Meanwhile, in the analysis of the permutation importance
method, hypertension history and serum glutamic-pyruvic-transaminase level followed
the top five factors.

Among laboratory findings, hemoglobin level, gamma-glutamyl transpeptidase,
glutamic-oxaloacetic transaminase, sugar level, creatinine, and blood pressure level were
found to be in the top 20 factors in both analyses. Alcohol consumption and walking for
30 min a week were also included in the top 20 factors, and their contributions were higher
than other behavioral factors in both analysis methods. The age group was also included
in the top 20 factors, but gender was not.
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4. Discussion

In this study, we proposed a model that predicts the possibility of CVD occurrence by
applying ML algorithms to the Korean NHIS-healS data. The accuracy of the proposed
model was highest with the XG boosting, gradient boosting, and random forest algorithms.
Both XG boosting and gradient boosting exhibited an average AUROC of 0.812, and
random forest exhibited an average AUROC of 0.811.

The strong point of our study is, that because the prediction model was performed
based only on existing NHIS-healS data, we can suggest that easier and more efficient CVD
prediction is possible by using ML algorithms. As most Korean people undergo mandatory
health screening every 1-2 years under the regulation of NHIS, it is also easy to acquire
the NHIS-healS data. Therefore, this method obviates additional costs and burdens in
collecting baseline data compared to the traditional CVD prediction models.

Moreover, we also showed that the NHIS-healS-based ML algorithm prediction
performances are superior to the validation results of previously introduced CVD pre-
diction models—the ACC/AHA risk model, Framingham risk score, and KHS [3,9,10].
The ACC/AHA risk model assesses CVD risk by checking and scoring factors such as
gender, age, race, TC, HDL, systolic blood pressure, hypertension treatment, diabetes, and
smoking [10]. The Framingham risk score is a gender-specific algorithm that estimates the
10-year CVD risk of an individual. To assess the risk of CVD, the Framingham risk score
refers to factors such as age, cholesterol levels, smoking, and blood pressure, as well as
risk assessment methods for diseases such as cerebrovascular disease, peripheral artery
disease, heart failure, and coronary heart disease [9]. The KHS model is based on 10 years of
health screening data, including factors such as hypertension, hyperlipidemia, and diabetes.
Moreover, lifestyle factors such as exercise, smoking, drinking, as well as social factors such
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as education and level of income were also considered [3,11]. Jung et al. [15] investigated
the performance of the ACC/AHA risk model in the KHS population, and its AUROC was
0.73 to 0.74. Jee et al. [3] predicted CVD in the KHS population using Framingham risk
score, and the result was 0.76 to 0.81 of AUROC. Further, Britton et al. [16] reported several
cohort studies that validated the Framingham risk score, and their AUROC was 0.62 to
0.88. Overall, these outcomes are either on par with or lower than that of our model.

Recently, several studies have applied ML algorithms to predict CVD occurrence.
Ward et al. [17] presented a 5-year CVD risk prediction framework using ML models for
multi-ethnic patients. In their study, the gradient boosting model was the best performing
model with AUROC 0.78−0.84. These results are similar to ours. In a study predicting
CVD risk based on UK health care data, routine clinical data from 378,256 UK patients
were used as cohort data, applying ML algorithms such as logistic regression, random
forest, and gradient boosting. They analyzed 24,970 CVD cases with the algorithms, and
compared the prediction model’s performance with that of the ACC/AHA risk model.
Their results are similar to ours in that the performance of their predictive model was better
than that of the existing model [18]. In a study attempting to predict CVD disease risk
based on UK Biobank data, data from 423,604 participants without past CVD history were
used in a predictive model by applying Auto Prognosis, which is an automated search
system. They used 473 available variables and an ensemble technique that allows the
model to automatically select an ML and DL algorithm to predict CVD risk. Linear support
vector machine, random forest, gradient boosting, adaptive boosting, and neural network
algorithms were used for the automated search system. The performance of the model
was compared to that of the Framingham risk score, showing that the proposed predictive
model outperformed the existing model [19]. Our model achieved a better AUROC value
than that the UK Biobank prediction model with an AUROC of 0.77. Although the number
of variables considered in our study was 38, which is much less than in their study, the
AUROC value of our study is not inferior. Therefore, we have presented a CVD prediction
model that is much simpler and easier, and at the same time provides better performance.

