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Abstract: Ultrasound-based assessment of the fetal nervous system is routinely recommended at
the time of the mid-trimester anatomy scan or at different gestations based on clinical indications.
This review evaluates the methodological quality of studies aimed at creating charts for fetal brain
structures obtained by ultrasound, as poor methodology could explain substantial variability in
percentiles reported. Electronic databases (MEDLINE, EMBASE, Cochrane Library, and Web of
Science) were searched from January 1970 to January 2021 to select studies on singleton fetuses, where
the main aim was to construct charts on one or more clinically relevant structures obtained in the axial
plane: parieto-occipital fissure, Sylvian fissure, anterior ventricle, posterior ventricle, transcerebellar
diameter, and cisterna magna. Studies were scored against 29 predefined methodological quality
criteria to identify the risk of bias. In total, 42 studies met the inclusion criteria, providing data for
45,626 fetuses. Substantial heterogeneity was identified in the methodological quality of included
studies, and this may explain the high variability in centiles reported. In 80% of the studies, a high
risk of bias was found in more than 50% of the domains scored. In conclusion, charts to be used in
clinical practice and research should have an optimal study design in order to minimise the risk of
bias and to allow comparison between different studies. We propose to use charts from studies with
the highest methodological quality.

Keywords: ultrasound; growth; parieto-occipital fissure; Sylvian fissure; anterior ventricle; posterior
ventricle; transcerebellar diameter; cisterna magna

1. Introduction

Ultrasound-based assessment of the fetal nervous system is routinely recommended
in most settings at the time of the mid-trimester fetal anatomy scan or at different gestations
based on clinical indications [1,2]. This usually includes routine measurement of the lateral
ventricle anteriorly (AV) and posteriorly (PV), the transcerebellar diameter (TCD), and the
cisterna magna (CM). Additional measurements as part of an extended neurosonography
examination have been proposed in order to assess gyration and sulcation disorders, such
as the parieto-occipital fissure (POF) and the Sylvian fissure (SF).

In previous systematic reviews of studies aimed at creating fetal and neonatal biom-
etry charts, many studies were found to have high risks of bias. Such shortcomings of
methodological design can become a source of substantial variability in percentiles re-
ported, with differences in interpretation of the same measurement; ultimately, this can
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adversely influence clinical decision making [3,4]. Over the last five years, international
prescriptive standards have been published in order to overcome the limitations inherent
in such descriptive reference charts [5].

The objective of this systematic review was to evaluate the methodological quality of
studies aimed to develop charts of fetal brain structures measured by ultrasound.

2. Materials and Methods

We conducted a systematic review of observational studies following the Preferred
Reporting Item for Systematic Reviews and Meta-Analyses (PRISMA) IPD statement [6].
We searched the major electronic databases (MEDLINE, EMBASE, Cochrane Library, and
Web of Science) and secondary reference sources from January 1970 to January 2021 to
select studies on singleton fetuses aimed at creating charts on fetal brain structures growth.

Inclusion criteria for each study were (1) having as the main scope to construct charts
on POF, SF, AV, PV, TCD, and CM; (2) published in English; (3) selection of normal singleton
pregnancies; (4) acquisition of the image on routinely acquired transverse axial planes
(transthalamic, transventricular, transcerebellar) [1]; and (5) growth charts developed
beyond 14 weeks of gestation. No restriction for the ultrasound acquisition technique was
applied (either from 2D pictures or images derived from 3D volumes and with transvaginal
or transabdominal probe). Studies aiming at comparing different population groups or
methods of imaging were excluded from the review.

The keyword search strategy was formulated in collaboration with a professional
information specialist (NWR) and is presented in Table S1. Two reviewers (VD and RN)
independently undertook a two-stage process to select the studies. In the first stage, they
assessed abstracts and titles of all identified citations and selected potentially eligible
studies. In the second stage, they obtained and assessed the full texts of the studies that
fulfilled the inclusion criteria for evaluation. Disagreements regarding inclusion were
resolved by consensus or by consultation with a third author (ATP). Reference lists of
retrieved full-text articles were examined for additional, relevant citations.

Methodological quality criteria were defined a priori, using modified versions previ-
ously used to evaluate studies aimed at creating fetal growth charts and crown–rump length
dating charts [3,4]. Table S2 reports the set of 29 quality criteria. Those criteria refer to three
domains, namely, (1) study design (2) statistical methods, and (3) reporting methods.

