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Abstract: Age-related macular degeneration (AMD) is a progressive neurodegenerative disease of
the central retina, with no suitable biomarkers for early diagnosis and treatment. This study aimed to
find potential diagnostic biomarker candidates for AMD and investigate their immune-related roles
in this pathology. Weight gene correlation analysis was first performed based on data from the Gene
Expression Omnibus database and 20 hub genes were identified. The functional enrichment analyses
showed that the innate immune response, inflammatory response, and complement activation were
key pathways associated with AMD. Complement C1s (C1S), adrenomedullin (ADM), and immediate
early response 5 like (IER5L) were identified as the crucial genes with favorable diagnostic values for
AMD by using LASSO analysis and multiple logistic regression. Furthermore, a 3-gene model was
constructed and proved to be of good diagnostic and predictive performance for AMD (AUC = 0.785,
0.840, and 0.810 in training, test, and validation set, respectively). Finally, CIBERSORT was used to
evaluate the infiltration of immune cells in AMD tissues. The results showed that the NK cells, CD4
memory T cell activation, and macrophage polarization may be involved in the AMD process. C1S,
ADM, and IER5L were correlated with the infiltration of the above immune cells. In conclusion, our
study suggests that C1S, ADM, and IER5L are promising diagnostic biomarker candidates for AMD
and may regulate the infiltration of immune cells in the occurrence and progression of AMD.

Keywords: age-related macular degeneration; complement C1S; adrenomedullin; IER5L; immune
cell infiltration

1. Introduction

Age-related macular degeneration (AMD) is a progressive retinal disease and a leading
cause of irreversible vision loss in older adults worldwide [1]. With aging populations
in many countries, the prevalence of AMD has risen markedly in recent years [2]. The
affected individuals globally reached around 200 million by 2020 and are expected to
increase to nearly 300 million by 2040, thus posing a major public health problem with
substantial socioeconomic implications [3]. According to the severity of fundus lesions,
AMD is classified into early, intermediate, and late stages, including geographic atrophy
(GA; or “late dry AMD”), choroidal neovascularization (CNV; or “wet AMD”), or both [4].
Because the early diagnosis is still a challenge, the disease progress, for most patients,
results in a poor prognosis [5]. Currently, the mechanisms of AMD pathogenesis are poorly
defined, making early detection and accurate treatment more difficult [6]. Therefore, it is
urgent to explore novel diagnostic biomarkers to further develop therapeutic approaches
for AMD patients.

Accumulation of diverse immune cells in the subretinal space is a hallmark feature
of the development of AMD [7]. In recent years, more and more studies have indicated
that immune cell infiltration may play a critical role in the occurrence and progression of
AMD [8]. For example, an increasing population of T cells may lead to the recruitment of
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peripheral monocytes, trigger the secretion of inflammatory cytokines and complement
factors, and ultimately exacerbate the AMD process [9,10]. Niazi et al. showed that the
elevated neutrophil-to-lymphocyte ratio may have stronger relevance to the neovascular
subtype of AMD [11]. The detailed landscape of immune infiltration remains unclear.
Therefore, understanding the profile of immune cell infiltration is important not only
for clarifying the molecular mechanism underlying AMD but also for developing new
immunotherapeutic targets. CIBERSORT is a novel biology tool that uses gene expression
data to determine the component of infiltrating immune cells in samples [12]. It has been
widely used in immune cell infiltration analysis in various diseases such as systemic lupus
erythematosus [13], osteoarthritis [14], and various cancers [15,16]. However, no studies
have so far used CIBERSORT to analyze immune cell infiltration in AMD.

In the present study, we first performed the weighted gene co-expression network
analysis (WGCNA) and functional enrichment analyses to identify the hub genes and
pathways in AMD based on data from the Gene Expression Omnibus (GEO) database.
Subsequently, we identified three crucial genes with diagnostic value for AMD by the
least absolute shrinkage and selection operator (LASSO) analysis and logistic regression
method and then constructed a diagnostic prediction model for AMD. Furthermore, we
used CIBERSORT for the first time to analyze the profile of immune cell infiltration in
AMD. The correlation between crucial genes with infiltrating immune cells was analyzed
to better understand the molecular immune mechanism during the development of AMD.

2. Materials and Methods
2.1. Data Processing

The microarray data on gene expression profiles related to AMD were downloaded
from the National Center of Biotechnology Information (NCBI) GEO database
(https://www.ncbi.nlm.nih.gov/geo/; accessed on 5 March 2021). The dataset GSE29801,
containing 63 retinal tissues from AMD patients and 55 normal retinal tissues from healthy
persons, was used to identify crucial genes for AMD. The dataset GSE50195, containing
9 retinal tissues from AMD patients and 13 normal retinal tissues from healthy persons,
was used as the validation set to verify the diagnostic performance of the AMD predic-
tion model.

