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Abstract: Pterygium is an eye condition that is prevalent among workers that are frequently exposed
to sunlight radiation. However, most of them are not aware of this condition, which motivates
many volunteers to set up health awareness booths to give them free health screening. As a result,
a screening tool that can be operated on various platforms is needed to support the automated
pterygium assessment. One of the crucial functions of this assessment is to extract the infected
regions, which directly correlates with the severity levels. Hence, Group-PPM-Net is proposed by
integrating a spatial pyramid pooling module (PPM) and group convolution to the deep learning
segmentation network. The system uses a standard mobile phone camera input, which is then fed
to a modified encoder-decoder convolutional neural network, inspired by a Fully Convolutional
Dense Network that consists of a total of 11 dense blocks. A PPM is integrated into the network
because of its multi-scale capability, which is useful for multi-scale tissue extraction. The shape of the
tissues remains relatively constant, but the size will differ according to the severity levels. Moreover,
group and shuffle convolution modules are also integrated at the decoder side of Group-PPM-Net by
placing them at the starting layer of each dense block. The addition of these modules allows better
correlation among the filters in each group, while the shuffle process increases channel variation
that the filters can learn from. The results show that the proposed method obtains mean accuracy,
mean intersection over union, Hausdorff distance, and Jaccard index performances of 0.9330, 0.8640,
11.5474, and 0.7966, respectively.

Keywords: pterygium assessment; group convolution; spatial pyramid pooling module; semantic
segmentation; shuffle convolution

1. Introduction

Pterygium is an eye condition that is caused by the non-cancerous growth of abnormal
tissues that cover the corneal regions [1]. The tissues are usually pinkish in color with a
wedge shape, as shown in Figure 1. Normally, the abnormal tissues grow from the medial
canthus region, rather than the lateral canthus region [2]. As the pterygium condition
worsens, more abnormal tissues will encroach upon the corneal regions. Eventually, in the
worst-case scenario, the patient will become blind because the tissues will block light from
coming through the pupil. However, most cases will only lead to blurred vision and an
uncomfortable feeling to the patients.
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Figure 1. The enclosed region by the black line shows the wedge or wing shape area of the pterygium-
infected tissues. The tissues will usually grow from the medial canthus region towards the pupil, as
the condition becomes more severe.

According to Zhou et al. [3], excessive exposure to ultraviolet (UV) radiation is usually
associated with the cause of pterygium. Their findings show that radiation changes the
limbal stem cells and fibroblasts, which encourages the initiation of pterygia tissues. These
findings are also valid for the recurrent pterygium cases, in which the primary cause of
the condition for patients that have undergone removal surgery is also highly associated
with UV radiation [4]. Hence, people who live near the equator are more prone to this
condition due to prolonged exposure to sunlight throughout the years. Thus, certain
economic sectors, such as fishermen, construction workers, farmers, and delivery riders
are the potential target groups that need to be made aware of pterygium so they can take
precautionary steps to reduce their UV exposure. Moreover, knowledge of this condition
will help them identify pterygium at its early stage.

A good screening system is crucial in helping healthcare practitioners to perform
efficient mass screening of high-risk groups that primarily consist of low-skilled workers
that happened to reside in rural areas [5]. Because most of these workers are worried about
medical costs, they rarely seek periodic health advice from medical practitioners. In certain
countries, such as Malaysia, volunteers typically organize health screening sessions that
cover various diseases as part of community services. Due to the nature of these services,
some of the volunteers are university students, and others are from the general public who
do not have specialized medical skills. Therefore, an efficient screening tool will allow
them to identify the risk of many diseases, including pterygium.

If the pterygium condition is detected at an early stage, the abnormal tissue encroach-
ment into the corneal region can be halted through the continual use of eye-drops [6].
The severity of the pterygium can be assessed by determining the size of the abnormal
tissues; a severe case is one in which the tissue has grown into the pupil region [7]. Dur-
ing the screening process, it is tedious to segment the tissues manually, especially when
the number of samples is large. Therefore, an automated tool needs to be developed so
that early detection of the severity level can be immediately identified. Moreover, object
detection-based methods, such as YOLO V4 [8], are not pursued in this paper because of
the importance of good silhouette extraction that encloses the exact region of the infected
tissues to grade the severity level. A rectanglular representation of the infected tissues will
be sub-optimal because two infected tissues might have the same bounding box represen-
tation, but with different sizes and shapes. Hence, this paper aims to solve this problem
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using a deep-learning semantic segmentation technique to identify the exact regions of the
pterygium-infected tissues.

