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Analysis of Features of Alzheimer’s

Disease: Detection of Early Stage

from Functional Brain Changes in

Magnetic Resonance Images Using a

Finetuned ResNet18 Network.

Diagnostics 2021, 11, 1071. https://

doi.org/10.3390/diagnostics11061071

Academic Editor: Markos

G. Tsipouras

Received: 18 May 2021

Accepted: 8 June 2021

Published: 10 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Multimedia Engineering, Kaunas University of Technology, 44249 Kaunas, Lithuania;
modupe.odusami@ktu.edu (M.O.); rytis.maskeliunas@ktu.lt (R.M.)

2 Department of Applied Informatics, Vytautas Magnus University, 44248 Kaunas, Lithuania;
tomas.krilavicius@vdu.lt

* Correspondence: robertas.damasevicius@vdu.lt

Abstract: One of the first signs of Alzheimer’s disease (AD) is mild cognitive impairment (MCI),
in which there are small variants of brain changes among the intermediate stages. Although there
has been an increase in research into the diagnosis of AD in its early levels of developments lately,
brain changes, and their complexity for functional magnetic resonance imaging (fMRI), makes early
detection of AD difficult. This paper proposes a deep learning-based method that can predict MCI,
early MCI (EMCI), late MCI (LMCI), and AD. The Alzheimer’s Disease Neuroimaging Initiative
(ADNI) fMRI dataset consisting of 138 subjects was used for evaluation. The finetuned ResNet18
network achieved a classification accuracy of 99.99%, 99.95%, and 99.95% on EMCI vs. AD, LMCI vs.
AD, and MCI vs. EMCI classification scenarios, respectively. The proposed model performed better
than other known models in terms of accuracy, sensitivity, and specificity.

Keywords: Alzheimer disease; mild cognitive impairment; magnetic resonance imaging; deep
learning; residual neural network

1. Introduction

Alzheimer’s disease (AD) features can be analyzed to create more effective and ac-
curate tools based on recent economical, and publicly available, technologies. Currently,
there have been several approaches which can be applied to detect AD in its early phases,
such as neuroimaging techniques [1–3], behavior and emotion analysis [4,5], often referred
to as cognitive approaches, and cognitive test. Behavioral analysis methods help to detect
irregular reactions to frequent problems in daily living activities, and some of which in-
volve the installation of sensors in the patient’s house. One of the main drawbacks of this
strategy is that it comes with a lot of limitations, as it needs the patient’s permission to
mount the sensors in his/her home. One of the signs of AD is a decline in social cognition,
and some studies have focused on patients’ ability to interpret emotions using various
data, such as eye-tracking data [6], voice/speech recordings [7], facial expressions [8], and
electroencephalograms (EEG) [9,10].

Neuroimaging techniques such as structural magnetic resonance imaging (sMRI) [11,12],
fMRI [13], fluorodeoxyglucose positron emission tomography (FDG-PET) imaging [14],
amyloid PET [1], and diffusion tensor imaging (DTI) [15]. These neuroimaging techniques
have shown to be promising modalities to assess abnormal brain changes linked to AD, and
they remain mainly used in the more advanced centers. In amyloid PET, diffuse amyloid
deposits in the cortex are considered a measure of neurodegeneration, and a marker that
binds to the Aβ protein is injected into the subject. Amyloid PET shows both quantitative
information, that can be regionally based, and qualitative information about the topology
of Aβ deposition in the brain. For fMRI, the alteration in blood flow and blood oxygen
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concentration measurement shows the brain’s metabolic activities [16]. The amount of
shrinkage in brain sub-regions, especially the hippocampus, corroborates the structural
changes of the brain [16]. FDG-PET provides quantitative measurements of the brain’s
metabolic activity [17].

Compared to other neuroimaging modalities, fMRI has helped AD analysts to assess
functionally activated regions when conducting a task to diagnose AD early [18]. When
performing tasks, the frontal-subcortical-parietal regions, thalamus, striatum, and intra-
parietal cortex are all co-activated brain regions. Preliminary fMRI studies have shown a
strong link between cognitive functions and sensorimotor eye movements, assisting in the
development of a better understanding of neurodegenerative diseases’ network-level brain
disruptions. Authors in [19] investigated functional brain connectivity, and they concluded
that new approaches are needed to comprehend the functional pattern alternation in the
initial phase of AD.