As mentioned above, the primary purpose of our study was to propose a simple
and efficient CVD prediction model. Although we propose existing ML models with
better accuracy, this can be a disadvantage of our study. In other words, the accuracy of
our prediction model is lower than that of other studies using combined ML methods
to maximize the disease prediction performance [20]. Battineni et al. [21] predicted the
diagnosis and onset of Alzheimer disease with a sophisticated ML modeling. In their results,
the manual feature selection-based artificial neural network model showed a 0.812 AUROC.
However, hybrid modeling with four combined ML algorithms showed a much higher
accuracy (AUROC of 0.991). The need for future studies utilizing more advanced and
incorporated ML algorithms to maximize CVD prediction performance is also suggested.

CVD related factors have also been studied actively [22–24]. In many studies, not only
disease-related factors such as diabetes, hypertension, and hyperlipidemia, but also the
effects of social, behavioral, and environmental factors were considered as contributing fac-
tors for CVD [25,26]. We applied both the feature importance and permutation importance
methods to identify the importance of 38 contribution factors. The feature importance
method is useful and easy to deploy, native to tree-based algorithms such as random
forest [27,28]. However, biased results may occur at times. The permutation importance
method is used to overcome such potentially biased results [29,30]. Therefore, we decided
to use both methods supported by the scikit-learn package for better explanatory analysis
of factors contributing to the performance of the CVD prediction model.

Our results revealed that previous CVD history is the strongest factor contributing
to CVD prediction. The dataset used in this study contained both primary and secondary
events of CVD as part of medical examination check-up data. The primary CVD event
has already been shown to be a strong risk factor for recurrence of CVD [2,31]. Among
other medical causes, TC and LDL cholesterol are also important predictive factors for
CVD prediction. Paradoxically, TC and LDL cholesterol were significantly higher in the
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non-CVD group than the CVD group, which was assumed to be due to the higher rate of
active medication in the CVD group. Systolic and diastolic blood pressure, and fasting
blood glucose had a smaller impact on predicting CVD. Another noteworthy finding was
that in our CVD prediction model, factors associated with body shape—WHtR and BMI—
showed higher importance than some of the CVD related diseases or laboratory findings
related to vascular disease. This is consistent with a previous study by Ortega et al. [32],
in which it was reported that obesity is strongly associated with the risk of CVD.

Behavioral factors such as smoking, alcohol consumption, and exercise also repre-
sented low contribution importance. Generally, social, behavioral, and environmental
factors had a lower direct influence on CVD compared to medical causes [3]. Another
notable finding is that age did not significantly affect the performance of the CVD pre-
diction model, similar to other behavioral factors. Age has been known as an important
risk factor for vascular diseases such as myocardial infarction and stroke, but our results
are somewhat in disagreement with this [33]. In a previous epidemiologic cohort study,
acute myocardial infarction exhibited a high incidence in the mid to late-50s, followed by a
slight decrease in the occurrence rate during the 60s. Eventually, the incidence increased
again after the 70s. The incidence rate was markedly lower than that of stroke from the
mid-50s [34]. In this study, there was a high proportion of patients in their 60s and early-50s.
Thus, our results reflect these epidemiologic features.

Previous studies conducted on cerebrovascular stroke, another major vascular disease,
have revealed that several key causes are involved in stroke incidence. Age, gender, low
weight, ethnicity, and genetic factors were risk factors that were either difficult to track,
or with minimal medical impact. Medically known risk factors include hypertension,
smoking, diabetes, atrial fibrillation, certain other heart diseases, dyslipidemia, carotid
artery stenosis, sickle cell disease, postmenopausal hormone therapy, insufficient diet,
lack of physical activity and obesity, and distribution of body fat [35,36]. These reports
represented a similar tendency of factor importance to CVD prediction.

This study has some limitations. First, we should acknowledge the limitations of the
datasets, because the NHIS-HealS datasets do not include detailed clinical data, that is,
the details of individual hospital medical records, or clinical datasets, which represent
more accurate medical conditions. In particular, in the case of recurring CVD patients, this
difference in clinical severity may affect the results. Nevertheless, it is a limitation that
this is not sufficiently considered in our study. If a method to link patient clinical data to
the NHIS-HealS dataset is available as a consolidated dataset, additional key factors for
CVD prediction can be included. This could lead to a more accurate CVD prediction model.
Secondly, the fact that we performed CVD prediction model performances only in a single
ethnic group can be a selection bias. Furthermore, even though over 9000 subjects were
enrolled, our final sample size was relatively small compared to the other aforementioned
CVD prediction studies. To build a CVD prediction model that can be applied globally,
health screening and clinical datasets from various countries and different ethnicities need
to be considered. Efficiently and effectively collecting, sharing, and analyzing research
datasets is crucial for realizing more accurate CVD prediction models.