The Fully Convolutional Dense Network (FC-DenseNet), which was designed by
Jegou et al. [9], was used as the basis to develop the algorithm employed in this study.
The input for the screening process is a frontal eye image that can be captured from any
standard mobile phone camera. The goal of the segmentation algorithm is to come out
with binary images that identify all the pterygium-infected tissues so that the severity level
can be determined. However, severity grading is not the goal of this study, due to the
sample size imbalance between the severity levels. In this paper, the pyramid pooling
module (PPM) [10] is utilized to improve the network’s capability in handling multi-scale
information, where the size of the pterygium tissues differs according to the severity
level. In the early stage, the abnormal tissue encroachment will form around the medial
canthus region, whereas in a severe case, the tissues will encroach to the corneal region,
as shown in Figure 2. To further improve the segmentation accuracy, shuffle [11] and
group [12] convolution were added to the segmentation architecture. By integrating the
group convolution, segmentation features can be learned in a block way, where the filters
with high correlation can be trained efficiently [13]. A shuffle operation was also added to
overcome the issue of limited training variations, because only a small fraction of the input
channel is utilized in standard group convolution.

Figure 2. The left-hand side image shows that the pterygium is still in the early stage, where the
abnormal tissue formation is limited around the medial canthus region. The right-hand side image
shows that the pterygium is in the late stage, where the abnormal tissues have encroached into the
pupil region.

Therefore, this paper utilizes a modified FC-DenseNet for the application of pterygium
segmentation by embedding multi-scale capability through a pyramid pooling module and
better-correlated filters through group and shuffle convolution. The utilization of dense
feedforward layers allows the model to better learn the unique patterns of pterygium-
infected tissues from basic to complex features. Even though more parameters have been
utilized due to the usage of feedforward layers, the model is still comparatively small
compared to the other state-of-the-art benchmarked model with just 13 million of trainable
parameters. As a result, the proposed method has managed to achieve a processing speed
of 2.63 images per second. This paper is formatted into five sections. Section 2 discusses
the related works that focus on the automated pterygium screening methods and concise
review on deep learning semantic segmentation. The proposed methodology, which we
named as Group-PPM-Net, is explained in Section 3, and the performance results are
discussed in Section 4. The conclusion and suggestions on future work are given concisely
in Section 5.
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2. Related Works

This subsection reviews some works on the automated pterygium screening and con-
volutional neural network-based (CNN-based) algorithms used for semantic segmentation.

2.1. Automated Pterygium Screening

In 2012, Mesquita and Figueiredo [14] used edge detectors to develop one of the
earliest automated pterygium screening tools. They first extracted the iris region before
finding the largest blob using a Sobel edge operator. The extracted region is labeled as
abnormal tissues, which is then used to determine the severity level of pterygium. Another
method in [15] applied a haar-like feature coupled with an AdaBoost classifier to extract
pterygium-infected tissues. In [16], Fourier harmonic analysis was applied by identifying
various circular diameters that can fit the infected tissue regions. A larger diameter size
indicates a more severe disease. Besides that, the work in [17] analyzed the color of the
pterygium-infected tissues, so that the condition can be distinguished from a cataract that
has a relatively similar appearance. On the other hand, the work in [18] tried to distinguish
between pterygium encroachment and astigmatism condition, which is another disease
that closely resembles pterygium.

The previously discussed methods have applied simple image processing methods
without using advanced supervision techniques. The work by Lopez et al. [19] adopted a
convolutional neural network (CNN) to classify the eye images into a pterygium or normal
class. The network is very shallow with just one layer of CNN and one dense layer with
one down-pooling operator. Another compact CNN approach, which was proposed by [2],
has analyzed various normalization techniques that are embedded into a network of two
CNN layers and two dense layers. As shown in [20], the performance of a deep learning
network can be improved using better optimization, normalization, and regularization
techniques. Moreover, this method has also applied a transfer learning approach rather
than using random parameter initialization. Instead of just classifying the images into two
classes, the work in [1] has localized the pterygium-infected tissues by spawning various
candidate boxes that might encapsulate the true infected regions. The network consists of
three CNN layers and three dense layers, where the candidate boxes will be resized and
tested individually so that the bounding box with the highest probability will be labeled
as the infected region. The work reported in [21] semantically segmented the images
by classifying each pixel into either a pterygium label or not. They modified DeepLab
methods by integrating the feedforward layers into the first four CNN blocks, which are
then concatenated to derive more informative feature maps.