The AD functional brain changes among mild cognitive impairment (MCI) stages are
closely related and constant trait information from the features that represent each stage
are often very complex to delineate. Based on this, it is difficult to accurately predict AD
early. Distinguishing the functional brain pattern of MCI stages need accurate information
and knowledge. In this paper, to diagnose AD early, authors created a DL algorithm to take
out useful features from hippocampal fMRI data from the ADNI database. A clinician may
use the proposed model to easily diagnose a patient with MCI and monitor their progress
over time.

The contribution of this paper are as follows:

1. This study proposes a modified ResNet18 and performs binary classification of AD
which include EMCI/LMCI, AD/CN, CN/EMCI, CN/LMCI, EMCI/AD, LMCI/AD,
and MCI/EMCI.

2. To effectively identify the brain changes associated with each of the classes, we
investigate fine tuning framework for classification of AD images based on seven
binary classes.

3. To avoid over fitting and be able to generalize the data and reduce validation loss,
dropout of 0.2 is introduced to the custom layer over fully connected layer to predict
the best result on binary classification.

The following sections make up the remainder of this paper: a literature review about
using deep learning (DL) in fMRI is stated in Section 2. Section 3 outlines the proposed
approach in detail and is divided into 6 subsections, the first of which is Section 3.1,
which describes data that was used in the procedure for evaluating. In Section 3.2, a
description of DL for finetuning and classification is discussed. Section 3.3 gives the detailed
preprocessing steps while the description of CNN architecture is presented in Section 3.4. In
Section 3.5, the description of our proposed fine-tuning model using ResNet18 is explained,
and Section 3.6 gives the evaluation measures used to assess the proposed model. The
experimental findings are summarized in Section 4, and the discussion is presented in
Section 5. The comparison of the proposed model, with existing studies, is presented in
Section 6. The paper concludes in Section 7 with the discussion on future research.

2. Related Work

The DL algorithms for extracting latent features of neuroimaging data, for early de-
tection of Alzheimer’s disease, have piqued the interest of researchers. To distinguish an
Alzheimer’s disease affected brain from a normal (healthy) brain, authors in [19] used CNN
to successfully identify functional MRI data of Alzheimer’s patients from standard controls.
The model achieved an accuracy of 96.85%. However, more complicated network architec-
ture is required to handle complicated problems. Centered on graph theory and machine
learning (ML), authors in [20] created a novel framework for the classification of MCI. The
areas of the brain that changed significantly in the MCI groups were correctly described.
The proposed model only showed the progression of MCI, differentiating the intermediate
stages of the MCI was not considered. Authors in [21] suggested a machine learning-based
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computer-assisted diagnostic approach that can automatically differentiate Alzheimer’s
patients from safe controls. Although the proposed model gave a high prediction accuracy
bur it is tough to say exactly which components had an impact on the overall neural
network decision. Authors in [22] suggested using fMRI to identify subjects with MCI or
AD, incorporating CNN and Ensemble Learning to construct a classifier ensemble (EL).
A combined CNN and EL method can find the brain regions that the qualified ensemble
model suggests are the most discriminable. The authors concluded that using optimization
techniques or other DL approaches, classification accuracy could be improved. To improve
the EMCI detection, the Authors in [23] proposed a multi-scale enhanced GCN (MSE-GCN)
to investigate individual differences and knowledge association among various subjects.
Using image and population phenotypic data, the proposed model was able to learn rich
features. With LMCI vs. NC, the accuracy of 93.46% was achieved. More efficient net-
work models for accurate brain region location were suggested by the authors. Authors
in [24] proposed a method based on autoencoders for distinguishing between natural aging
and disease progression. The proposed approach makes use of effectively biased neural
network functionality to accurately diagnose Alzheimer’s disease. Authors in [25] used
a 3D CNN to construct a binary classifier that could distinguish between AD and CN
resting-state fMRI results. The proposed model used three binary classifications, with AD
vs. CN achieving the highest validity accuracy of 97.77%, but there was high computational
complexity. Authors in [26] introduced a CNN DL algorithm that predicts who will develop
Alzheimer’s disease and who will develop MCI. The proposed model was found to be
extremely effective at distinguishing AD and MCI patients from healthy controls, as well as
predicting AD conversion. The proposed model did not consider the heterogenous nature
of AD. Authors in [27] extracted spatial features from each volume of a 3D static image
in an fMRI image sequence. The feature maps were fed into a long short-term memory
(LSTM) network to capture the data’s time-varying details. The proposed model had a
classification accuracy of 92.11% for AD vs. MCI and 88.12% for MCI vs. NC. However,
the multiclass classification accuracy is very low.

