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Abstract: The identification of reliable and non-invasive oncology biomarkers remains a main priority
in healthcare. There are only a few biomarkers that have been approved as diagnostic for cancer. The
most frequently used cancer biomarkers are derived from either biological materials or imaging data.
Most cancer biomarkers suffer from a lack of high specificity. However, the latest advancements
in machine learning (ML) and artificial intelligence (AI) have enabled the identification of highly
predictive, disease-specific biomarkers. Such biomarkers can be used to diagnose cancer patients, to
predict cancer prognosis, or even to predict treatment efficacy. Herein, we provide a summary of the
current status of developing and applying Magnetic resonance imaging (MRI) biomarkers in cancer
care. We focus on all aspects of MRI biomarkers, starting from MRI data collection, preprocessing
and machine learning methods, and ending with summarizing the types of existing biomarkers and
their clinical applications in different cancer types.
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1. Introduction

Imaging is routinely used for cancer diagnosis and staging, for monitoring treatment
efficacy, for detecting disease recurrence, or generally for cancer surveillance [1–4]. Un-
derstanding the anatomical and physiological aspects of medical images allows experts to
distinguish aberrant from normal appearance [5]. Advances in analytical methods and the
application of machine learning methods enabled the use of medical images as biomarkers
that can potentially optimize cancer care and improve clinical outcome [5]. The imaging
biomarkers that are currently, and successfully, used for clinical diagnosis have attracted
many researchers’ attention as described in multiple publications [1,5–18].

Magnetic resonance imaging (MRI) is a diagnostic imaging technique that applies
strong magnetic and radio waves to generate high quality MRI scans of body organs
facilitating the diagnosis of tumors and other conditions such as brain and spinal cord
diseases. Currently, MRI is one of the of the big data producers in biomedicine, and is
being exploited as important generator of cancer biomarkers. In essence, a biomarker
is a characteristic that is measured as an indicator of a biological condition of interest
(i.e., normal biological processes, pathogenic processes, or responses to a therapeutic
intervention) [19,20]. The process of biomarker prioritization starts with a theory and
ends with biomarker validation in an experimental setting. However, the current dogmas
in biomedicine may hinder the process of unbiased hypothesis generation due to the
complexity of cancer phenotypes and patient attributes, which makes it harder for human
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experts and physicians to comprehend all the details in MRI scans [21]. This led to the rise
MRI biomarkers, identified by ML, that could capture disease characteristics with high
accuracy, efficiency, reproducibility and interpretability [5,22].

2. Imaging Biomarkers

Biomarker stands for biological marker and it is defined by the U.S. Food and Drug
Administration (FDA) as “a defined characteristic that is measured as an indicator of nor-
mal biological processes, pathogenic processes, or responses to an exposure or intervention,
including therapeutic interventions” [23]. Biomarkers can measure anatomical, histological,
physiological, molecular, and radiographic characteristics. Imaging biomarkers are con-
venient and reliable [5]. In oncology, they represent comprehensive cancer features such
as apoptosis, angiogenesis, growth, metabolism, invasion, metastasis, and selective target
interaction [24]. Cancer imaging biomarkers are widely used for cancer identification, for
the prediction of disease outcome, and for monitoring treatment responses [5]. Examples
of imaging biomarkers include Tumor, Node, Metastasis (TNM) reflecting a staging system
(i.e., a prognostic biomarker) and Response Evaluation Criteria in Solid Tumors (RECIST)
which can be applied as a response biomarker [1]. Confirmed imaging biomarkers are used
to support decision-making in clinical practice. The necessity for quantitative evaluation in
diagnosis must be validated [5]. Quantitative approach is profound and exhaustive due to
technology and apparatus differences as well as quantitative development that influences
the extracted data [5]. The well-established QA and QC protocols are perquisite to validate
and approve the reliability of medical assessment along with endeavor made by research,
radiological, and medical institution [5]. In addition, significant factors should be consid-
ered such as isolating normal healthy from ailment tissues to achieve better diagnosis [5].
Table 1 provides a summary of the various types of imaging biomarkers used in cancer
besides MRI.

Table 1. Imaging biomarkers for disease detection with examples.

Disease Biomarker
Quantitative

(Q)/Semi-Quantitative
(SQ)/Non-Quantitative (NQ)

Biomarkers Uses

Malignant disease

Lung RADS,
pancreatic cancer action network

(PanCan), national
comprehensive cancer network

(NCCN) criteria [25,26]

SQ AUC for malignancy
0.81–0.87 [27]

CT blood flow,
perfusion,

permeability
measurements

Q

Sensitivity 0.73, specificity
0.70 [28]

AUC 0.75, sensitivity 0.79,
specificity 0.75 [29]

Breast imaging (BI)-RADS [30]
Prostate imaging (PI)-RADS [29]

Liver imaging (LI)-RADS [31]
SQ

positive predictive value
(PPV) BI-RADS 0 14.1%,

BI-RADS 4 39.1%,
BI-RADS 5 92.9%

PI-RADS 2 pooled
sensitivity 0.85,

pooled specificity 0.71
pooled sensitivity for

malignancy 0.93

Apparent diffusion coefficient
(ADC) Q Liver AUC 0.82–0.95

Prostate AUC 0.84

RECIST/morphological
volume Q Ongoing guidelines for

treatment evaluation [32]
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Table 1. Cont.