2.2. Convolutional Neural Networks-Based Semantic Segmentation

The VGG family architecture [22] is a famous CNN model that specializes in the
classification task; it won second place in the 2014 ImageNet Large Scale Visual Recogni-
tion Challenge (ILSVRC). Since then, the architecture has been used as the backbone in
various deep learning algorithms, including object tracking [23], video summarization [24],
the rehabilitation system [25], and many others. Long et al. [26] introduced the Fully
Convolutional Network (FCN) in 2015, which is a semantic segmentation algorithm by
deploying VGG-16 architecture as the encoder network that uses deconvolution operators
to upsample the encoded image to the original input size. Three versions of FCN have
been proposed that differ in the number of upsampled layers, where element-wise addition
operators are utilized to combine the feedforward layers for fine-tuning the upsampled
output. Another method presented in [27] also proposed a VGG-16 network as the back-
bone for semantic segmentation with slight modification by integrating atrous convolution.
They removed the last two pooling layers and replaced the CNN striding with atrous
convolution. Yu et al. [28] slightly modified the previous technique by removing both
the last two pooling layers and the CNN striding operations. They introduced various
dilation factors, including 2, 4, 8, and 16 atrous strides to further improve their algorithm
robustness to multi-scale variations.
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Instead of using a simplified architecture on the decoder side, DilatedNet [29] intro-
duced gradual upsampling using the inverted FCN where an upsample operation is used
to replace the max-pooling downsample operation. The unpooling operation uses the
same localization information with regard to the corresponding max-pooling indices. The
Semantic Pixel-Wise Segmentation Network (SegNet) [30] also used the same approach,
where the encoder and decoder sides have the same number of convolution layers without
using any pre-trained backbone model. The algorithm consisted of four CNN blocks at each
of the encoder and decoder sides, where the upsample operation was done through bilinear
interpolation with pooling indices to indicate the maximum location. U-Net [31], which
was introduced for biomedical application has improved the segmentation network by
introducing four feedforward layers that connect the encoder and decoder sides. However,
no pooling indices scheme was applied, because the upsample operation is done through
a transposed convolution operator. A residual layer scheme, which was popularized by
the ILSVRC 2015 winner [32], has also been added to the U-Net architecture. The residual
layer is applied as a skip connection that originates from the input of each down-pooling
layer, which will be passed as the skip connection to the encoder side [33]. Instead of using
residual connections, the work in FC-DenseNet [9] used a dense connection where the
output of each CNN layer and its feedforward input are concatenated. It uses a U-Net
like architecture comprised of 103 CNN layers, in which 15 layers are placed in the bot-
tleneck section that connects the encoder and decoder sides. Contrary to a single deep
network of U-Net, the work presented in [34] has stacked several shallow U-Net modules
consecutively without any upsample operation.

In [10], ResNet architecture is used as the backbone where a pyramid pooling module
is added to improve the multi-scale capability of the segmentation network. Several
parallel CNN layers that are branched out from the same input through different pooling
kernels will be combined back after performing bilinear interpolation upsample operations.
The parallel branches’ role is to capture various scale information through various down-
pooling operations with different kernel sizes. The work in [35] follows the same logic
where parallel branches module, which they termed as atrous spatial pyramid pooling
(ASPP), and is introduced by using several dilation rate factors instead of several kernel
sizes of the pooling operators. Different dilation rates will capture information from
different scales, where the branches will be combined back also using bilinear interpolation
upsample operations. A slight improvement is proposed in [36], where the ASPP module
is modified to include a normal down-pooling operation, followed by a 1 × 1 CNN layer.
The decoder side has also been altered by introducing a gradual upsample process.

3. Methods
3.1. FC-DenseNet

FC-DenseNet uses a modified U-Net architecture by adding concatenated feedforward
components in its dense block. Let us define a standard CNN, f (X), that takes an input
layer Xn−1 as a composite function of a batch normalization layer, rectified linear unit
(ReLU) activation function, convolution operator, and dropout unit.