For EMCI classification, the authors in [28] proposed a new 3D CNN for removing
features that are deeply rooted from dynamic as well as static fMRI brain functional
networks with an accuracy of 76.07%. Multi-model, multi-channel, and time-consuming,
on the other hand, did not improve classification accuracy. On fMRI, Authors in [29], used
a 2D CNN model in conjunction with a transfer learning technique to correctly identify AD,
EMCI, and NC. with a 98.41% accuracy. Although the proposed method performed well, it
did not deal with the issue of EMCI vs. NC binary classification. Authors in [30] have used
a hybrid ML method that utilized bidirectional long short term memory (LSTM) network
for identifying discriminative features among AD binary classification from multimodal
neuroimaging data. The proposed model had a high run-time complexity. Authors in [31]
further develop a novel unified CNN framework using 3D CNN. A 3D Convolutional
LSTM (CLSTM) is then applied to extract features and efficiently classified AD binary
classes. The proposed model gave an improved classification accuracy, but the Prodromal
stages of AD were not considered. Authors in [32] also proposed using CNN fMRI data
for early AD classification. Authors in [33] also presented CNN architecture to diagnose
AD early using fMRI with an accuracy of 96.7%, but the power of the method to diagnose
the disease severity is low. Similarly, the authors in [34] used 3D-CNN on MRI images to
obtain high-level features for AD binary classification task with 87.2% accuracy for AD/CN.
Authors in [35] further utilized VoxCNN and ResNet for early AD diagnosis and had an
accuracy of 80% for AD vs. CN classification. Authors in [36] presented a simple 3D CNN
framework, based on the transfer learning strategy for MCI classification, with an accuracy
of 94.1%. The proposed model gave a low binary classification accuracy when compared to
existing methods.

Furthermore, for six classification tasks, the authors in [37] proposed a layer-wise
transfer learning method using VGG 19. The experiments were conducted on 300 ADNI
subjects who were divided into six binary groups. With an accuracy of 98.73% on AD vs.
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NC and 83.72% on EMCI vs. LMCI, the proposed model obtained the best performance
but gave a high computational complexity. Authors in [38] further utilized VGG 16 on
fMRI dataset for two binary classification tasks. The proposed model was effective in
achieving a classification accuracy of 99.27% for AD vs. MCI. The authors recommended
other pre-trained networks, such as the Inception Network and the Residual Network for
building a better classifier for binary AD classification. Authors in [39] suggested a CNN-
based technique for extracting discriminative features from structural MRI with the goal of
diagnosing EMCI and LMCI, as well as classifying these two groups from healthy people.
Authors in [35] suggested two distinct 3D convolutional network topologies for brain
MRI classification and demonstrated the performance of the suggested methodology on
the ADNI for the classification of Alzheimer’s disease vs moderate cognitive impairment.
Authors in [40] used multimodal data for AD stage classification. Stacked denoising auto-
encoders extracted features from genetic and clinical records, whereas 3D CNNs analyzed
MRI data to recognize AD vs MCI and healthy controls. Classification of different stages of
AD was performed on fMRI dataset, authors in [41] used the architecture of a CNN AlexNet
for efficient classification of AD with 97.64% average accuracy. The authors concluded that
the use of other pre-trained models, and transfer learning, could improve classification
accuracy. Authors in [42] presented an approach for early detection of AD by fine-tuning
CaffeNet and GoogLeNet models on 2D MRI images. On an fMRI dataset with AD and
NC groups, authors in [43] investigated the performance of ResNet18 based on transfer
learning for AD detection. Experiments reported that the proposed model had a 96.88%
accuracy. Authors in [44] examined the usefulness of rs-fMRI for multi-class classification
of AD and its stages. The classification task was performed using residual neural networks,
and the findings showed a wide variety of outcomes depending on the stage of the disease.