All studies included were then scored against each criterion. The level of bias was
defined as a dichotomous variable: 0 referred to a ‘high risk’, and 1 referred to a ‘low risk’.
The overall risk score was defined by adding all scores across the whole set of criteria.
Thus, the quality score for each item of the review could range from 0 (highest risk of bias)
to 29 (lowest risk of bias). The assessment of the methodological quality was performed by
two reviewers (RN and AC) for each study. Where disagreements arose, those were solved
through consultation with a third reviewer (ATP).

Statistical Analysis

Data from the review were coded and transferred to an Excel spreadsheet (Microsoft
Corporation 2007, Redmond, WA, USA). The quality score (0–29) was reported in percent-
age dividing the actual score by 29 and multiplying per 100. The distribution of the 5th
and the 95th centile in studies with a low and high risk of bias was evaluated.

We also evaluated the impact on centiles’ heterogeneity associated with poor study
methodology in the most commonly measured brain structure—TCD.

3. Results

From a total of 1005 records identified after database search, 73 were considered for
potential inclusion (Figure 1). Excluded studies and reasons for exclusion are reported
in Table S3. Finally, 42 studies, reported between January 1970 and 2021, met the inclu-
sion criteria, and these provided data for 45,626 fetuses, included in the final analysis
(Table 1) [7–48]. The median sample size of participating fetuses was 372.5 (range: 50 to
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8313; 25th percentile: 175.8; 75th percentile: 709.3). Most studies created charts that covered
a range of gestation; for example, if a study reported a chart from 20 to 40 weeks, this
covered 21 weeks. The median of this coverage was 24 weeks (range: 7 to 30 weeks; 25th
percentile: 18; 75th percentile: 27).
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Table 1. Main characteristics of studies included.

Study Year Country Structure Plane Calipers
Methods TA or Tva 2D or 3D

Acquisition
Study

Design
Data

Collection
Observation

Period (Months)
Sample

Size
GA Range

(Weeks)
Quality
Score

Alagappan [7] 1994 USA PV TV NA NA 2D NA R NA 500 11–40 2
Almog [8] 2003 Israel PV TV inn to inn TA 2D CS P NA 427 20–40 14

Alonso [9] 2010 Spain POF
SF

NA
TV

NA
NA TA 2D NA P NA 180 19–30 10

Alves [10] 2013 Brazil POF
SF

TV
TV

out to inn †
inn to inn TA 3D CS P 17 393 22–33 16

Araujo Jùnion
[11] 2014 Brazil CM TC inn to inn TA 2D CS R 83 3862 18–24 14

Araujo Jùnion
[12] 2015 Brazil TCD TC out to out TA 2D CS R 84 3772 18–24 14

Brown [13] 2013 Canada CM TC NA TA 2D CS R 24 4750 15–32 14
Cardoza [14] 1988 USA PV TV NA TA 2D NA R NA 100 14–38 2
Chang [15] 2000 Taiwan TCD NA NA TA 3D CS P NA 223 20–40 10
Chavez [16] 2003 USA TCD NA out to out NA 2D CS R 96 2010 14–38 12

Chen [17] 2017 China POF
SF

NA
TV

on to inn
on to inn TA 2D CS P 12 746 18–41 7

Eze [18] 2017 Nigeria TCD TC out to out TA 2D CS P 10 697 14–40 8
Farrell [19] 1994 USA PV TV on to on NA 2D NA P NA 662 12–40 3
Goel [20] 2010 India TCD TC out to out NA 2D NA P NA 50 14–40 6

Goldstein [21] 1987 USA/Italy TCD TC out to out NA 2D CS P NA 335 13–40 8
Goldstein [22] 1988 USA AV TV inn to inn NA 2D CS P NA 179 15–40 9
Goldstein [23] 1990 USA PV TV on to on NA 2D NA P NA 160 15–40 7

Hata [24] 1989 Japan TCD TC NA NA 2D NA P NA 116 17–40 8
Hayata [25] 2015 Japan TCD TC NA TA 2D NA P 8 150 14–36 9
Hilpert [26] 1995 USA PV NA on to on NA 2D NA P 6 537 13–42 2
Ishola [27] 2016 Nigeria PV TV NA TA 2D CS P 12 400 14–40 12
Joshi [28] 2010 Nepal TCD NA out to out NA 2D CS P 12 594 15–38 10

Köktener [29] 2007 Turkey CM NA inn to inn TA 2D CS P NA 194 16–24 9
Köktener [30] 2012 Turkey PV TV NA TA 2D NA P NA 338 15–25 7

Koning [31] 2017 Netherlands TCD NA NA TA and
Tva 3D L P 17 166 9–32 16

Lei [32] 1998 China PV
TCD

NA
TC

NA
out to out NA 2D CS P 24 5496 16–40 8
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Table 1. Cont.