Xn = f (Xn−1) (1)

Then, an n-layer output of a dense CNN block can be represented by

Xn = f ([Xn−1, Xn−2, . . . , X1, X0]), (2)

where X0 is the input to the respective dense block. Figure 3 shows the full architecture
of FC-DenseNet-103 with a total of 103 convolution layers that comprises of five dense
block units for each of the encoder and decoder networks. There is also a bottleneck unit
with the smallest latent variable representation that consists of a 15-layer dense block that
also connects the encoder and decoder sides. At the encoder side, a transition down (TD)
unit will be applied at the end of each dense block, while at the decoder side, a transition
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up (TU) unit will also be applied at the end of each dense block. Since FC-DenseNet is a
deep architecture, five skip connections between the encoder and decoder sides are added
so that zero gradient diminishing issues can be avoided during the training process. The
TD unit consists of a standard CNN composite function with an additional max-pooling
operator to downsample the output feature map, as shown in the left-hand side image of
Figure 4. On the other hand, a TU unit comprises of just a transpose convolution layer that
takes concatenated input from the dense block.

Figure 3. FC-DenseNet-103 architecture.

Figure 4. The left-hand side image shows an architecture of a single transition down (TD) unit, while
the right-hand side image shows the architecture of a transition up (TU) unit.

3.2. Group-PPM-Net

The proposed architecture, which is termed as Group-PPM-Net, is shown in Figure 5.
The architecture was inspired by the original FC-DenseNet with the integration of a spatial
pyramid pooling module (PPM) and group & shuffle convolutions. The network requires a
set of input data with the size of 224 × 224 pixels, where a total number of 328 images will
be experimented in this study. A PPM module is added to improve the network capability
in handling multi-scale cases of the pterygium-infected tissue. It has been successfully
applied in many applications to improve the network capability in extracting multi-scale
features, such as traffic sign recognition [37], image retrieval [38], remote sensing [39], and
text detection [40]. The dataset used in this study consists of pterygium conditions that
cover the early stage until the late stage. In the early stage, the size of the abnormal tissues
is comparatively small compared to the pupil size, while the size is relatively big in the
late stage, wherein some cases, the tissues have fully grown into the pupil region. Hence,
the encroachment tissue size will differ with regard to the disease severity. One interesting
point to note is that the overall shape remains relatively the same, in the form of a wedge
shape, regardless of the severity level. Thus, a PPM has been added at the bottleneck layer
that connects between encoder and decoder parts, followed by a three-layer dense module,
so that the system is better equipped to handle multi-scale pterygium tissue detection. The
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placement of the PPM at the bottleneck region coincides with the smallest feature map
size, which will not add too many trainable parameters to the network due to the usage of
several parallel pooling layers. The proposed PPM architecture is shown in Figure 6 that
consists of three parallel CNN branches, where each branch differs in the kernel pooling
size, which is used to capture several scales of the encoded data. Average pooling operators
are then applied with kernel sizes of 2 × 2, 3 × 3, and 7 × 7, followed by a pointwise
convolution, batch normalization, and ReLU function. The resultant feature maps are then
resized to the original input size before they are concatenated together.

Figure 5. Full architecture of the proposed Group-PPM-Net for pterygium-infected tissues
segmentation.

Figure 6. The proposed architecture of the spatial pyramid pooling module with three parallel CNN
branches using pooling kernels of 2 × 2, 3 × 3 and 7 × 7.

Group and shuffle convolution modules are added to further improve the segmenta-
tion accuracy. In general, group convolution allows the networks to be trained by separate
sets of filters, in which the networks will not be generalized as a whole single unit. The re-
lationship among the convolution filters are sparse in nature [41] and thus, in certain cases,
the correlation among them can be improved by reducing the input channels that it can
learn from. On the other hand, this approach also limits the input information that can be
supplied to the filters, as it will only learn from specific channels. Hence, shuffle operation
is included in our proposed architecture so that the input to the group convolutions can be
diversified, where the channels will be swapped around the groups. Figure 7 shows the
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full network flow of the group and shuffle convolution module. Each module comprises
of four groups with 3 × 3 CNN kernels. The same operations used in the dense module
are carried over where the input will be normalized as a batch before ReLU activation is
applied. Then, the standard CNN unit is replaced by group convolution followed by a
shuffle operation. This module of group and shuffle convolution will replace the first layer
of every dense block in the encoder and decoder sides. Therefore, there will be 10 modules
that are applied in the whole segmentation network. However, Group-PPM-Net cannot
take advantage of the multi-graphic processing unit in computing the group convolution,
as the other layers in the subsequent dense blocks cannot be trained separately. The five
skip layers between the encoder and decoder sides will be maintained as in the original
configuration. The total number of trainable parameters of Group-PPM-Net is 13,219,138,
which is less than the original FC-DenseNet with 14,594,658 trainable parameters.