The summary of some of the related work that applied DL algorithms on fMRI for
early detection of AD is presented in Table 1.

Table 1. Summary of Related Works.

References Deep Learning Model Brain Region Contribution Limitations

[30] VGG 19 Gray Matter Model provided clear distinction
between EMCI and LMC

Low classification accuracy for
intermediate stages

[22] CNN with Ensemble
Learning Whole brain Baseline Low classification accuracy for

MCIc vs. MCI nc

[31] 3D Convolutional LSTM Whole brain Accuracy was improved Prodromal stages of AD were
not considered

[25] 3D CNN Whole brain Model learned temporal and
spatial features

Model was designed for a
specific size of fMRI volume

[28] CNN with residual
connection Hippocampus Baseline N/A

[29] Inception-ResNet V2 Whole brain
Based on various age groups, the
model was able to extrapolate the

prediction of different phases

Model did not address the
problem of EMCI vs. NC

binary classification

[33] CNN Whole brain
Model recognized pattern of brain

functional changes associated with AD
progression

Intermediate stages of AD
were not considered

[36] AlexNet Whole brain Model classified all stages of AD Low binary classification
accuracy

[37] VGG16 Whole brain Model was able to extract useful
features the binary classification tasks

High computational
complexity

The existing studies suffered from some serious limitations such as low classification
accuracy for MCI intermediate classes and non-consideration of binary classes such as
EMCI vs. LMCI, EMCI vs. NC. However, there is still a need for more efficient network
models for accurate brain region location to aid early detection of AD [23]. Other CNN
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pre-trained models and more recent cutting-edge networks should be explored as the base
model to build an efficient classifier for AD classification [37].

3. Methodology

The research methodology includes data collection, pre-processing, DL-based fine-
tuning and classification, as well as evaluation. A well-known AD database provided the
fMRI data. Figure 1 shows the flow diagram of the proposed model.
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3.1. fMRI Dataset

The study’s data came from the ADNI (Alzheimer’s Disease Neuroimaging Initiative)
database (http://adni.loni.usc.edu/ (accessed on January 2021)). There were 413 subjects of
six categories with transversal slice orientation resting-state fMR brain imaging in ADNI2
used in this study. For each of the subjects, there is a T1-weighted fMRI image with an axial
view in a DICOMM file format. The demographic information related to six categories such
as normal control (NC), Mild Cognitive Impairment (MCI), Early MCI (EMCI), Late MCI
(LMCI), Significant Memory Concern (SMC), and Alzheimer’s Dementia (AD) is depicted
in Table 2. Each subject provided at least 6720 slices from the ADNI database, and slices
that prominently show functional properties of the brain region are selected, and 51,443
and 27,310 images were selected for training and validation.

http://adni.loni.usc.edu/
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Table 2. The dataset’s demographic data.

CN MCI EMCI LMCI SMC AD

No. of Subjects 25 13 25 25 25 25
Sex (M/F) 10/15 7/6 13/12 10/15 10/15 10/15

Mean Age (years) 76.42 75.64 69.84 73.11 71.37 75.34

3.2. Pre-Processing

The preprocessed ADNI fMRI images are converted from the DICOM (digital imaging
and communications in medicine) format to the JPG format. Data enhancement including
random resize and cropping to 256 × 256, random rotation, random horizontal flip, center
cropping to 224 × 224, conversion to PyTorch tensor, and normalization, based on normal-
ization values for ImageNet [45,46], is performed before inputting the built dataset into
the model.