Study Year Country Structure Plane Calipers
Methods TA or Tva 2D or 3D

Acquisition
Study

Design
Data

Collection
Observation

Period (Months)
Sample

Size
GA Range

(Weeks)
Quality
Score

Mahony [33] 1984 USA CM TC inn to inn NA 2D CS P 1 155 15–36 4

Medvedev [34] 2017 Russia
PV

TCD
CM

TV
TC
TC

inn to inn
out to out
inn to inn

TA 3D NA R NA 385 16–28 3

Mittal [35] 2007 USA SF NA on to inn TA 3D CS R 54 200 12–41 12

Napolitano [36] 2020

Brazil,
India,

Kenya,
Italy, UK

POF
SF
AV
PV
CM

TT
TT
TV
TV
TC

inn to inn
inn to inn
inn to inn
inn to inn
inn to inn

TA 3D L P 84 442 14–42 27

Passos [37] 2015 Brazil CM TC inn to inn NA 3D CS P 17 224 17–29 15
Peixoto [38] 2016 Brazil PV TV inn to inn TA 2D CS R 36 512 16–41 15

Rodriguez-Sibaja
[39] 2020

Brazil,
India,

Kenya,
Italy, UK

TCD TC out to out TA 3D L P 84 1130 14–42 25

Salomon [40] 2007 France PV TV inn to inn TA and
Tva 2D CS P 49 4769 17–36 13

Serhatlioglu [41] 2003 Turkey TCD
CM

TC
TC

NA
inn to inn TA 2D CS P NA 130 16–38 8

Smith [42] 1986 UK TCD
CM

TC
TC

NA
inn to inn NA 2D CS P NA 107 14–32 12

Snijders [43] 1994 UK

AV
PV

TCD
CM

TV
TV
TC
TC

NA
NA
NA
NA

NA 2D CS R 72 1040 14–40 12

Spinelli [44] 2019
Italy,

Switzer-
land

SF TT inn to inn TA 2D CS P NA 329 18–33 16

Takano [45] 2018 Japan TCD TC out to out NA 2D CS R 60 340 14–40 10
Uerpairojkit [46] 2001 Thailand TCD TC out to out NA 2D L P 12 153 14–40 8

Verburg [47] 2008 Netherlands TCD TC out to out TA 2D L P 46 8313 16–36 17
Vinkesteijn [48] 2000 Netherlands TCD TC out to out NA 2D CS R 24 360 17–34 10

† outer margin of the fissure to internal margin of the calvarium. TA = transabdominal; Tva = transvaginal; POF = parieto-occipital
fissure; SF = Sylvian fissure; AV = anterior ventricle; PV = posterior ventricle; TCD transcerebellar diameter; CM cisterna magna;
TT = transthalamic; TV = transventricular; TC = transcerebellar; NA = not available; inn = inner; out = outer; CS = cross sectional;
L = longitudinal; P = prospective; R = retrospective.

Nine studies reported more than one fetal brain structure [9,10,17,32,34,36,41–43].
In addition, 4 studies reported charts for POF [9,10,17,36], 6 for SF [9,10,17,35,36,44],
3 for AV [22,36,43], 14 for PV [7,8,14,19,23,26,27,30,32,34,36,38,40,43], 20 for
TCD [12,15,16,18,20,21,24,25,28,31,32,34,39,41–43,45–48], and 10 studies reported the
CM [11,13,29,33,34,36,37,41–43]. There was substantial heterogeneity in the methodol-
ogy used in studies aimed at creating charts for fetal brain structures. In 34 studies (80%),
high risk of bias was found in >50% of the domains scored (Figure 2, Table S4).
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The overall quality score in terms of low risk of bias ranged between 5 and 74%, 15 and
65%, and 5 and 86% for criteria analysed in the study design, statistical methods, and
reporting methods domain, respectively (Figure 2). Overall, 30 studies (72%) undertook
prospective data collection. Only 5 studies (12%) had a longitudinal design, and 26 studies
(62%) had a cross-sectional design, whereas in all the remaining 11 studies (26%) the
design was not reported. Only two studies (5%) had inclusion and exclusion criteria that
were clearly stated and applied, and also reported detailed neonatal or infant outcomes
(Table S4). Considering the domain of ‘statistical methods’, there was a low risk of bias in
only 25 studies (60%); a regression equation was reported in order to calculate expected
centiles in 30 studies (72%), and only in 14 studies (33%) was performed goodness of fit
of the proposed model (Table S4, Figure 2). Most of the studies scored low on criteria
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concerning the reporting methods such as the description of the measurement technique
(50%). Only six studies (14%) adopted a comprehensive strategy for ultrasound quality
control—in four cases (9%) sonographers were standardised to the measuring technique,
and in two (5%), cases measurements were taken in a blinded fashion.