Disease Biomarker

Quantitative
(Q)/Semi-Quantitative
(SQ)/Non-Quantitative

(NQ)

Biomarkers Uses

Positron emission response
criteria in solid tumors
(PERCIST) /metabolic

Volume [33]

Q Ongoing guidelines for treatment
evaluation [32]

Liver cancer
Recurrent

glioblastoma

Dynamic contrast
enhanced (DCE) metrics

(perfusion parameters Ktrans, Kep,
blood

flow, Ve)

Q

Hepatocellular cancer
AUC 0.85, sensitivity 0.85,

specificity 0.81 [29]
Brain- Ktrans accuracy 86% [34]

Cancer
Sarcoma [35]

Lung cancer [36]

18FDG-
standardized uptake value (SUV)

Q

Sarcoma-sensitivity
0.91, specificity 0.85,

accuracy 0.88
Lung-sensitivity 0.68–0.95

Cancer

Targeted radionuclides [37]
In-octreotide [38,39]

68Gallium (Ga)-DOTA-TOC [39]
and

68Ga DOTA-TATE
[39–41]

68Ga prostate-specific membrane
antigen (PSMA) [42]

NQ

Sensitivity 97%, specificity 92%
for octreotide [43]
Sensitivity 100%,

specificity 100% for PSMA [44]

Brain cancer Dynamic susceptibility contrast
(DSC)-MRI SQ AUC = 0.77 for classifying glioma

grades II and III [45]

Glioma Adjuvant paclitaxel and
trastuzumab (APT) trial Q

APT accords with cancer grade
and

Ki67 index [46]

Rectal cancer
Lung cancer

DCE-CT
parameters
Blood flow,

permeability

Q

Blood flow 75% accuracy for
detecting rectal cancers with
lymph node metastases [47]
CT permeability anticipated

survival regardless of treatment in
lung

cancer [48]

Cervix cancer
Endometrial

cancer
Rectal cancer
Breast cancer

DCE-MRI
parameters Q

Cancer volume with increasing
metrics is considered a significant

independent factor for
disease-free survival (DFS) and
overall survival (OS) in cervical

cancer [49]
Low cancer blood flow and low
rate constant for contrast agent
intravasation (kep) correlated
with high risk of endometrial

cancer [50]
Ktrans, Kep and Ve are higher in

rectal cancers accompanied with
metastasis [51]

Ktrans, iAUC qualitative and ADC
anticiptate low-risk breast cancers

(AUC of combined parameters
0.78)
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Table 1. Cont.

Disease Biomarker

Quantitative
(Q)/Semi-Quantitative
(SQ)/Non-Quantitative

(NQ)

Biomarkers Uses

Diverse cancer types
[52,53]

Radiomic signature [54]
DCE-MR parameters Q

Data endpoints, feature detection
protocols, and classifiers are

important factors in lung cancer
prediction [55]

Radiomic signature is
significantly associated with
lymph node (LN) status in

colorectal cancer [56]
Evaluating therapeutic effect
subsequent to antiangiogenic

agents [57]

Lymphoma
Deauville or response evaluation

criteria in lymphoma (RECIL)
score on 18F-FDG-PET

SQ

Assessment of lymphoma
treatment in clinical trials

employs the summation of
longest diameters of three target

lesions [58]

Breast cancer [59]
Prostate cancer [60]

Receptor tyrosine-protein kinase
erbB-2, CD340, and HER2

prostate-specific membrane
antigen (PSMA)

SQ

Selective cancer receptor;
investigation of cancer treatment

on receptor expression.
Assessing therapy response to

antiangiogenic agents [57]

Oesophageal
cancer CT perfusion/blood flow Q

Multivariate analysis detects
blood flow as a predictor of

response [61]

Gastrointestinal
stromal cancers CT density HU Q

Decrease in cancer density of >
15% on CT associated with a

sensitivity of 97% and a specificity
of 100% in identifying PET

responders compared to 52% and
100% by RECIST [61]

3. MRI Biomarkers

MRI can be exploited to extract numerous variables according to diverse inherent
tissue properties such as proton density, diffusion, and T1-and T2 relaxation times [1]. In
addition, MRI can probe the alterations in parameters due to the association of macro-
molecules and contrast agents [5]. For example, the apparent diffusion coefficient (ADC)
is an extensively used criterion in cancer identification [16,62], diagnosis, and treatment
assessment [63,64]. However, post-processing tools to derive absolute quantitation are
widely disputed [65–67], although the protocol itself is versatile and reliable for cancer
detection [68]. Quantification of T1 relaxation has an impact on cardiovascular MRI rather
than depending on image contrast [69]. T1 values are significant in differentiating cardiac
inflammation [70], multiple sclerosis [71,72], liver fat and iron concentration [73,74], and
endocrine glands [75].