5. Conclusions

The CVD prediction model using ML algorithms exhibited superior validation perfor-
mances compared to those of previously proposed prediction studies. It was also possible
to predict CVD occurrence in individuals, readily using existing health screening data
and ML algorithms. Therefore, our study verifies that a CVD prediction model using
ML algorithms can predict CVD effectively. Among the factors considered in this study,
preexisting history of CVD was the most important contributing factor to the prediction
model performance. Furthermore, for more powerful and applicable prediction models,
detailed patient data and clinical datasets across the globe may need to be considered in
future studies.



Diagnostics 2021, 11, 943 11 of 12

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/diagnostics11060943/s1. Table S1: Factors used in ML and DL algorithm-based CVD prediction
model; Document S1: Cardiovascular prediction model test codes.

Author Contributions: Conceptualization, J.O.K. and H.-S.K.; methodology, J.O.K. and J.H.K.; soft-
ware, J.O.K. and J.H.K.; validation, Y.-S.J. and J.-W.L.; formal analysis, J.O.K. and H.-S.K.; investiga-
tion, D.P. and Y.-S.J.; resources, H.-S.K.; data curation, J.-W.L. and H.-S.K.; writing—original draft
preparation, J.O.K. and D.P.; writing—review and editing, J.O.K., D.P. and H.-S.K.; visualization, D.P.;
supervision, Y.-S.J. and J.H.K.; project administration, H.-S.K.; All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki, and approved by the Institutional Review Board of the National Health
Insurance Service Ilsan Hospital (Approval No. NHIS-2021-2-133).

Informed Consent Statement: Patient consent was waived due to the retrospective nature of this
cohort study.

Data Availability Statement: The data are not publicly available due to privacy and ethical restric-
tions of the Korean NHI data sharing system. The dataset used in this study can only be accessed
through its own internal-networking system by an authorized researcher. The entire code for this
study’s investigation is provided as Online Supplementary Material.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol

in Adults (Adult Treatment Panel III). Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on
Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation
2002, 106, 3143–3421. [CrossRef]

2. McGurnaghan, S.; Blackbourn, L.A.K.; Mocevic, E.; Haagen Panton, U.; McCrimmon, R.J.; Sattar, N.; Wild, S.; Colhoun, H.M.
Cardiovascular disease prevalence and risk factor prevalence in Type 2 diabetes: A contemporary analysis. Diabet. Med. 2019, 36,
718–725. [CrossRef] [PubMed]

3. Jee, S.H.; Jang, Y.; Oh, D.J.; Oh, B.H.; Lee, S.H.; Park, S.W.; Seung, K.B.; Mok, Y.; Jung, K.J.; Kimm, H.; et al. A coronary heart
disease prediction model: The Korean Heart Study. BMJ Open 2014, 4, e005025. [CrossRef] [PubMed]

4. Statistics Korea. Annual Report on the Causes of Death Statistics. Available online: https://kosis.kr/statHtml/statHtml.do?
orgId=101&tblId=DT_1B34E01&conn_path=I2&language=en (accessed on 21 April 2021).

5. Karmali, K.N.; Persell, S.D.; Perel, P.; Lloyd-Jones, D.M.; Berendsen, M.A.; Huffman, M.D. Risk scoring for the primary prevention
of cardiovascular disease. Cochrane Database Syst. Rev. 2017, 3, CD006887. [CrossRef]

6. Muntner, P.; Colantonio, L.D.; Cushman, M.; Goff, D.C., Jr.; Howard, G.; Howard, V.J.; Kissela, B.; Levitan, E.B.; Lloyd-Jones, D.M.;
Safford, M.M. Validation of the atherosclerotic cardiovascular disease Pooled Cohort risk equations. JAMA 2014, 311, 1406–1415.
[CrossRef]

7. Martinez-Garcia, M.; Salinas-Ortega, M.; Estrada-Arriaga, I.; Hernandez-Lemus, E.; Garcia-Herrera, R.; Vallejo, M. A systematic
approach to analyze the social determinants of cardiovascular disease. PLoS ONE 2018, 13, e0190960. [CrossRef]