Figure 7. A compact architecture of a group and shuffle convolution module.

4. Experimental Results and Discussion
4.1. Dataset

The dataset used in this study was originally collected for classification purposes;
hence, no segmentation ground truth images are provided. They were collected with the
help of the Australian Pterygium Centre under the supervision of Professor Lawrence
Hirst. Based on an exhaustive search, there is no public dataset available for the task of
automated pterygium segmentation that provides the segmentation mask as the ground
truth. Therefore, we built our own ground truth images using all the pterygium image
cases that consist of various severity levels, ranging from the early to late stages with
a total of 328 frontal eye images. The images were captured in a Joint Photographic
Experts Group (JPEG) format with a high-resolution size of 4064 × 2074 pixels. Two
ground truth evaluators, a biomedical researcher and a health practitioner were tasked
with manually segmenting the infected tissues. The ground truth region for each image
was traced using the same protocol employed in [42], which was implemented by the 2017
Automated Cardiac Diagnosis Challenge: Segmentation. First, the biomedical researcher
manually traced the boundary region of the pterygium infected tissues using GNU Image
Manipulation Program 2 (GIMP2) software. Then, the annotated regions were validated
and corrected by the healthcare practitioner in the presence of the first evaluator. Any
disagreement was discussed, and consensus on the final segmented regions was reached.
GIMP2 software of version 2.10.14 was used to annotate and create the ground truth images
in JPEG format with a resolution of 450 × 300 pixels. Only two output classes were used,
the pixel either belonging to the pterygium tissues or not. No pre-processing method
was applied to the raw images, except they were scaled to the range of [−1,1]. Similarly,
no data augmentation was performed to increase the number of training data. Simple
data augmentation procedures, such as translation and rotation, were not implemented
in this work because of their limited effectiveness, since semantic segmentation labeling
is done per pixel-wise, whereas complex synthetic data augmentation methods such as a
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generative adversarial network [43] were not implemented because the generated images
need to be manually labeled first by healthcare practitioners before they can be part of the
training data. The overall workflow of the proposed approach is shown in Figure 8.

Figure 8. The overall workflow of the proposed approach.

4.2. Experimental Setup

The proposed Group-PPM-Net was coded in Python using a Keras front-end with a
Tensorflow back-end. All the experiments were tested using an Intel i9-9900K machine that
runs at a 3.60 GHz clock with a single Nvidia RTX 2080 Ti graphics card. The categorical
cross-entropy loss function was applied to train the network using the Adam backpropaga-
tion method [44]. The network was trained for a minimum of 200 epochs using random
initialization, where a small batch size of three images per iteration was utilized due to the
limited memory storage capacity of our graphics processing unit. A fixed learning rate
approach of 0.0001 was used during the network update. The algorithm was trained and
validated using the dataset derived from [1]. The dataset consists of 328 frontal eye images
of pterygium patients, which are split randomly according to the ratio of 1:3 for testing
and training purposes. As seen in Figure 8, the proposed method and all the benchmarked
algorithms were trained until convergence, where the training accuracies have converged
to the optimal value of 1, except for the Pyramid Scene Parsing Network (PSP-Net), which
converged to 0.85. The convergence speed varies between the algorithms with DeepLab
V3+ achieving the fastest convergence, while FCN started slowly and converged rapidly
after 32 epochs. The training and testing performances (Table 1) prove that the issues of
over-fitting and under-fitting due to the limited number of training data are minimal in
this case.

Table 1. Performance results of the Group-PPM-Net and the benchmarked methods in segmenting
the pterygium-infected tissues.