Quantitative chemical exchange saturation transfer (CEST) imaging is promising
in evaluating brain ischemic disease [76], osteoarthritis [77], lymphedema [78], cancer
pH and metabolomics [79]. Furthermore, MRI offers beneficial effects such as optimum
images distinction, superior resolution, providing many contrasts per each testing; probing
histological features (oxygenation, perfusion, and angiogenesis) [1].

Distinctive MRI biomarkers have been assigned in cancer diagnosis [1] including
Breast Imaging Reporting and Data System (BI-RADS) [2], Liver Imaging Reporting and
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Data System (LI-RADS) [80,81], Prostate Imaging Reporting and Data System (PI-RADS) [4],
TNM, and RECIST [1]. Quantitative biomarkers have been employed in clinical research
studies such as initial area under the gadolinium curve (iAUGC) or transfer constant (Ktrans)
from dynamic gadolinium enhanced (DGE) imaging and apparent diffusion coefficient
(ADC) [1]. Morphological-based cancer biomarkers use many contrasts and moderate
to high spatial resolution of MRI [1,82–84]. T1-weighted and T2-weighted imaging are
utilized in cancer profiling [1].

4. MRI Data Preprocessing

Applying machine learning directly on raw MRI scans often yields poor results due to
noise and information redundancy. Furthermore, machines read and store images in the
form of number matrices. Raw MRI data are transformed into numerical features that can
be processed by machines while preserving the information in the original data set.

5. Machine Learning for MRI Data

Machine learning (ML) algorithms are becoming useful components of computer-
aided disease diagnosis and decision support systems. Computers seem to be able to
recognize patterns that humans cannot perceive. Hence, ML provides a tool to analyze and
utilize a massive amount of data more efficiently than the conventional analysis carried by
human. This realization has led to heightened interest in ML and AI applications to medical
images. Recently, employing ML in analyzing big data resulting from medical images,
including MRI data, have been useful in obtaining significant clinical information that can
aid physicians in making important decisions regarding clinical diagnosis, clinical prog-
nosis, or treatment outcome [55,85,86]. ML can be used also to prioritize MRI biomarkers.
The workflow for prioritizing MRI biomarkers using ML is summarized in Figure 1.

Figure 1. Workflow for prioritizing ML MRI biomarkers.

5.1. Image Representation by Numeric Features

The success of machine learning relies on data representation [87]. MRI images
are represented in terms of features which are numeric values that can be processed by
machines. These numeric values could be actual pixel values, edge strengths, variation
in pixel values in a specific region of the MRI image, or any other value [88]. Non-image
features can be also used in the machine learning process and may include age of the
patients, the outcome of the laboratory test, sex, and other available patient or laboratory
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attributes. Features can be combined to form a feature vector which is also called the
input vector [88].

5.2. Feature Extraction

Feature extraction, also known as feature engineering, is the process of identifying the
most distinguishing characteristics in imaging signals that characterize MRI images and
describe their behavior, allowing machine learning methods to process imaging data and
learn from these data. Features can be referred to as descriptors. Feature extraction can be
accomplished either manually or automatically.

Image features are usually classified into two main groups: global and local. Global
features are generated as a d-dimensional feature vector which represents a specific pat-
tern [89]. Global features usually describe the color, shape, and texture, and are commonly
applied in content-based image retrieval (CBIR) systems [90–96]. Local features refer to cer-
tain patterns or specific structures on images that distinguish them from their surroundings.
Examples of local features include blobs, corners, and edge pixels [97].

5.3. Data Set Division for Model Building, Model Tuning and External Validation

Many machine learning methods require model training with previously labeled MRI
data. For generating these models, the data is divided into three sets: training set, test set
and an external validation set that is not used in any way for model building. The modeling
set (that remains after splitting out the validation set) is split additionally into training and
testing (or tuning) sets. If models fail to predict the external validation set, such models are
discarded and not used to make predictions. Additionally, other independent validation
sets may become available after the completion of the modeling studies, and then can be
used as additional validation sets. We have shown earlier that training-set-only modeling
is not sufficient to obtain reliable models that are externally predictive [98,99]. Models that
are highly predictive on training and testing data should be retained for the majority voting
on external validation sets. Finally, only those models shown to be highly predictive on
both testing and external validation sets are used as robust classifiers for MRI imaging data.