The data mining techniques and statistical analysis of this study were based on Biocon-
ductor Packages (http://www.bioconductor.org/; accessed on 5 March 2021) of R software
(version 3.6.3; https://www.r-project.org/; accessed on 5 March 2021). The gene probes in
raw data of the transcriptome microarray were turned into readable gene symbols accord-
ing to the platform’s annotation information. The probe that did not match the gene symbol
was removed and the average expression values were calculated and adopted if multiple
probes correspond to one given gene. The background adjustment was performed using
the normalizeBetweenArrays function in the limma package and the justRMA function in
the Affy package of R to normalize the gene expression matrix in the datasets GSE29801
and GSE50195, respectively. Then, the quantile correction was performed under the R
environment to keep the maximal amount of gene profile information with the lowest
possible noise.

2.2. Weight Gene Correlation Network Analysis

Genes with the top 25% variance were screened out from GSE29801 to conduct
WGCNA [17]. According to the morphological phenotype of the eyes, the patients were
classified into normal, pre-AMD, dry AMD, GA, CNV, and GA/CNV groups [18]. The
hierarchical clustering analysis was conducted on the 118 samples by the hclust function.
The pickSoftThreshold function was used to determine a suitable soft-thresholding power
value with the standard of independence degree > 0.8 during module construction. With
the best power value of 2 and the minimum module size of 40, the gene modules were
identified and each was assigned a unique color label.

https://www.ncbi.nlm.nih.gov/geo/
http://www.bioconductor.org/
https://www.r-project.org/


Diagnostics 2021, 11, 1079 3 of 15

The expression profiles of each module were summarized by the module eigengene
(ME). The associations of individual genes with each subtype were quantified by gene
significance (GS) value. The intramodular connectivity of genes in each module was
assessed by the module membership (MM) value, which was defined as the correlation of
gene expression profile with the ME value. The modules highly correlated with clinical
subtypes of AMD were selected as key modules. Genes with high MM in the key modules
were defined as the hub genes.

2.3. Functional Enrichment Analysis

To identify the biological functions of the module genes and the key pathways in-
volved in AMD, the gene ontology (GO) enrichment analysis of genes in key modules
was implemented in the Database for Annotation, Visualization and Integrated Discovery
(DAVID) website (version 6.8; https://david.ncifcrf.gov/; accessed on 5 March 2021). The
biologic process (BP), cellular component (CC), and molecular function (MF) terms with
the adjusted p-value < 0.05 were regarded as statistically significant.

Meanwhile, the gene set enrichment analysis (GSEA) of the gene expression profile
from the GSE29801 dataset was performed using the gseGO and gseKEGG functions of the
clusterProfiler package in R. The significant BP terms of the GO analysis and the KEGG
pathways were identified with the standard of the adjusted p-value < 0.05.

2.4. Identification of Diagnostic Biomarkers and Model Construction

The LASSO algorithm, a method that is suitable for reducing the dimensions of data,
was conducted by the glmnet package in R to screen the optimal gene biomarkers from the
hub genes. Genes with non-zero regression coefficients were selected. Subsequently, the
dataset GSE29801 was randomly divided into a training set and a test set. The multivariable
logistic regression analysis was conducted on the train cohorts to identify the diagnostic
biomarker candidates. Based on the identified biomarkers, a nomogram model for AMD
was constructed utilizing the rms package of R. The performance of the nomogram model
was evaluated by the calibration curve. Furthermore, the ROC curve was drawn by the
ROCR package in R to compare the diagnostic efficiency of the nomogram model with that
of basic demographic characteristics, including age and gender, in the training, test, and
validation set.

2.5. Immune Infiltration Analysis in AMD

The immune cell infiltration analysis on dataset GSE29801 was conducted by CIBER-
SORT, and analyses were performed based on samples with p-value < 0.05. The profile of
the infiltrating immune cells was visualized by the barplot, heatmap, and violin diagram.
Unpaired t-test (with Welch’s correction if F test p < 0.05) was used to compare infiltration
levels of immune cells between different groups. The corrplot package of R was used to
draw a correlation heatmap to visualize the correlation between 22 types of infiltrating
immune cells in AMD samples. To further investigate the immune-related role of the
identified biomarkers in AMD, the Pearson correlation analysis on the gene expression and
the immune cell infiltration was performed by the cor.test function of R and was visualized
by the dotplot with the ggplot2 package of R.