8. de Araujo Goncalves, P.; Ferreira, J.; Aguiar, C.; Seabra-Gomes, R. TIMI, PURSUIT, and GRACE risk scores: Sustained prognostic
value and interaction with revascularization in NSTE-ACS. Eur. Heart J. 2005, 26, 865–872. [CrossRef]

9. Andersson, C.; Johnson, A.D.; Benjamin, E.J.; Levy, D.; Vasan, R.S. 70-year legacy of the Framingham Heart Study. Nat. Rev.
Cardiol. 2019, 16, 687–698. [CrossRef]

10. Goff, D.C., Jr.; Lloyd-Jones, D.M.; Bennett, G.; Coady, S.; D’Agostino, R.B., Sr.; Gibbons, R.; Greenland, P.; Lackland, D.T.; Levy, D.;
O’Donnell, C.J.; et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: A report of the American College of
Cardiology/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 2014, 63, 2935–2959. [CrossRef]

11. Jee, S.H.; Batty, G.D.; Jang, Y.; Oh, D.J.; Oh, B.H.; Lee, S.H.; Park, S.W.; Seung, K.B.; Kimm, H.; Kim, S.Y.; et al. The Korean Heart
Study: Rationale, objectives, protocol, and preliminary results for a new prospective cohort study of 430,920 men and women.
Eur. J. Prev. Cardiol. 2014, 21, 1484–1492. [CrossRef]

12. Rezaee, M.; Putrenko, I.; Takeh, A.; Ganna, A.; Ingelsson, E. Development and validation of risk prediction models for multiple
cardiovascular diseases and Type 2 diabetes. PLoS ONE 2020, 15, e0235758. [CrossRef] [PubMed]

13. Kennedy, E.H.; Wiitala, W.L.; Hayward, R.A.; Sussman, J.B. Improved cardiovascular risk prediction using nonparametric
regression and electronic health record data. Med. Care 2013, 51, 251–258. [CrossRef]

14. Mosca, L.; Barrett-Connor, E.; Wenger, N.K. Sex/gender differences in cardiovascular disease prevention: What a difference a
decade makes. Circulation 2011, 124, 2145–2154. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/diagnostics11060943/s1
https://www.mdpi.com/article/10.3390/diagnostics11060943/s1
http://doi.org/10.1161/circ.106.25.3143
http://doi.org/10.1111/dme.13825
http://www.ncbi.nlm.nih.gov/pubmed/30246473
http://doi.org/10.1136/bmjopen-2014-005025
http://www.ncbi.nlm.nih.gov/pubmed/24848088
https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1B34E01&conn_path=I2&language=en
https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1B34E01&conn_path=I2&language=en
http://doi.org/10.1002/14651858.CD006887.pub4
http://doi.org/10.1001/jama.2014.2630
http://doi.org/10.1371/journal.pone.0190960
http://doi.org/10.1093/eurheartj/ehi187
http://doi.org/10.1038/s41569-019-0202-5
http://doi.org/10.1016/j.jacc.2013.11.005
http://doi.org/10.1177/2047487313497602
http://doi.org/10.1371/journal.pone.0235758
http://www.ncbi.nlm.nih.gov/pubmed/32726343
http://doi.org/10.1097/MLR.0b013e31827da594
http://doi.org/10.1161/CIRCULATIONAHA.110.968792
http://www.ncbi.nlm.nih.gov/pubmed/22064958


Diagnostics 2021, 11, 943 12 of 12

15. Jung, K.J.; Jang, Y.; Oh, D.J.; Oh, B.H.; Lee, S.H.; Park, S.W.; Seung, K.B.; Kim, H.K.; Yun, Y.D.; Choi, S.H.; et al. The ACC/AHA 2013
pooled cohort equations compared to a Korean Risk Prediction Model for atherosclerotic cardiovascular disease. Atherosclerosis
2015, 242, 367–375. [CrossRef] [PubMed]

16. Bitton, A.; Gaziano, T.A. The Framingham Heart Study’s impact on global risk assessment. Prog. Cardiovasc. Dis. 2010, 53, 68–78.
[CrossRef] [PubMed]