5.4. Machine Learning Algorithms

Machine learning algorithms generate models that can classify MRI images into
malignant and benign based on extracted local and global image features. The generated
ML model is a mathematical model that can predict outcome by generalizing their learned
experience on training set data, to deliver a correct prediction of new MRI images unseen
by the developed models. The learning exercise can be supervised, semi-supervised or
unsupervised. However, for imaging data we rely heavily on supervised methods that can
be applied to class-labeled data.

There are three main challenges to applying machine learning in medical imaging for
cancer diagnosis: classification, localization, and segmentation. We need ML methods to
overcome all these challenges. Herein, we review the most popular ML algorithms applied
for MRI biomarkers, and results summarized in Figure 2. We also discuss advantages and
disadvantages of each method (Table 2).
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Figure 2. Column chart showing the number of MRI articles based on the ML method used. (A) The total number of
PubMed MRI articles based on the applied ML method. (B) The total number of PubMed Oncology MRI articles based on
the applied ML method.

Table 2. A comparison between popular machine learning algorithms used for the prioritization of diagnostic MRI
biomarkers [88,100–102].

ML Method Diagnostic Characteristics

Artificial Neural Network (ANN)

The mathematics behind the classification algorithm is simple.
The non-linearities and weights allow the neural network (NN) to solve
complex problems.
Long training time is required for numerous iterations over the training data.
Tendency for overfitting.
Numerous additional tuning hyperparameters including # of hidden
layers/hidden nodes are required for determining optimal performance.
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Table 2. Cont.

ML Method Diagnostic Characteristics

Contrastive Learning

Self-supervised, task-independent deep learning technique that allows a model
to learn about data, even without labels.
Learns the general features of a dataset by teaching the model which data
points are similar or different.
Can potentially surpass supervised methods.
May yield suboptimal performance on downstream tasks if the wrong
transformation invariances are presumed.

Decision Trees (DTs)

Easy to visualize
Easy to understand.
Feature selection plays a dominant role in the accuracy of the algorithm.
One set of features can provide drastically different performance than a
different set of features, therefore, large Random Forests can be used to
alleviate this problem.
Prone to overfitting.

Deep Learning (DL)

Can perform both image analysis (deep feature extraction) and construction of
a prediction algorithm, eliminating the need for separate steps of extracting
radiomic features and using that that to train a prediction model.
Can learn from complex datasets and achieve high performance without
requiring prior feature extraction.
Permits massive parallel computations using GPUs.
Requires additional hyper-parameters tune the model for better performance
including the number of convolution filters, the size of the filters, and
parameters involved in the pooling.
Requires large training sets and it is not an optimal approach for pilot studies
or internal data with small datasets.
Computationally-expensive.

k Nearest Neighbor (kNN)

Easy to implement as it only requires the calculation of the distance between
different points on the basis of data of different features.
Computationally-expensive for large datasets.
Does not work well with high dimensionality as this will complicate the
distance calculating process to calculate distance for each dimension.
Sensitive to noisy and missing data.
Requires feature scaling.
Prone to overfitting.

Logistic Regression
Constructs linear boundaries, i.e., it assumes linearity between dependent and
independent variables.
However, linearly separable data is rarely found in real-world scenarios.

Naïve Bayes

Models are faster to train and are simple, datasets and inferior performance on
larger datasets.
The Naïve Bayes classifier has generally shown to have superior performance
in comparison to the Logistic Regression classifier on smaller datasets.
Less potential for overfitting.
Shows difficulties with complex datasets due to being linear classifiers.

Random Forests (RFs)

Less prone to overfitting, and it reduces overfitting in decision trees and helps
to improve the accuracy.
Outputs the importance of features which is a very useful for model
interpretation.
Works well with both categorical and continuous values, for both classification
and regression problems.
Tolerates missing values in the data by automating missing value
interpretation.
Output changes significantly with small changes in data.
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Table 2. Cont.

ML Method Diagnostic Characteristics

Self-supervised Learning (SSL)

Suitable for large unlabeled datasets, but its utility on small datasets is
unknown.
Reduces the relative error rate of few-shot meta-learners, even when the
datasets are small and only utilizing images within the datasets.

Support Vector Machines (SVM)

Simple mathematics are behind the decision boundary
Can be applied in higher dimensions.
Time-consuming for large datasets, especially for datasets with larger margin
decision boundary.
Prone to overfitting.
Sensitive to noisy and large datasets.