3. Results
3.1. Hub Genes and Modules Associated with AMD

Using the workflow shown in Figure 1, a total of eight modules were identified
based on 4937 genes from 118 samples (Figure 2A). The number of genes per module
is shown in Supplementary Table S1. As shown in Figure 2B, the brown module had a
significantly negative correlation with the normal subtype (r = −0.33; p < 0.001) and a
significantly positive correlation with the GA subtype (r = 0.20; p = 0.03); the green module
had a significantly negative correlation with the normal subtype (r = −0.23; p = 0.01) and
a significantly positive correlation with the dry AMD subtype (r = 0.25; p = 0.007); the

https://david.ncifcrf.gov/
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black module had a significantly negative correlation with the normal subtype (r = −0.31;
p < 0.001) and a significantly positive correlation with the GA (r = 0.21, p = 0.02) and CNV
subtypes (r = 0.23, p = 0.01).
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Figure 2. Weighted gene co-expression network analysis. (A) Eight modules were identified. (B) The correlation between
modules and disease subtypes, red indicates positive correlation and green indicates negative correlation. (C,D) The
correlation between module membership in the brown module with gene significance for geographic atrophy (r = 0.42,
p < 0.001) and normal group (r = 0.53, p < 0.001), respectively. (E,F) The correlation between module membership in the
green module with gene significance for dry AMD (r = 0.37, p < 0.001) and normal group (r = 0.31, p < 0.001), respectively.

The correlation between GS and MM indicated that the brown and green modules
were significantly associated with AMD subtypes (Figure 2C–F). The top 20 genes with
high MM in brown and green modules were identified as hub genes (C1S, IFI30, HLAF, CIR,
HLAC, CSF1R, CDA12, C1QB, ANXA1, ITGB2, GDF15, EFNA1, ICAM1, CD44, CEBPD,
ANGPTL4, ADM, IER5L, MST150, VEGFA; Supplementary Table S2).

3.2. Biological Processes and Key Pathways Involved in AMD

The module function enrichment analysis showed that the biological processes were
significantly related to innate immune response, inflammatory response, type I interferon
signaling pathway, and complement activation; the cellular components were significantly
related to extracellular space, region, and exosome; the molecular functions were signifi-
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cantly related to serine-type endopeptidase activity and RAGE receptor binding (adjusted
p-value < 0.05; Figure 3A).
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Meanwhile, the results of the GSEA analysis showed that the biological processes
associated with AMD were significantly enriched in cell–cell signaling by the Wnt protein,
immune response-activating signal transduction, neutrophil activation involved in immune
response, and regulation of cell activation (Figure 3B). The key pathways of AMD were
significantly enriched in complement and coagulation cascades, cytokine-cytokine receptor
interaction, focal adhesion, and leukocyte transendothelial migration (Figure 3C).

3.3. Diagnostic Biomarker Candidates and Prediction Model for AMD

Using the LASSO method, 20 hub genes were reduced to eight potential predic-
tors with non-zero regression coefficients and the value of lambda.min = 0.03406166
(Figure 4A,B, Supplementary Table S3). According to further multivariable logistic re-
gression analysis, complement C1s (C1S), adrenomedullin (ADM), and immediate early
response 5 like (IER5L) were identified as the diagnostic biomarker candidates for AMD
[OR (95%CI): 11.302 (2.485, 655.7), p = 0.003; OR (95%CI): 3.048 (1.368, 7.790), p = 0.011; OR
(95%CI): 0.119 (0.293, 0.375), p < 0.001, respectively] (Table 1). A nomogram model based
on the three genes was established for AMD diagnosis and prediction (Figure 4C). The
calibration curve showed excellent agreement between the prediction by nomogram and
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the actually observed probability of AMD (Figure 4D). The ROC curve analyses indicated
that the AUC of the 3-gene-based model was 0.785 in the training cohorts (Figure 5A), 0.840
in the test cohorts (Figure 5B), and 0.810 in the validation cohorts (Figure 5C).
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Table 1. The results of multiple logistic regression analysis.