Method Acc IoU Hdist Jindex Image/Second Parameters

DeepLab V3+ [36] 0.7683 0.5575 64.6621 0.2077 2.4778 41,051,088
Stacked U-Net [34] 0.8046 0.6420 41.4411 0.608 3.7186 3,035,650

PSP-Net [10] 0.8884 0.7824 35.1803 0.6882 2.3976 27,838,400
FCN [26] 0.9047 0.8110 15.2212 0.6909 2.5622 134,393,428

FC-DenseNet [9] 0.9117 0.8239 13.2491 0.7512 2.7242 14,594,658
U-Net [31] 0.9128 0.8251 13.9372 0.7255 4.0951 31,032,834

DeepLab V2 [35] 0.9169 0.8327 22.5102 0.7158 2.5927 71,419,720
SegNet [30] 0.9185 0.8354 14.6579 0.7386 3.9844 29,444,166

Group-PPM-Net 0.9329 0.8632 11.9989 0.7946 2.6295 13,219,138

4.3. Performance Metrics

Four standard segmentation metrics are used to evaluate the proposed method perfor-
mance, which are pixel-wise mean accuracy (Acc, class-based mean intersection over union
(IoU), the Hausdorff distance (Hdist), and Jaccard index (Jindex). Let Ii represents a pixel at
location i with the total number of pixels Tp, then Li,gt is its ground-truth label, while L̂i is
the label predicted by the network. Since this work only considers a binary problem, the
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class α is either 0 (non-pterygium) or 1 (pterygium). Note that the logical and is denoted by
∧ and the logical or operator is denoted by ∨, and hence IoU and Acc are the following:

IoU =
∑∀i(Li,gt == α ∧ L̂i == α)

∑∀i(Li,gt == α ∨ L̂i == α)
(3)

Acc =
∑∀i(Li,gt == α ∧ L̂i == α)

Tp
. (4)

For Hdist and Jindex, only the segmented pterygium region is concerned. Let M and N
be the two points set that represent the segmented regions of the ground truth (RM) and
network prediction (RN), respectively. A one-directional Hdist can be written as:

Hsingle
dist (M, N) = max

m∈M

{
sup
n∈N
||m− n||2

}
. (5)

Hence, a bi-directional Hdist can be formulated as follows:

Hdist(M, N) = max
{

Hsingle
dist (M, N), Hsingle

dist (N, M)
}

. (6)

For Jindex, the formula can be written as

Jindex(M, N) =
|RM ∩ RN |
|RM ∩ RN |

. (7)

4.4. Performance Benchmark with the State-of-the-Art CNN Segmentation Models

To compare the state-of-the-art performance of the methods, eight other CNN-based
semantic segmentation models were tested, including FCN [26], SegNet [30], U-Net [31],
stacked U-Net [34], FC-DenseNet [9], PSP-Net [10], DeepLab V2 [35], and DeepLab V3+ [36].
All the methods were trained using the same setup without any pre-trained parameters, but
the input size to the networks remained the same as in the original design. Table 1 shows
the performance of the proposed method and the state-of-the-art benchmarked methods,
while Table 2 shows the ablation study that measures the segmentation performance after
the addition of each component to the proposed method. The only pre-processing step
that was applied is image normalization that maps the input images to the range of [−1, 1],
and this step was applied to all the benchmarked methods. Table 1 shows the performance
results of the proposed Group-PPM-Net and the selected bench-marked methods. The
best pixel-wise mean accuracy was returned by the Group-PPM-Net with 0.9349, which
is relatively higher than the second-best Acc produced by SegNet with 0.9185. However,
the worst Acc of just 0.7683 was returned by DeepLab V3+. This low-performance value
can be attributed to the over-fitting problem, as proven by the training graph shown
in Figure 9. DeepLab V3+ achieved the fastest convergence state, which is close to 1.0, just
after 50 epochs of training, but its accuracy was not good during testing. Interestingly, the
training accuracy for PSP-Net does not converge to 1.0 after 200 epochs like it does for the
other methods, but its Acc of 0.7824 is close to the training accuracy of around 0.85. Hence,
it produces the lowest performance drop between the training and testing dataset, which
can be attributed to its robustness.

Group-PPM-Net also returned the best IoU of 0.8669, followed by SegNet and DeepLab
V2 with IoU of 0.8354 and 0.8327, respectively. A 0.3 factor improvement in the mean IoU
value has a significant impact in determining the severity level. These small differences
can be very challenging when attempting to determine the severity level, as shown by the
output samples in Figure 10. The samples show that the other bench-marked methods tend
to produce a false detection that will affect the size of the extracted pterygium-infected
tissues, which directly affects the diagnosis of the pterygium severity level. Moreover,
U-Net produces a significant amount of jagged segmentation outputs, which make the
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boundaries look uneven, which also affects the severity level assessment. It is important
to note that the U-Net output in the second row cannot correctly segment the tissues
that have encroached into the pupil region. This miss-detection will decrease the quality
of the severity level assessment. Hence, a small increment in IoU is important for the
pterygium segmentation as it directly correlates with the accuracy of the disease assess-
ment. Besides that, Group-PPM-Net produced the best IoU with a relatively light-weight
model of just 13,219,138 trainable parameters. That result is even smaller than the original
FC-DenseNet of 14,594,658 trainable parameters due to the smaller kernel size used in the
group convolutions.