5.4.1. Artificial Neural Networks

Learning with artificial neural networks (ANNs) is one of the most famous machine
learning methods that was introduced in the 1950s, and is being employed for classifying
MRI data [103]. The generated neural network consists of a number of connected computa-
tional units, called neurons which are arranged in layers. There is an input layer that allows
input data to enter the network, followed by hidden layer or layers transforming the data
as it flows through, before ending at an output layer that produces the neural network’s
predictions. The network is trained to generate correct predictions by identifying predictive
features in a set of labeled training data, fed through the network while the outputs are
compared with the actual labels by an objective function [103]. Furthermore, message
passing neural network (MPNN) has distinguished morphological aspects in benign and
malignant cancers [104]. Diverse morphological features have been recognized including
elliptic-normalized circumference (ENC), elliptic-normalized circumference (ENC), long
axis to short axis (L:S), abrasions’ sizes, and lobulation index (LI) [67].Further features have
been distinguishes such as branch form, nodule brightness, lobulations’ numbers, and
ellipsoid features [105].

The ANN method is composed of three learning schemas: (1) the error function which
measures how good or bad an output is for a given input, (2) the search function which
defines the direction and magnitude of the change required to reduce the error function,
and (3) the update function which defines how the weights of the network are updated
on the basis of the search function values [88]. This is an iterative process which keeps
adjusting the weights until there is no additional improvement. ANN models are very
flexible, capable of solving complex problems, but they are difficult to understand and very
computationally expensive to train [103].

5.4.2. Logistic Regression (LR)

Logistic regression is a statistical model that uses a logistic function to model binary
dependent variable (y) in MRI classification data. It models the probability of that the
MRI is for tumor versus normal tissue by using a linear model to predict the log-odds
that that y = 1; and then uses the logistic/inverse logit function to convert the log-odds
values into probabilities [106]. However, LR models tend to overfit high-dimensional data.
Therefore, regularization methods are often used to prevent overfitting to training set data.
Regularization is achieved by using a model that tries to fit the training data well, while
at the same time trying not to use regression weights that are too large [107]. The most
common approaches are L1 regularization, which tries to keep the total absolute values of
the regression weights low, and L2 or ridge regularization, which tries to keep the total
squared values of the regression weights low.
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5.4.3. Contrastive Learning

Contrastive learning is a ML technique that can learn the general features of a dataset
(i.e., the MRI dataset) without labels, by teaching the model which data points are similar
or different. This can be formulated as a dictionary look-up problem. This algorithm is
considered a particular variant of self-supervised learning (SSL) that is particularly useful
for learning image-level representations [108]. One of the advantages of this method is
that it can be applied for semi-supervised learning problems when clinical annotations are
missing from MRI data. This method permits the use of both labeled and unlabeled data to
optimize the performance and learning capacity of the classification model. A method that
has gained popularity in the literature recently is the unsupervised pre-train, supervised
fine-tune, knowledge distillation paradigm [109].

5.4.4. Deep Learning

Deep learning which is also known as deep neural network (DNNs), or deep struc-
tured learning, is a machine learning method based on artificial neural networks which
allows computational models that are composed of multiple processing layers (typically
more than 20 layers) to learn representations of data with multiple levels of abstraction [110].
In deep learning, the algorithm learns useful representations and features automatically,
directly from the raw imaging data. By far the most common models in deep learning are
various variants of ANNs, but there are others as well [103]. Deep learning methods pri-
marily differ from “classical” machine learning approaches by focusing on feature learning,
i.e., automatically learning representations of data [103]. In medical imaging the interest in
deep learning is mostly triggered by convolutional neural networks (CNNs) [111]. Features
are automatically deduced and optimally tuned for the desired outcome. Deep learning
protocols have been applied in cancer prognosis such as melanoma, breast cancer, brain
tumor, and nasopharyngeal carcinoma [112–115].

However, models based on deep learning are often vulnerable to the domain shift
problem, which may occur when image acquisition settings or imaging modalities are
varied [108]. Further, uncertainty quantification and interpretability may additionally
be required in such systems before they can be used in practice. Many strategies have
been used to improve the performance of DNNs including contrastive learning, self-
organized learning, and others. Recently, FocalNet has become one of the preferred
iterative information extraction algorithms to be used with DNNs. This algorithm uses
the concept of foveal attention to post-process the outputs of deep learning by performing
variable sampling of the input/feature space [116]. FocalNet is integrated into an existing
task-driven deep learning model without modifying the weights of the network, and layers
for performing foveation are automatically selected using a data-driven approach [116].

5.4.5. k-Nearest Neighbors (kNN)

The kNN method is based on the k nearest neighbors’ principle and the variable
selection procedure for feature selection reviewed elsewhere [98,117]. The procedure starts
with the random selection of a predefined number of features from all selected features.
The generated model can then classify an input vector of a new MRI image (i.e., a collection
of MRI image features) by assigning it to the most similar class based on the number of
neighbors (i.e., k) with known class labels, that vote on which class the input object belongs
to. The predicted class will be the result of majority voting of all k nearest neighbors.