3.3. DL Model for Finetuning and Classification

The process of fine-tuning a network is based on the principle of transfer learning.
Starting with a pre-trained model, fine-tuning involves training the network on a new
dataset and updating all of the model’s parameters. This approach is based on a collection
of complicated algorithms that can extract high-level data features from the learn features
during training for a broad domain, and a classification function is targeted at minimizing
error in that domain. The classification function is further replaced to minimize error on
target dataset. Then, the deep neural network contains several parameters (weights) that
will be updated during training, thereby transferring its knowledge from the ImageNet
dataset to the domain dataset to classify the data with high accuracy.

3.4. Proposed Finetuning Model Using ResNet-18 Architecture

ResNet stands for Residual Network, which is an 18-layer CNN proposed by [47].
The ResNet -18 we are using in this study, uses 3 × 3 filters with stride and pad of 1, and
the average pooling layer contains 1 × 1 filter, and one fully connected layer, with a final
softmax layer. The proposed model is developed by unfreezing all layers, this enables all
the parameters of the pre-trained model to adapt to our new dataset.

The original architecture of ResNet 18 shown in Figure 2, has a total of 17 convolutional
layers and one fully connected layer. According to the number of output classes in our
dilemma, we change the fully connected layers and reshape the output. First, we perform
training from scratch, using the pretrained ResNet18, by unfreezing all the layers, thereby
updating all the network parameters. Second, the final dense layer is reshaped to have the
same number of inputs as before and to have the same number of outputs as classes in
the dataset.

As the performance of CNN depends on the optimality of its parameter values [48],
we finally add ReLU and Dropout of 0.2 to build a custom classifier for the classification
process. We adapted the non-linear ReLU activation function as it is faster than other non-
linear activation functions, and helps to lessen the state of vanishing and error gradient
issues [49]. Dropout was varied from 0.1 to 0.4 and 0.2 gave the best performance. Smaller
batch size was utilized for the experiment because of the smaller memory of the GPU.
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Figure 2. The ResNet-18 Architecture.

The adapted architecture in our experiment, showing the number of layer parameters,
is depicted in Table 3. The hyperparameters for the proposed model used during training
and validation is shown in Table 4.

Table 3. The modified ResNet18 Architecture for AD Classification.

Layer Type No of Parameters

Conv2d-1 9408
BatchNorm2d-2 128

Conv2d-5 36,864
BatchNorm2d-6 128

Conv2d-8 36,864
BatchNorm2d-9 128

Conv2d-12 36,864
BatchNorm2d-13 128

Conv2d-15 36,864
BatchNorm2d-16 128

Conv2d-19 73,728
BatchNorm2d-20 256

Conv2d-22 147,456
BatchNorm2d-23 256

Conv2d-24 8192
BatchNorm2d-25 256

Conv2d-28 147,456
BatchNorm2d-29 256

Conv2d-31 147,456
BatchNorm2d-32 256

Conv2d-35 294,912
BatchNorm2d-36 512

Conv2d-38 589,824
BatchNorm2d-39 512

Conv2d-40 32,768
BatchNorm2d-41 512

Conv2d-44 589,824
BatchNorm2d-45 512

Conv2d-47 589,824
BatchNorm2d-48 512

Conv2d-51 1,179,648
BatchNorm2d-52 1024

Conv2d-54 2,359,296
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Table 3. Cont.

Layer Type No of Parameters

BatchNorm2d-55 1024
Conv2d-56 131,072

BatchNorm2d-57 1024
Conv2d-60 2,359,296

BatchNorm2d-61 1024
Conv2d-63 2,359,296

BatchNorm2d-64 1024
Linear-68 131,328

Dropout-70 0
Linear-71 1542

LogSoftmax-72 0

Table 4. Hyperparameters for the Proposed Model.

Hyperparameters Name/Value

Function (activation) ReLU
Rate of learning 1 × 10−5

Epochs 20 with early stopping
Batch size 4

Loss function Cross Entropy
Optimizer Stochastic Gradient Descent (SGD)

3.5. Robustness of the Proposed Model on Various Adverserial Attacks

The abundance of labelled training data are required in most deep learning appli-
cations for healthcare. Different adversary attacks occur at various stages of the model
development [50]. Some major adversary attacks affecting healthcare applications are
poisoning attacks and evasion attacks. Manipulation of training data (poisoning attack)
could mislead the training of the deep learning model. The evasion attacks, caused during
model inference, could compromise the integrity of the model. In order to avoid some of
the adversary attacks in the proposed model, robust features were developed by exploiting
connections between different properties of the data. The proposed model was also mod-
ified by introducing regularization technique. However, in order to ensure the integrity
and authenticity of brain MRI images in telemedicine, robust reversible watermarking [51]
should be used to provide copyright protection.