17. Ward, A.; Sarraju, A.; Chung, S.; Li, J.; Harrington, R.; Heidenreich, P.; Palaniappan, L.; Scheinker, D.; Rodriguez, F. Machine
learning and atherosclerotic cardiovascular disease risk prediction in a multi-ethnic population. NPJ Digit. Med. 2020, 3, 125.
[CrossRef] [PubMed]

18. Weng, S.F.; Reps, J.; Kai, J.; Garibaldi, J.M.; Qureshi, N. Can machine-learning improve cardiovascular risk prediction using
routine clinical data? PLoS ONE 2017, 12, e0174944. [CrossRef] [PubMed]

19. Alaa, A.M.; Bolton, T.; Di Angelantonio, E.; Rudd, J.H.F.; van der Schaar, M. Cardiovascular disease risk prediction using
automated machine learning: A prospective study of 423,604 UK Biobank participants. PLoS ONE 2019, 14, e0213653. [CrossRef]

20. Battineni, G.; Sagaro, G.G.; Chinatalapudi, N.; Amenta, F. Applications of Machine Learning Predictive Models in the Chronic
Disease Diagnosis. J. Pers. Med. 2020, 10, 21. [CrossRef]

21. Battineni, G.; Chintalapudi, N.; Amenta, F.; Traini, E. A Comprehensive Machine-Learning Model Applied to Magnetic Resonance
Imaging (MRI) to Predict Alzheimer’s Disease (AD) in Older Subjects. J. Clin. Med. 2020, 9, 2146. [CrossRef]

22. Saeed, A.; Nambi, V.; Sun, W.; Virani, S.S.; Taffet, G.E.; Deswal, A.; Selvin, E.; Matsushita, K.; Wagenknecht, L.E.; Hoogeveen,
R.; et al. Short-Term Global Cardiovascular Disease Risk Prediction in Older Adults. J. Am. Coll. Cardiol. 2018, 71, 2527–2536.
[CrossRef]

23. Khanna, N.N.; Jamthikar, A.D.; Araki, T.; Gupta, D.; Piga, M.; Saba, L.; Carcassi, C.; Nicolaides, A.; Laird, J.R.; Suri, H.S.; et al.
Nonlinear model for the carotid artery disease 10-year risk prediction by fusing conventional cardiovascular factors to carotid
ultrasound image phenotypes: A Japanese diabetes cohort study. Echocardiography 2019, 36, 345–361. [CrossRef] [PubMed]

24. Kavousi, M.; Leening, M.J.; Nanchen, D.; Greenland, P.; Graham, I.M.; Steyerberg, E.W.; Ikram, M.A.; Stricker, B.H.; Hofman, A.;
Franco, O.H. Comparison of application of the ACC/AHA guidelines, Adult Treatment Panel III guidelines, and European Society
of Cardiology guidelines for cardiovascular disease prevention in a European cohort. JAMA 2014, 311, 1416–1423. [CrossRef]
[PubMed]

25. Damen, J.A.; Hooft, L.; Schuit, E.; Debray, T.P.; Collins, G.S.; Tzoulaki, I.; Lassale, C.M.; Siontis, G.C.; Chiocchia, V.; Roberts,
C.; et al. Prediction models for cardiovascular disease risk in the general population: Systematic review. BMJ 2016, 353, i2416.
[CrossRef] [PubMed]

26. Huntink, E.; Wensing, M.; Klomp, M.A.; van Lieshout, J. Perceived determinants of cardiovascular risk management in primary
care: Disconnections between patient behaviours, practice organisation and healthcare system. BMC Fam. Pract. 2015, 16, 179.
[CrossRef]

27. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
28. Menze, B.H.; Kelm, B.M.; Masuch, R.; Himmelreich, U.; Bachert, P.; Petrich, W.; Hamprecht, F.A. A comparison of random forest

and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data. BMC
Bioinform. 2009, 10, 213. [CrossRef]

29. Altmann, A.; Tolosi, L.; Sander, O.; Lengauer, T. Permutation importance: A corrected feature importance measure. Bioinformatics
2010, 26, 1340–1347. [CrossRef]

30. Strobl, C.; Boulesteix, A.L.; Zeileis, A.; Hothorn, T. Bias in random forest variable importance measures: Illustrations, sources and
a solution. BMC Bioinform. 2007, 8, 25. [CrossRef]

31. Bansilal, S.; Castellano, J.M.; Fuster, V. Global burden of CVD: Focus on secondary prevention of cardiovascular disease. Int. J.
Cardiol. 2015, 201 (Suppl. 1), S1–S7. [CrossRef]