5.4.6. Support Vector Machines (SVM)

Support-vector machines (SVM) are supervised learning models that apply associated
learning algorithms for data analysis; they can be used for classification and regression
tasks [118,119]. They are named support vector machines because they transform input
data in a way that produces the widest plane, or support vector, of separation between
the two classes. SVMs gained popularity because they can classify data that are not
linearly separable.
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5.4.7. Random Forests

The random forests algorithm is a ML technique that uses an ensemble model to make
predictions [120]. It essentially uses a bundle of decision trees to make a classification
decision. Since, ensemble models implement the results from many different models to
calculate a response or to assign a class, they perform better than individual models, and
increasingly being used for image classification [98,121]. Random forests algorithm can
handle big data, can estimate missing data without compromising accuracy, less prone to
overfitting than decision trees, it works well for unbalanced datasets and for classification
problems. However, it works like a black box with minimum control on what the model
does, and models are difficult to interpret.

5.4.8. Self-Supervised Learning

Self-supervised learning (SSL) provides a strategy to pre-train a neural network with
unlabeled data, followed by fine-tuning for a downstream task with limited annotations,
e.g., such as in clinical data, to yield high predictive performance [109,122]. However,
extensive validation of the automated algorithms is essential before they can be used
in critical decision making in healthcare. One of the self-supervised learning methods
that showed improved performance on deep learning models applied a strategy based
on ‘context restoration’ to handle unlabeled imaging data [122]. The context restoration
strategy is characterized by: (1) its ability to learn semantic image features; (2) it uses
the learned image features for subsequent image analysis tasks; and (3) it is simple to
implement [122].

5.4.9. Naïve Bayes

The Naïve Bayes classifier is a probabilistic classifier based on applying the Bayes
theorem under strong independence assumptions between features [123]. It is considered
a supervised learner. A query image is represented by a set of features which are assumed
to be independently sampled from a class-specific feature space. Then a kernel density
estimation allows the Bayesian network models to achieve higher accuracy levels [123,124].
The Naïve Bayes Classifier can produce very accurate classification results with a minimum
training time in comparison with conventional supervised or unsupervised methods.

5.4.10. Decision Trees

Decision trees use tree-like models of decisions and their possible effects producing
human-readable rules for the classification task [125]. Decision trees take the form of yes or
no questions and therefore they are easily interpreted by people. The learning algorithm
applies a rapid search for the many possible combinations of decision points to find the
points that will give the simplest tree with the most accurate results. When the algorithm
is run, one sets the maximal number of decision points, i.e., the depth, and the maximal
breadth to be searched. At the end the algorithm determines how many decision points are
required to achieve better accuracy. A decision tree model has high variance and low bias
which leads to unstable output, and very sensitive to noise.

5.4.11. Other Machine Learning Methods

New approaches such as federated learning, interactive reporting, and synoptic re-
porting may help to address data availability problem in the future; however, curating
and annotating data, as well as computational requirements, remain substantial barriers to
machine learning applications for MRI data [126].

5.5. Which ML Method Is Best for Identifying Diagnostic MRI Biomarkers

The best ML methods applied for MRI data analysis should be able to learn useful
semantic features from MRI imaging data and lead to improved models for performing
medical diagnosis tasks efficiently [122]. However, training good ML models requires large
amount of labelled data that may not be available; it is often difficult to obtain a sufficient
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number of labelled images for training models. In many scenarios the dataset in question
consists of more unlabeled images than labelled ones. Therefore, boosting the performance
of ML models by using unlabeled as well as labelled data is an important but challenging
problem [122].

Many ML methods, particularly deep learning, has boosted medical image analysis
for disease diagnosis over the past years. Around 2009, it was realized that deep artificial
neural networks (DNNs) were outperforming other established modeling methods on a
number of important benchmarks [65]. Currently, deep neural networks are considered the
state-of-the-art machine learning models across a variety of areas, from MRI image analysis
to natural language processing, and widely deployed in academia and industry [103].
However, there are many challenges for the introduction of deep learning in clinical
settings. Challenges are related to data privacy, difficulties in model interpretability and
workflow integration.

Despite the large number of retrospective studies (Figure 2), there are fewer appli-
cations of deep learning in the clinic on a routine basis [127]. The three major use cases
that deep learning can have in MRI diagnostics: (1) model-free image synthesis, (2) model-
based image reconstruction, and (3) image or pixel-level classification [127]. Hence, deep
learning has the potential to improve every step of the MRI diagnostic workflow and to
provide value for every user, from the technologists performing the scan, the physicians
ordering the imaging, the radiologists providing the interpretation, and most importantly,
the patients who are receiving health care.