3.6. Evaluation Measures

In this study, we assessed the proposed model’s efficiency using a variety of metrics:
accuracy, specificity, sensitivity, precision, recall, and f1-score, which is defined in relation
to true negative (TN), false negative (FN), true positive (TP), and false positive (FP).

4. Results

This section describes the studies that were carried out and addresses the outcomes.
We trained two ResNet18 networks (with dropout and without dropout) to perform seven
binary classifications, including NC vs. AD, NC vs. EMCI, NC vs. LMCI, EMCI vs. LMCI,
EMCI vs. AD, LMCI vs. AD, and MCI vs. EMCI. The dataset consists of fMRI of 138
subjects with a total of 78,753 images. For the evaluation, we split the dataset into the
training dataset and validation dataset with 70% (17 subjects consisting of 51,443 images)
and 30% (8 subjects consisting of 27,310 images) split ratio respectively as described in
Table 5.



Diagnostics 2021, 11, 1071 9 of 16

Table 5. Details of the dataset split for training and validation.

Class Name Training Dataset (70%) Validation Dataset (30%)

CN 10,523 4805
LMCI 10,421 4857

AD 10,264 5196
SMC 10,155 5192
EMCI 10,080 5040
MCI 10,059 5025

4.1. Result Based on ResNet18 without Dropout

In this study, we first evaluated the modified ResNet18, without Dropout, on the
seven binary classification scenarios and established the results on validation data using
the hyperparameters depicted in Table 3. Furthermore, we explored reducing overfitting
using early stopping to optimize the epoch’s size hyperparameter. Our model without
dropout achieved validation accuracy result 99.45%, 96.51%, and 99.9% on EMCI vs. LMCI,
CN vs. EMCI, EMCI vs. AD classification respectively as shown in Table 6.

Table 6. Evaluation Metric on Validation Data for Model without Dropout.

Binary Classes Accuracy (%) Sensitivity (%) Specificity (%)

EMCI vs. LMCI 99.45 100 98.88
AD vs. CN 75.12 97.8 50.59

CN vs/EMCI 96.51 98.62 99.96
CN vs. LMCI 74.91 67.36 97.92
EMCI vs. AD 99.90 100 99.70
LMCI vs. AD 99.34 98.72 100
MCI vs. EMCI 99.98 99.96 100

4.2. Result Based on ResNet18 with Dropout

This subsection discussed the result obtained from our proposed finetuning model as
depicted in Figure 1. The PyTorch library was used with Python in all of the experiments.
For our proposed model, we used the hyperparameters depicted in Table 4. The architecture
of our modified ResNet18 is shown in Table 2. To ascertain the effectiveness of our modified
ResNet18 on the ADNI dataset, the average values of accuracy, sensitivity, and specificity
are depicted in Table 7. In addition, the confusion matrices of the modified ResNet18
model on the seven binary classes were also computed to explain the performance of
classification on the validation data. Figure 3 depicts the confusion matrices. We also
measured performance metrics, such as precision, recall, and f1-score, using the confusion
matrices. The overall classification performance of the proposed model on all the seven
binary classification scenarios is shown in Table 8.

Table 7. Metrics of Evaluation on Validation Data for Model with Dropout.

Binary Classes Accuracy (%) Sensitivity (%) Specificity (%)

EMCI vs. LMCI 99.76 99.56 99.97
AD vs. CN 80.80 91.83 83.87

CN vs/EMCI 98.74 97.24 100
CN vs. LMCI 92.23 90.23 94.21
EMCI vs. AD 99.99 99.84 100
LMCI vs. AD 99.95 99.90 100
MCI vs. EMCI 99.95 99.90 100
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Table 8. Precision, recall, and f1-score for seven binary classification tasks.