In Table 2, we present the centiles of each structure at three relevant gestational ages
for those studies where this was possible—either reported by the authors or calculated
when a relevant equation was reported. Figure 3 shows the distribution of the 5th and
the 95th centile for the TCD in studies with a high risk of bias in more or less than 50%
of the quality criteria. Studies with a lower risk of bias had a smaller distribution of
centiles, compared with studies with a higher risk of bias at any of the three gestational
ages analysed. The same analysis could not be reported for other structures in view of a
low number of data points.

Table 2. Comparison of centiles value.

20 Weeks 28 Weeks 32 Weeks

Centile SD Centile SD Centile SD

Study GA Included Score 5 50 95 5 50 95 5 50 95

POF studies
Napolitano [36] 2020 14–42 27 2.7 4.2 5.8 0.95 4.1 6.1 8.2 1.27 4.6 6.8 9.0 1.34

Alves [10] 2013 22–36 16 15 16.7 18.3 1.65 17.8 19.4 21.1 1.65
Alonso [9] 2010 19–30 10 1.8 4.0 1.35 6.6 8.8 11.1 1.35

SF studies
Napolitano [36] 2020 14–42 27 3.5 5.9 8.2 1.42 8.0 11 14.1 1.85 9.9 13.1 16.3 1.96

Alves [10] 2013 22–36 16 8.0 10.4 12.8 1.65 9.5 12.3 15.0 1.65
Spinelli [44] 2019 18–33 16 5.7 6.9 8.1 0.7 10.3 12.1 13.9 1.1 11.4 13.5 15.6 1.3
Mittal [35] 2007 12–41 12 4.9 5.5 6.1 8.2 8.8 9.5 9.8 10.5 11.2
Alonso [9] 2010 19–30 10 4.7 6.6 8.5 1.15 10.5 12.4 14.3 1.15

AV studies
Napolitano [36] 2020 14–42 27 4.9 6.9 8.9 1.2 5.8 7.8 9.8 1.2 6.5 8.4 10.4 1.2

Snijders [43] 1994 14–40 12 5.9 7.4 8.9 0.90 7.0 8.4 9.9 0.90 7.5 9.0 10.4 0.90
Goldstein [22] 1988 15–40 9 6.6 8.2 9.9 7.8 9.5 11.1 8.8 10.5 12.1

PV studies
Napolitano [36] 2020 14–42 27 4.1 6.3 8.5 1.36 3.1 5.8 8.5 1.63 2.7 5.7 8.6 1.77

Peixoto [38] 2016 16–41 15 3.7 5.5 7.3 2.9 5.1 7.3 2.5 4.9 7.3
Almog [8] 2003 20–40 14 4.8 5.9 8.5 1.12 4.4 6.4 9.1 1.26 4.2 6.8 8.9 1.46

Salomon [40] 2007 17–36 13 6.8 8.8 0.15 6.1 8.8 0.22 6.5 9.1 0.21
Ishola [27] 2016 14–40 12 5.2 6.2 7.4 5.5 6.7 8.0 5.7 6.9 8.3

Snijders [43] 1994 14–40 12 5.6 7.2 8.9 1.02 6.2 7.9 9.6 1.02 6.6 8.3 9.9 1.02
Goldstein [23] 1990 15–40 7 4.9 6.5 8.2 5.6 7.2 8.9 6.2 7.8 9.4
Köktener [30] 2012 15–25 7 5.1 6.7 8.4

TCD studies
Rodriguez-Sibaja [39] 2020 14–42 25 19 20.5 21.9 0.87 30.3 32.9 35.5 1.57 37.3 40.8 44.2 2.11

Verburg [47] 2008 16–36 17 18.6 20.3 22.0 1.03 30.3 33.0 35.7 1.64 37.8 41.0 44.2 1.95
Koning [31] 2017 9–32 16 19.1 20.8 22.4 32.9 34.6 36.2 40.8 42.4 44.1