Variable
Multiple Logistic Regression

Regression Coefficient Odds Ratio (95% CI) p-Value

(Intercept) 1.142 3.134 (3.930 × 10−7, 2.449 × 107) 0.887
ADM 1.115 3.048 (1.368, 7.790) 0.011 *
C1S 2.425 11.302 (2.485, 655.7) 0.003 **

CSF1R −1.707 0.181 (0.020, 1.347) 0.105
HLAC −0.663 0.516 (0.049, 5.079) 0.571
HLAF 1.115 3.050 (0.309, 3507) 0.349
IER5L −2.128 0.119 (0.293, 0.375) <0.001 ***
ITGB2 −0.331 0.718 (0.222, 2.246) 0.570

MST150 0.305 1.357 (0.557, 3.355) 0.499

ADM, adrenomedullin; C1S, complement C1s; CSF1R, colony stimulating factor 1 receptor; HLAC, major histocompatibility complex, class
I, C; HLAF, major histocompatibility complex, class I, F; IER5L, immediate early response 5 like; ITGB2, integrin subunit beta 2; MST150,
small integral membrane protein 3; * p < 0.05; ** p < 0.01; *** p < 0.001.
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In addition, the clinical benefit of the 3-gene model was compared with that of demo-
graphic characteristics, including age and gender. The AUC values of the 3-gene model
were greater than both age and gender in the training, test, and validation sets, suggesting
that our model had a better diagnostic efficiency for AMD (Figure 5).

3.4. Profile of Immune Cell Infiltration in AMD

The immune cell infiltration analysis suggested a significant difference between AMD
and normal retinal tissues. The infiltration of 22 kinds of immune cells in these samples is
summarized in Figure 6A and the subpopulations of immune cells identified by unsuper-
vised hierarchical clustering are shown in Figure 6B. The violin plot showed that relative to
normal control samples, lower proportions of resting NK cells (p = 0.004) and resting CD4
memory T cells (p = 0.016) were detected in AMD samples (Figure 6C).
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between AMD samples and normal samples; blue represents normal samples and red represents AMD samples.

The infiltration levels of the resting NK cells and resting CD4 memory T cells were
significantly associated with the progress of AMD (p = 0.013, p = 0.042, respectively)
(Figure 7A,B). The correlation analysis between immune cell types revealed that the in-
filtration level of the activated CD4 memory T cells was negatively correlated with that
of macrophages M0 (r = −0.82) and positively correlated with that of macrophages M1
(r = 0.93); the infiltration level of macrophages M0 was negatively correlated with that of
macrophages M1 (r = −0.55) and macrophages M2 (r = −0.83) (Figure 7C).
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Together, these results indicated that aberrant immune infiltration and its heterogene-
ity in AMD as a tightly regulated process might have important clinical meanings.

3.5. Correlation of Biomarkers with Infiltrating Immune Cells

Correlation analysis showed that C1S was positively correlated with the infiltration
levels of neutrophils (r = 0.807; p < 0.001), activated CD4 memory T cells (r = 0.693;
p < 0.001), macrophages M1 (r = 0.674; p = 0.001), activated NK cells (r = 0.602; p = 0.003),
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and macrophages M2 (r = 0.553; p = 0.008) and negatively correlated with naïve B cells
(r = −0.495; p = 0.019), macrophages M0 (r = −0.475; p = 0.026), and regulatory T cells
(r = −0.437; p = 0.042) (Figure 8A); ADM was positively correlated with the infiltration levels
of activated NK cells (r = 0.670; p = 0.001), neutrophils (r = 0.624; p = 0.002), macrophages
M2 (r = 0.500; p = 0.019), and activated CD4 memory T cells (r = 0.470; p = 0.027) (Figure 8B);
IER5L was positively correlated with activated NK cells (r = 0.682; p < 0.001), activated
dendritic cells (r = 0.498; p = 0.018), activated CD4 memory T cells (r = 0.494; p = 0.020),
neutrophils (r = 0.493; p = 0.020), and macrophages M1 (r = 0.454; p = 0.034) (Figure 8C).
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4. Discussion

AMD is a chronic retinal degenerative disease affecting millions of people worldwide
and far from being fully understood and treated [19]. Novel molecular biomarkers for
early diagnosis and effective treatment are urgently required. An increasing number of
studies suggest that immune dysregulation is a critical process in the onset and progression
of AMD [20]. However, the underlying mechanisms are poorly defined. The analysis of
candidate biomarkers and immune cell infiltration is of clinical benefit to the diagnostic
and therapeutic strategies for AMD. In this study, we sought to identify the promising
diagnostic biomarkers for AMD and further explore their immune-related role in AMD via
bioinformatics methods.