In terms of Hdist and Jindex, Group-PPM-Net still produced the best results with the
lowest Hausdorff distance with just 11.9989 pixels, followed by the original FC-DenseNet
and U-Net with 13.2491 and 13.9372 pixels, respectively. Although DeepLab V2 produced
good Acc and IoU, its Hdist is relatively high compared to the other methods. This perfor-
mance fluctuation is caused by the wrongly segmented region in a few cases where the size
of the detected region differs significantly from the ground truth. This reasoning is also
supported by the result of its Jaccard index, where DeepLab V2 also produces a relatively
low segmentation performance with Jindex = 0.7158. Similarly, the Group-PPM-Net and
FC-DenseNet returned the two best Jindex of 0.7946 and 0.7512, respectively. The results also
showed that the addition of the PPM and Group & Shuffle modules significantly increased
the original network performance. For networks that use a symmetric encoder and decoder
configuration, SegNet and U-Net performed relatively well for both measures of Hdist
and Jindex. This can be attributed to the fact that they both have a better up-sampling
approach than the FCN and DeepLab V2. Besides that, U-Net is the fastest algorithm that
can be processed at 4.0951 images per second, even though it uses more than 31 million
parameters. Its architecture is straightforward with just repeated downsampled and up-
sampled convolution operators with few skip connections. On the other hand, the stacked
U-Net with just 3 million parameters also requires approximately the same processing time,
although it has a lightweight network design. This is because it is composed of a much
deeper network architecture than the U-Net, where it uses a small number of parameters
for each layer of cascading encoder-decoder units. Besides that, Group-PPM-Net is found
to be the second slowest algorithm, where only 2.6295 images can be processed per second.
The main processing burden can be attributed to several group and shuffled operations,
where the computational burden is high even though the number of parameters does
not increase that much. Finally, FCN was found to be the slowest network because of its
large filter sizes, as proven by its high memory requirement with more than 134 million
parameters.

Table 2. Performance results of the Group-PPM-Net ablation study.

Method Acc IoU Hdist Jindex Image/Second

FC-DenseNet 0.9117 0.8239 13.2491 0.7512 2.7242
FC-DenseNet + Group 0.8623 0.7508 18.3827 0.6826 2.7023
FC-DenseNet + Shuffle 0.6774 0.7269 27.2436 0.6294 2.6866
FC-DenseNet + PPM 0.9190 0.8402 11.4322 0.7795 2.6215

FC-DenseNet + Group + PPM 0.8504 0.7324 19.2126 0.669 2.6844
FC-DenseNet + Shuffle + PPM 0.9099 0.8243 14.7687 0.7556 2.6789

FC-DenseNet + Group + Shuffle 0.9186 0.8348 14.1382 0.7368 2.6635
Group-PPM-Net (Encoder) 0.9330 0.8640 11.5474 0.7966 2.6108
Group-PPM-Net (Decoder) 0.9327 0.8626 10.3480 0.7949 2.6269

Group-PPM-Net (Both sides) 0.9329 0.8632 11.9989 0.7946 2.5823
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Figure 9. Training graph of the segmentation methods that have been trained for 200 epochs using
an Adam optimizer with a fixed learning rate of 0.0001.

Figure 10. Output samples of the segmented pterygium-infected tissues.

4.5. Ablation Study of the Group-PPM-Net

Table 2 shows the performance results of the Group-PPM-Net ablation study. Two
modifications were suggested to improve the original FC-DenseNet through the introduc-
tion of PPM at the bottleneck layer and replacing the first layer in the dense block with the
group and shuffle convolution module. According to Table 2, the addition of the individual
component of either the group or shuffle operator resulted in worse segmentation perfor-
mance compared to the original FC-DenseNet, as measured by all performance metrics.
This is because group and shuffle operators perform the best if they are combined, in which
a shuffle operator allows the group convolution to derive its input from the other group
channels. Contrary to that, the addition of a single PPM module to FC-DenseNet man-
aged to slightly improve the segmentation performance, as measured by all performance
metrics, albeit being slightly slower to process. When two modules were combined to
the original FC-DenseNet, the segmentation performance follows the same trend as in the
single module addition, where the algorithm’s performance was worse. When the original
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FC-DenseNet was applied together with both group & shuffle modules, the segmentation
performances increased in terms of Acc and IoU with 0.9186 and 0.8348, respectively. How-
ever, its general performance was slightly degraded when it was measured through Hdist
and Jindex, where Hdist reduced to 14.1382 pixels and Jindex reduced to 0.7368 pixels. These
results show that the combined group and shuffle modules managed to improve network
capability in distinguishing the true negative, while reducing the true positive detection.