Araujo Jùnior [12] 2015 18–24 14 17.9 19.9 22.8
Chavez [16] 2003 14–38 12 17.7 20.4 23.0 0.20 28.2 32.4 36.6 0.35 34.4 39.5 44.7 0.46
Smith [42] 1986 14–32 12 18.8 20.5 22.1 29.4 31.0 32.6 34.6 36.3 37.9

Snijders [43] 1994 14–40 12 19.0 21.0 24.0 0.03 29.0 32.0 36.0 0.03 34.0 37.0 42.0 0.03
Chang [15] 2000 20–40 10 15.4 20.3 25.3 27.8 32.7 37.7 34.0 38.9 43.8
Joshi [28] 2010 15–38 10 19.1 20.7 22.3 31.3 32.9 34.6 37.4 39.1 40.7

Takano [45] 2018 14–40 10 17.9 19 20 0.6 28.6 31.2 33.7 1.6 34 37.3 40.6 2
Vinkesteijn [48] 2000 17–34 10 18.8 20.7 22.8 29.3 32.3 35.7 36.7 40.4 44.6

Hayata [25] 2015 14–36 9 19.3 19.9 20.5 0.36 29.4 31.7 34.0 1.40 35.8 38.1 40.4 1.40
Goldstein [21] 1987 13–40 8 20.0 31.0 38.0

Hata [24] 1989 17–40 8 19.9 21.5 23.2 31.4 33.0 34.7 37.2 38.8 40.4
Lei [32] 1998 16–40 8 19.0 21.0 25.8 25.8 36.6 34.5 32.0 43.0 44.9

Serhatlioglu [41] 2003 16–38 8 20.0 21.7 23.3 32.9 34.6 36.2 39.7 41.3 43.0
CM studies

Napolitano [36] 2020 14–42 27 3.0 4.5 6.8 1.39 4.0 6.0 8.9 1.76 4.3 6.4 9.5 1.87
Passos [37] 2015 17–29 15 4.3 6.0 8.0 5.6 8.0 11.1

Araujo Jùnior [11] 2014 18–24 14 2.9 4.7 6.5
Brown [13] 2013 15–32 14 4.3 5.9 7.9 1.23 6.3 7.9 9.9 1.23 7.0 8.7 10.3 1.23

Snijders [43] 1994 14–40 12 3.3 5.1 7.2 0.04 4.7 6.8 9.1 0.04 5.2 7.3 9.7 0.04
Smith [42] 1986 14–32 12 4.2 5.8 7.5 6.7 8.3 10.0 7.9 9.6 11.2

Köktener [29] 2007 16–24 9 2.7 4.3 6.0
Serhatlioglu [41] 2003 16–38 8 3.0 4.7 6.3 4.7 6.3 7.9 4.9 6.6 8.2

Centiles highlighted in white are reported in the relative study; centiles highlighted in grey are calculated. Studies are reported in descending
quality score. SD= standard deviation; POF = parieto-occipital fissure; SF = Sylvian fissure; AV = anterior ventricle; PV = posterior ventricle;
TCD = transcerebellar diameter; CM = cisterna magna; GA = gestational age.
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4. Discussion

The aim of this systematic review was to evaluate the methodology used in studies
aimed at creating charts on specific fetal brain structures measured by ultrasound. Using
a set of 29 predefined quality criteria on study design, statistical methods, and reporting
methods, studies were scored as having a low or high risk of bias. This approach has been
previously proposed in order to evaluate the quality of existing charts on fetal biometry
and first-trimester dating [3,4].

In 34 out of 42 studies (80%), a high risk of bias was found in >50% of the domains
scored (Figure 2). Only the studies by Napolitano et al. and Rodriguez-Sibaja et al. were at
low risk of bias in a significantly high number of quality criteria, respectively, in 93% and
86%; all other studies were below 60% [36,39].