Binary Classes Class Label Precision Recall F1-Score

EMCI vs. LMCI EMCI 1.00 0.99 0.99
LMCI 0.99 1.00 0.99

AD vs. CN AD 0.86 0.92 0.89
CN 0.90 0.84 0.87

CN vs/EMCI CN 1.00 0.98 0.99
EMCI 0.98 1.00 0.99

CN vs. LMCI CN 0.94 0.90 0.92
LMCI 0.91 0.94 0.92

EMCI vs. AD AD 1.00 1.00 1.00
EMCI 1.00 1.00 1.00

LMCI vs. AD AD 1.00 1.00 1.00
LMCI 1.00 1.00 1.00

MCI vs. EMCI EMCI 1.00 1.00 1.00
MCI 1.00 1.00 1.00

5. Discussion

In this study, we have analyzed the effect of dropout on a fine-tuned pretrained model
to classify fMR images from the ADNI database. This study’s findings revealed that fine-
tuning the entire network gave high classification accuracy on all binary classification
scenarios except AD vs. CN and CN vs. LMCI. Without dropout the best performance was
achieved by EMCI vs. AD with an accuracy of 99.99% (Table 7). Table 8 shows the effect
of dropout on the binary classification. We can see that the proposed model has yielded
positive results on EMCI vs. AD, EMCI vs. LMCI, LMCI vs. AD, EMCI vs. MCI classifica-
tion and achieved 99.99%, 99.76%, 99.95%, and 99.95% accuracy respectively. In terms of
sensitivity, however, the AD vs. CN classification performance was superior. in the case of
the model, without dropout, with a value of 97.8%. Regarding the confusion matrices in
Figure 3, no subjects are misdiagnosed as AD as seen from the binary classification of AD
vs. LMCI and AD vs. EMCI as shown in Figure 3. Likewise, no subjects are misdiagnosed
as EMCI and CN, respectively. However, few subjects are misdiagnosed as EMCI as in the
case of EMCI vs. LMCI. This suggests that the proposed model is feasible and can correctly
classify the intermediate stages of MCI, and using useful features derived from functional
brain networks, the proposed model could effectively differentiate EMCI from LMCI.

With the high classification accuracy performance, the fine-tuning model produced
some overfitting. To elucidate the overfitting hurdle on a noisy dataset that causes the
model to learn patterns from the training data that do not generalize to the validation
data, regularization technique such as dropout plays a major role. We observed that the
dropout does not help in alleviating the overfitting. This finding indicates that the proposed
model recognized the pattern in differentiating between the intermediary stages of MCI
with the regularization technique. This corroborates the idea that the proposed network
gave high precision in most of the binary classification, as shown in Table 8. The use of
the regularization technique for training allowed for the obtaining of better models, thus
increasing the classification accuracy.

6. Comparison with Existing Studies

To validate our proposed approach, we compared our findings to previous studies that
investigated the early diagnosis of AD using binary classification, as shown in Tables 9–11.
The proposed model gives better result in terms of accuracy, sensitivity, and specificity with
98.74% accuracy, 97.24% sensitivity, and 100% specificity on CN vs. EMCI classification
scenario, and 99.76% accuracy, 99.56% sensitivity, and 99.97% specificity on EMCI vs. LMCI
classification scenario.
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Table 9. Evaluation Results with the CN vs. EMCI Binary Classification.

Reference Methodology Accuracy (%) Sensitivity (%) Specificity (%)

[37] Vgg16 85.16 84.29 85.98
[23] Graph CNN 85.42 86.57 84.42
[39] CNN 93.96 90.46 98.19
[35] Deep 3D CNN 59 - -

Proposed Model Modified ResNet18 98.74 97.24 100

Table 10. Evaluation Results with the CN vs. LMCI Binary Classification.

Reference Methodology Accuracy (%) Sensitivity (%) Specificity (%)

[37] Vgg16 89.91 86.61 89.01
[23] Graph CNN 93.46 94.03 92.50
[39] CNN 94.54 91.70 97.96
[35] Deep 3D CNN 73 - -

Proposed Model Modified ResNet18 92.23 90.23 94.21

Table 11. Evaluation Results with the EMCI vs. LMCI Binary Classification.