Therefore, the three modules were combined together to further improve the segmen-
tation performance to produce a significant segmentation improvement. The resultant
Group-PPM-Net is just slightly slower than the original FC-DenseNet, with 2.6108 images
per second compared to 2.7242 images per second. A further test was also performed
to measure the algorithm performance with regard to the placement of group & shuffle
modules. As a reference, the original Group-PPM-Net applies the group & shuffle modules
at the encoder and decoder sides of the network. The results in Table 2 indicate that the
best performance was obtained when the group & shuffle modules were only applied
at the encoder side, where its Acc, IoU and Jindex increased to 0.9330, 0.8640 and 0.7966,
respectively. Contrary to this, group & shuffle modules will become less effective when it is
applied at the decoder side only, where only Hdist improved to 10.3480. Therefore, the best
variant of Group-PPM-Net was obtained when group & shuffle modules were applied to
the encoder side only. The main reasoning behind this lower performance can be attributed
to the nature of the network up-sample operation. During the down-sampling process, the
network goal is to encode the information into a smaller set of latent variables, which is
inlined with the goal of a group & shuffle modules addition, which is to better extract the
unique features. During the up-sampling process, the addition of the group & shuffle mod-
ules will dilute the reconstructed features, as the channel will be shuffled according to its
group. There is no benefit in shuffling the features at this stage, because it will create more
feature randomness, which is in contrast with the goal of feature reconstruction. However,
the performance difference was small among all three variants of the Group-PPM-Net,
which performed better than the benchmarked state-of-the-art methods.

5. Conclusions and Future Works

In conclusion, Group-PPM-Net was successfully developed and validated for pterygium-
infected tissue segmentation. Two innovative modules, PPM and group convolution, were
explored to modify the original FC-DenseNet for better segmentation accuracy. PPM was
added because of its multi-scale capability, which is useful for detecting pterygium from
the early stage to the late stage, since the infected tissues have a relatively similar shape
but different encroachment size. The group and shuffle convolution modules were also
integrated to better train the network, where the best performance was obtained if they
were placed at the encoder side of the Group-PPM-Net. The best variant of the Group-PPM-
Net obtained segmentation performances of Acc, IoU, Hdist, and Jindex of 0.9330, 0.8640,
11.5474 and 0.7966, respectively. In future works, atrous and separable convolutions will be
explored to further improve the segmentation accuracy and to reduce the computational
burden of the networks.

Author Contributions: Conceptualization, S.R.A., M.A.Z. and N.H.Z.; software, S.R.A. and M.A.Z.;
formal analysis, S.R.A., M.A.Z. and N.H.Z.; writing—original draft preparation, S.R.A., M.A.Z. and
N.H.Z.; writing—review and editing, S.R.A., M.A.Z. and N.H.Z. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by Universiti Kebangsaan Malaysia with grant number GUP-
2019-008 and Ministry of Higher Education Malaysia with grant number FRGS/1/2019/ICT02/
UKM/02/1.

Institutional Review Board Statement: The original data collection was conducted in accordance
with the Declaration of Helsinki, and the protocol was approved by the ethical board at the Australian
Pterygium Centre, Australia with project identification code of HREC/14/QEI/02, which was
approved on 26 November 2014.



Diagnostics 2021, 11, 1104 14 of 16

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
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PPM Pyramid Pooling Module
CNN Convolutional Neural Networks
ILSVRC ImageNet Large Scale Visual Recognition Challenge
ASPP Atrous Spatial Pyramid Pooling
ReLU Rectified Linear Unit
GIMP2 GNU Image Manipulation Program 2
FC-DenseNet Fully Convolutional Dense Network
FCN Fully Convolutional Network
PSP-Net Pyramid Scene Parsing Network
SegNet Semantic Pixel-Wise Segmentation Network
TD Transition Down
TU Transition Up
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