32. Ortega, F.B.; Lavie, C.J.; Blair, S.N. Obesity and Cardiovascular Disease. Circ. Res. 2016, 118, 1752–1770. [CrossRef] [PubMed]
33. Mozaffarian, D.; Benjamin, E.J.; Go, A.S.; Arnett, D.K.; Blaha, M.J.; Cushman, M.; de Ferranti, S.; Despres, J.P.; Fullerton, H.J.;

Howard, V.J.; et al. Heart disease and stroke statistics—2015 update: A report from the American Heart Association. Circulation
2015, 131, e29–e322. [CrossRef] [PubMed]

34. Gentil, A.; Bejot, Y.; Lorgis, L.; Durier, J.; Zeller, M.; Osseby, G.V.; Dentan, G.; Beer, J.C.; Moreau, T.; Giroud, M.; et al. Comparative
epidemiology of stroke and acute myocardial infarction: The Dijon Vascular project (Diva). J. Neurol. Neurosurg. Psychiatry 2009,
80, 1006–1011. [CrossRef] [PubMed]

35. Meschia, J.F.; Bushnell, C.; Boden-Albala, B.; Braun, L.T.; Bravata, D.M.; Chaturvedi, S.; Creager, M.A.; Eckel, R.H.; Elkind, M.S.;
Fornage, M.; et al. Guidelines for the primary prevention of stroke: A statement for healthcare professionals from the American
Heart Association/American Stroke Association. Stroke 2014, 45, 3754–3832. [CrossRef] [PubMed]

36. Larsson, S.C.; Akesson, A.; Wolk, A. Primary prevention of stroke by a healthy lifestyle in a high-risk group. Neurology 2015, 84,
2224–2228. [CrossRef] [PubMed]

http://doi.org/10.1016/j.atherosclerosis.2015.07.033
http://www.ncbi.nlm.nih.gov/pubmed/26255683
http://doi.org/10.1016/j.pcad.2010.04.001
http://www.ncbi.nlm.nih.gov/pubmed/20620429
http://doi.org/10.1038/s41746-020-00331-1
http://www.ncbi.nlm.nih.gov/pubmed/33043149
http://doi.org/10.1371/journal.pone.0174944
http://www.ncbi.nlm.nih.gov/pubmed/28376093
http://doi.org/10.1371/journal.pone.0213653
http://doi.org/10.3390/jpm10020021
http://doi.org/10.3390/jcm9072146
http://doi.org/10.1016/j.jacc.2018.02.050
http://doi.org/10.1111/echo.14242
http://www.ncbi.nlm.nih.gov/pubmed/30623485
http://doi.org/10.1001/jama.2014.2632
http://www.ncbi.nlm.nih.gov/pubmed/24681960
http://doi.org/10.1136/bmj.i2416
http://www.ncbi.nlm.nih.gov/pubmed/27184143
http://doi.org/10.1186/s12875-015-0390-y
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1186/1471-2105-10-213
http://doi.org/10.1093/bioinformatics/btq134
http://doi.org/10.1186/1471-2105-8-25
http://doi.org/10.1016/S0167-5273(15)31026-3
http://doi.org/10.1161/CIRCRESAHA.115.306883
http://www.ncbi.nlm.nih.gov/pubmed/27230640
http://doi.org/10.1161/CIR.0000000000000152
http://www.ncbi.nlm.nih.gov/pubmed/25520374
http://doi.org/10.1136/jnnp.2009.172551
http://www.ncbi.nlm.nih.gov/pubmed/19443470
http://doi.org/10.1161/STR.0000000000000046
http://www.ncbi.nlm.nih.gov/pubmed/25355838
http://doi.org/10.1212/WNL.0000000000001637
http://www.ncbi.nlm.nih.gov/pubmed/25934859

	Introduction 
	Materials and Methods 
	Data Source and Subject Inclusion 
	Architecture of the Cardiovascular Disease Prediction Model 
	Comparison of Prediction Model Performances 
	Analysis of Contributing Factors Affecting the Prediction Performance 
	Statistical Analysis of Demographic Factors 

	Results 
	Baseline Characteristics of Subjects 
	Comparisons of Prediction Model Performance 
	Contributing Factors for the Prediction Model Performance 

	Discussion 
	Conclusions 
	References