5.6. Assessment of Model Performance

For classification models, model performance is usually assessed by generating a
confusion matrix and calculating several statistics indicative of model accuracy. In the case
when MRI images belong to two classes (e.g., cancer and non-cancer), a 2 × 2 confusion
matrix can be defined, where N(1) and N(0) are the numbers of MRI images in the data
set that belong to classes (1) and (0), respectively. TP, TN, FP, and FN are the number of
true positives (malignant MRI predicted as malignant MRI), true negatives (benign MRI
predicted as benign MRI), false positives (benign MRI predicted as malignant MRI), and
false negatives (malignant MRI predicted as benign MRI), respectively. The following
classification accuracy characteristics associated with confusion matrices are widely used in
classification machine learning studies: the true positive rate (TPR) also known as recall (R)
or sensitivity (SE = TP/N(1)), specificity (SP = TN/N(0)), the false positive rate (FPR) which
is 1-specificity, precision (p = TP/TP + FP) and enrichment E = (TP)N/[(TP + FP)N(1)].
Normalized confusion matrices can be also obtained from the non-normalized confusion
matrices by dividing the first column by N(1) and the second column by N(0). Normalized
enrichment can be defined in the same way as E but is calculated using a normalized
confusion matrix: En = (2TP)N(0)/[(TP)N(0) + (FP)N(1)]. En takes values within the interval
of [0, 2] [98,128].

The receiver operating characteristic (ROC) curve is then created by plotting the TPR
against the FPR at various thresholds. ROC and precision-recall (PR) analyses are usually
performed side by side, and the area under the curve (AUC) is calculated to assess model
performance in each case [129]. Both ROC-AUC area under the curve of receiver operating
characteristic curves and PR-AUC area under the curve of precision-recall curves are widely
used to assess the performance of ML methods for MRI biomarkers [100,129,130].

However, other model performance metrics have been calculated for imbalanced
datasets that are usually encountered in the classification datasets. One of these metrics is
the correct classification rate CCR which has been suggested as a better measure of model
accuracy [98,99], using the equation below:

CCR = 0.5

where and are the number of correctly classified and total number of compounds of class j
(j = 1, 2).
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The accuracy of MRI biomarkers for benign/malignant discrimination has improved
dramatically approaching values higher than 90%; and a performance exceeding 80%
classification sensitivity and specificity [19,37,131–133].

6. Types of MRI Biomarkers According to Clinical Use
6.1. Diagnostic Biomarkers

The Prostate Imaging Reporting and Data System (PI-RADS) has been approved as a
diagnostic biomarker in prostate cancer employing multiparametric MRIc [134]. Addition-
ally, the PROMIS study [135,136] has emphasized the contribution of multiparametric MRI
in the examination of prostate cancer patients. In this study, 740 male patients were en-
rolled, 576 men experienced multiparametric MRI followed by template prostate mapping
and transrectal ultrasound (TRUS) biopsy [135,136]. Results showed that multiparametric
MRI is more sensitive than (93%, 95% confidence interval (CI) 88–96%) TRUS biopsy (48%,
42–55%, p < 0.0001) [135,136]. Risk grades evaluate the probability of clinically approved
cancer; PI-RADS 5 very high, PI-RADS 4 high, PI-RADS 3 intermediate, PI-RADS 2 low,
and PI-RADS 1 very low [1]. A meta-analysis procedure has identified sensitivity (0.74)
and specificity (0.88) for prostate cancer with PI-RADS [137,138].

6.2. Prognostic Biomarkers

Prognostic imaging biomarkers are used for cancer staging in order to divide patients
into different risk groups [1]. MRI is considered the basic staging probe for diverse cancers
such as rectal cancer [1]. The TNM stage indicates inclusive survival out of 5 years; stage
I (localized, T1/2), node negative: 95% compared to stage IV (metastatic, any T or N:
11%). MRI reflects a predictive role including patellofemoral syndrome (PFS) and resection
margin [139–141].

6.3. Response Biomarkers

Response biomarkers evaluate the tumor’s response to treatment which is classified
into four classes: progressive disease, stable disease, partial response, complete response.
This classification depends on the size of modification for particular lesions which are >1 cm,
or nodes which are >1.5 cm axis (Table 3) [1]. The RECIST protocol offers a structured and
comprehensive measurement of response to treatment in clinical studies [32]. RECIST is
significant response biomarker in clinical studies and is employed as a surrogate marker [1].

Table 3. Response categories according to changes in tumor lesions.

Category RECIST

Target Lesions Nontarget Lesions

Progressive disease (PD)
>20% ↑ in the sum of target lesions (TL)

diameters.
Absolute ↑ (5 mm). Appearance of new lesions.

Clear progress of surviving nontarget lesion.
Appearance of new lesions.