Based on the AMD expression profile dataset from the GEO database, we applied
the WGCNA analysis and found the brown and green modules to be significantly asso-
ciated with clinical progression. The module function enrichment analysis indicated the
involvement of innate immune response, inflammatory response, type I interferon signal-
ing pathway, and complement activation in AMD. The GSEA also identified the pathways
related to Wnt signaling, immune response, complement activation, etc. The above results
suggested that immune dysregulation plays an important role in AMD. According to
previous experimental studies, the Wnt signaling was found aberrantly increased in wet
AMD, contributing to pathological angiogenesis [21,22]. The complement system was also
demonstrated to have a causative role in AMD development and had been introduced
into emerging clinical trials as a potential therapeutic target [23,24]. These findings are
consistent with those from our study, suggesting that our analysis results are accurate and
may provide important referential merit for clinical applications of AMD.

Molecular marker-based prediction models of diseases with insidious onsets have
considerable potential to help early diagnosis, showing a promising prospect in clinical
use [25–27]. In this study, we identified three candidate diagnostic biomarkers—C1S, ADM,
and IER5L—for AMD and then introduced them into the nomogram model for AMD
diagnosis and prediction. The priority and stability of the 3-gene model proved to be good
by both internal and external validation. Besides, we also revealed the superiority of our
3-gene model in predicting AMD diagnosis compared to age and gender. Previously, aging
was considered as the strongest demographic marker for AMD, and gender (females are
affected more) as an additional risk factor [28]. The current work constructed a more robust
classifier and uncovered more critical information that would benefit the diagnosis and
treatment of AMD patients.

C1S is a serine protease and a major constituent of the complement subcomponent
C1 [29]. The inhibition of C1S can block the complement cascade at an early stage [30].
Given the crucial role of C1S in the classical complement pathway, we believe that C1S
is likely to be involved in regulating the pathological process of AMD and is expected
to become a new target for AMD diagnosis and treatment. ADM is a 52-amino-acid
multifunctional peptide and belongs to the calcitonin gene-related peptide superfamily of
vasoactive peptide hormones. It intervenes in neuronal dysfunction through mechanisms
such as immune and inflammatory response, apoptosis, or calcium dyshomeostasis [31]. A
previous study reported that ADM can function as a key angiogenic mediator of retinal
vascularization and contribute to retinochoroidal disease [32]. In this study, we found ADM
expression significantly upregulated in the AMD retina compared with normal controls
and that it had the potential to serve as the diagnostic biomarker for AMD. We speculate
that ADM plays an important role in AMD development and may have the clinical utility
of the targeted therapies. IER5 is one of the growth factor-inducible genes and is reported
to be associated with the poor prognosis of cancer patients [33]. IER5L is named as an
IER5-like gene, and its cellular roles have not been elucidated [34]. The results of our study
showed that IER5L is significantly lower expressed in the AMD retina than in normal
controls and exhibits a good diagnostic value for AMD. However, numerous experimental
and clinical studies are still needed to verify the expression pattern and diagnostic value
of IER5L.
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A comprehensive evaluation of AMD immune cell infiltration was additionally con-
ducted in this study. The results showed that a decreased proportion of resting NK cells
and resting CD4 memory T cells occurs in the process of AMD. Besides, the activated
CD4 memory T cell infiltration is negatively related to the infiltration of macrophages
M0 and positively related to the infiltration of macrophages M1. According to a previous
study, macrophage M1 polarization can induce the proliferation and migration of human
choroidal vascular endothelial cells and therefore induce choroidal neovascularization [35].
Wu et al. showed that patients with the wet-type AMD presented significantly higher
levels of CD4 T cells than non-AMD controls [36]. Our results are consistent with the above
findings, which further suggest that the CD4 memory T cell activation and macrophage M1
polarization play important roles in AMD and should be the highlight of further studies.
However, no research has been conducted on the role of NK cells in AMD, and further
experimental data are required. Our results also suggested that C1S, ADM, and IER5L
raise activated NK cells, neutrophils, polarized macrophages, and activated CD4 memory
T cells to participate in the occurrence and progress of AMD. However, these mechanisms
are based on bioinformatics results, and molecular experiments should follow to further
validate them.

5. Conclusions

In conclusion, the present study found that C1S, ADM, and IER5L are promising
diagnostic biomarker candidates for AMD. Based on the three genes, a diagnostic prediction
model was constructed and proved to be of good performance. The heterogeneity of
infiltrating immune cells was found involved in AMD pathogenesis. The regulation
of infiltrating immune cells by C1S, ADM, and IER5L may play an important role in
AMD development.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/diagnostics11061079/s1, Table S1: Number of genes in different modules, Table S2: The
MM value of the top 20 genes in brown and green modules, Table S3: The eight genes identified by
LASSO analysis.
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