Reference Methodology Accuracy (%) Sensitivity (%) Specificity (%)

[37] Vgg16 83.72 82.09 85.13
[23] Graph CNN 92.31 93.51 90.00
[39] CNN 93.00 91.48 94.82
[35] Deep 3D CNN 67 - -

Proposed Model Modified ResNet18 99.76 99.56 99.97

The study [23] achieved 93.46%, 94.03%, and 92.50% in terms of accuracy, sensitivity,
and specificity respectively for CN vs. LMCI binary classification and thereby outper-
formed our proposed method in terms of accuracy and sensitivity. Likewise, the study [39]
outperformed our proposed model in all the three-performance metrics for CN vs LMCI.
The overall performance of our proposed model on the three binary classification tasks is
based on accuracy, sensitivity, and specificity, and this is compared with existing methods
as represented with box plots in Figure 4. Our proposed model achieved the best perfor-
mance with a median accuracy of 98.9%, median sensitivity of 98%, and median specificity
of 99.9% over three binary classification tasks. Our proposed model achieved the highest
accuracy, sensitivity, and specificity of 98.74%, 97.24%, and 100%, respectively, for CN
vs EMCI binary classification as compared to other existing methods. In LMCI vs EMCI
binary classification, our proposed method achieved a highest accuracy, sensitivity, and
specificity of 99.76%, 99.56%, and 99.97%, respectively. By comparing the findings of this
study to the findings of other research, we may conclude that our proposed system is a
more trustworthy and accurate method.

For the clinical applicability of the proposed model in diseases such as stroke, most
stroke survivors suffered from some cognitive functions, such as such as attention, concen-
tration, memory, social cognition, language, spatial, and perceptual skills. The cognitive
impairments for stroke survivors have not been addressed adequately. However, findings
show that patients with neurocognitive disorders caused by AD had a higher level of
affective suffering than those with neurocognitive disorders caused by stroke [52].
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7. Conclusions

AD is a debilitating brain disease that cannot be cured, and it impacts a large portion
of the aging world’s population. The need to diagnose this disease early to establish
effective care and enhance patients’ lives cannot be over-emphasized. This study proposed
a modified ResNet18 fine-tuning approach for accurately classifying fMRI brain slices
among seven binary classification tasks: CN vs. AD, CN vs. EMCI, CN vs. LMCI, EMCI
vs. LMCI, EMCI vs. AD, LMCI vs. AD, and EMCI vs. MCI. The training data contained
information about 61,502 images and the validation samples contained 30,095 samples. This
study was able to address the problem of overfitting by finetuning all the convolutional
layers and regularizing using a dropout of 0.2. This paper investigated the performance
of two deep learning models (ResNet18 model without dropout and ResNet18 model
with dropout) on the seven binary classification tasks. We demonstrated that finetuning
ResNet18, and training it from scratch, was able to extract meaningful features for the seven
binary classification tasks. The analysis results for our proposed model shows that, for
regularizing with 0.2 dropout, the model was able to effectively diagnose AD early without
any false positive but with very low false negative on the seven binary classification tasks.
Our model achieved the best classification accuracy of 99.99%, 99.95%, and 99.95% for
EMCI vs. AD, LMCI vs. AD, and MCI vs. EMCI, respectively. Additionally, for the
proposed model, for EMCI vs. AD, LMCI vs. AD, and MCI vs. EMCI, the sensitivity is
99.84%, 99.90%, and 99.90%, respectively. The comparison of our method with existing
methods shows that finetuning with regularization not only reduced overfitting but was
also able to improve classification accuracy with low misclassification error.

For ascertaining and explaining the model decision, the use of visualization techniques
(such as based on the neural network activations) will be considered in the future. We will
also investigate other, recently proposed, neural network models for building classifiers
in future studies. We will also explore a hybrid model, based on the pre-trained CNN, to
achieve a better classification model with fewer false negatives. The performance of the
model on a multiclass classification case also will be investigated in the future.
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