The highest potential for bias was noted in most of the criteria regarding the ‘study
design’. Specifically, only two studies reported a low risk of bias in the definition of
inclusion/exclusion criteria. In addition, only two studies described detailed neonatal and
development outcomes [36,39]. In two other studies, there was neurological follow-up
described, but this was never assessed with a standardised approach in all fetuses included.
Thus, in the study by Hilpert et al. telephone follow-up was obtained at a minimum of
2 years of age in fetuses with PV measurement of 10 mm or more [26], and in the study
by Farrell et al., most fetuses with PV measurements more than 8 mm had an unspecified
follow-up that varied from 2 days to 12 months [19]. We believe that infant follow-up
is essential if the aim is to create charts of brain structures. This is because pathological
conditions may be prevalent, possibly affecting the resulting charts, and because many
cases of developmental delay cannot currently be predicted by antenatal ultrasound. The
proportion of infants with abnormal development in a study should confirm that they are
representative of a healthy population.
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The reason for this high source for bias identified in these fields is also probably related
to the retrospective design (around 30% of the studies). Furthermore, in only four studies
sample size estimation was performed [18,36,39,44], and only three studies had population-
based sample selection [36,39,47], with all other studies reporting either convenience
sampling or arbitrary recruitment or sampling methods that were not reported (Figure 2).

One area of significant bias in fetal biometry is associated with calliper placement not
done in a blinded fashion [49] (considered in only two studies [36,39]). It is difficult to
quantify the magnitude of this factor, but one might assume that for values close to cut-offs
for referral or investigation (e.g., 10 mm for the PV); such lack of blinding may have a
relevant impact on the resulting charts. The sonographer tends to over- or underestimate
to generate referrals or avoid abnormality diagnosis, respectively. In addition, there was
a lack of ultrasound quality control in 80% of the studies, which has been previously
demonstrated to be useful in reducing measurement variability [50].

The high risk of bias in most of the criteria assessed may explain the substantial
heterogeneity in the resulting centiles. For example, in the case of TCD at 32 weeks of
gestation, the 50th centile according to Vinkesteijn et al. was equivalent to the 95th centile
according to Hayata et al. and Hata et al. [24,25,48]. Likewise, the 95th centile according to
Smith et al. was smaller than the 5th centile according to Serhatlioglu et al. (Table 2) [41,42].
In Figure 3, we show that the higher is the risk of bias score the higher is the variability
in centiles reported of TCD for the three gestational age ranges considered. It is clear that
such differences are not desirable since they can lead to false-positive or false-negative
results. This also makes different studies difficult to compare in research.

Only nine studies reported the regression equation of the standard deviation—instead,
they either did not report the equation or they just reported the mean standard deviation
throughout gestation. This is an important limitation since a clear increase in variability
with advancing gestation from visual assessment of scatter diagrams in those studies was
observed. Hence, the changing standard deviation with advancing gestation should be
taken into account and is needed for the accurate calculation of centiles.

Strengths and Limitations of the Review

This is the first systematic review on the topic and it includes all currently published
charts on POF, SF, AV, PV, TCD, and CM. A rigorous methodology based on predetermined
quality criteria was applied and was based on previously published quality checklists used
to evaluate studies on other aspects of fetal size [3,4]. We had no limitations on the year of
inclusion of studies; it could be argued that, in a rapidly emerging field such as prenatal
imaging, older studies should not be subjected to the same rigorous quality assessment as
more recent ones. It is also fair to assume a gradual improvement in both the ultrasound
technology and the statistical methods of data analysis over the decades. In fact, there was
some evidence of improving study quality over time; the median quality score for the first
half of the studies (between 1984 and 2008) was 9, while the median score for the latter half
of the studies was 13. Nevertheless, the high risk of bias was time independent for many
criteria such as inclusion/exclusion criteria, neonatal and infant outcome, sample selection,
characteristics of the study population, measurement acquired blindly, and standardisation
of the sonographers.

5. Conclusions

The use of a wide range of reference charts can affect both clinical assessment and research
on the development of new technologies associated with antenatal ultrasound [51,52]. We
have shown the lack of methodological quality in most existing studies aiming at creating
fetal brain charts. Most studies have significant risks of bias, leading to large differences in
size charts of normal brain structures. This provides the controversial background context
to studies that suggest that differences in fetal brain measurements exist due to, for example,
maternal ethnicity, country of origin, or fetal sex: it is not possible to ascribe such differences
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to biological causes when basic methods of study design, statistical analyses, and reporting
are not optimised and when different studies utilise widely different methods.

This review of the literature has shown that 40 out of 42 studies had a low risk of bias
in no more than 60% of the quality criteria. In order to allow a unified approach to clinical
practice and research, we suggest using charts that have an optimal study design, use a
prescriptive approach, and a methodology that is at low risk of bias, including fetuses from
low-risk populations worldwide, and that follow infants up for developmental assessment
to confirm that the population was appropriate for the construction of these charts.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/diagnostics11060916/s1, Table S1: Search strategy, Table S2: List of methodological quality
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