Stable disease (SD) Neither PD nor PR Continuity of ≥ 1 nontarget lesion

Partial response (PR) >30% ↓ in the sum of TL Non-PD/CR

Complete response (CR)
Disappearance of TL.
All nodes < 10 mm

Non-pathological nodes

Disappearance of nontarget lesions.
All nodes < 10 mm

Non-pathological nodes

7. Types of MRI Biomarkers Based on Quantitative Ability
7.1. Semi-Quantitative Recording Systems

The output of semi-quantitative scores are extensively recruited because visual di-
agnosis is appropriate and related to scoring output [5]. The MRI recording systems
for hypoxic-ischemic encephalopathy (HIE) in neonates by T1-weighted (W), T2-W, and
diffusion-W images demonstrated higher post-natal scores accompanied with inadequate
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brain functions [142]. Similarly, high T2-W scoring of cervical spondylosis was linked to ill-
ness status and implications [143,144]. Imaging of osteoarthritis is significant for diagnosis
process [145]. Internet-based knowledge transfer methods employing the well-established
recording protocols showed harmony between imaging and medical specialty in explain-
ing T2-W outcome [146]. Identical recording has been used in multiple sclerosis [147]
and rectal wall diagnosis [148]. 18Fluoro-2-deoxy-D-glucose (18FDG) positron emission
tomography–computed tomography (PET-CT) imaging has been applied in lymphoma
evaluation [149]. Similar scoring has been used in breast, prostate, liver, thyroid, and blad-
der imaging cancers [150–153]. MRI scoring has been applied for identifying gynecological
malignancies [154] and scoring of renal cancer [155]. Physical evaluation of lung nodule
diameter and volume doubling time (VDT) has been widely used in diagnosis, identifying,
screening, and response anticipating [156,157].

7.2. Quantitative Recording Systems

Quantitative assessment has been frequently used in size and/or volume measure-
ment. Size contributes in measuring benign and malignant diseases [158]. Measuring
of ventricular size on ECG is versatile and linked to medical protocol [158,159]. Left
ventricular ejection fraction has been assessed by ultrasound and MRI. Rheumatoid arthri-
tis with aberrant bone features has been recorded with CT as an indicator of the illness
progress [160]. RECIST (1.0 and 1.1) [158] assesses cancer prognosis; RECIST measure-
ments are simple, but ambiguous and not reliable [161,162]. The fact that diverse studies
have related volume to disease diagnosis [163–166], volume has not been authenticated in
clinical records due to the requirement of splitting of abnormal shaped cancers. Volume is
a surrogate for disease progress and response [167]. The metabolic tumor volume (MTV)
measuring by PET has been related to survival [168,169]. Furthermore, MTV is an indicator
of lymphoma and is considered a biomarker for treatment response [170–172]. Eventually,
the presence of automated volume partitioning is crucial for treatment approval [5].

7.3. Quantitative Imaging Biomarkers

Quantitative imaging biomarkers that delineate tissue hallmarks such as hypoxia,
fibrosis, necrosis, perfusion, and diffusion elaborate the illness state and express histopathol-
ogy [5]. Numerous quantitative hallmarks can be integrated into mathematical equations to
evaluate disease progress and changes during time intervals [5]. Organization of physiolog-
ical databases is elaborated based on disease existence and type accompanied with scoring
according to clinical data to extract anticipative models that serve as diagnosis-support
tools. Such model has been provided for brain data inquiring approved and well-organized
databases [173]. Exploiting quantitative data embedded in images along with demanding
protocols for accession and scoring linked with machine learning algorithms have been
applied in neurodegenerative disease and treatment protocol [174,175].

8. Radiomic Signature Biomarkers

Radiomics elaborates the extraction and measurement of quantitative features from
radiographic images [24,176]. Radiomics expresses abnormal physiological testing re-
lated with other “omics” like proteomics, metabolomics, and genomics [177]. Numerous
radiomic hallmarks can be derived from a region or volume of interest (ROI/VOI), cal-
culated manually, semi-automatically, or automatically by computational mathematical
algorithms [5]. The summary of all hallmarks is the radiomics signature that is distinct for a
tissue, patient, patient group, or disease [85,178]. Radiomics signature depends on imaging
information type (PET, MRI, CT), image parameter and implementation, machine-learning,
and VOI/ROI segmentation [179].

Though radiomic shot is diverse and not tissue selective, it identifies treatment prog-
nosis, resistance, and survival [180]. Radiomics assist in decision making for treatment
protocol and risk prioritization [5]. Interestingly, X-ray mammography, CT, MRI, PET, and
single-photon emission computed tomography (SPECT) demonstrated potential results
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resulting in interpretation benign disease [181]. Improving of image property and data reg-
ulation is obligatory for expansive usage. Radiomic fingerprints are multi-component data
and records for computational strategies such as neural networks Furthermore, reliability
of signatures derived from CT and MRI data is adequate [182,183].

9. MRI Biomarker Standardization

The reproducibility of radiomic studies remains a non-trivial challenge for prioritizing
MRI biomarkers. The lack of standardized definitions of radiomics features has resulted
in studies that are difficult to reproduce and validate [184]. Additionally, inadequate
reporting by these studies has impeded reproducibility further. As a result, the Image
Biomarker Standardization Initiative (IBSI) was established to address these challenges by
fulfilling the following objectives: “(a) establish nomenclature and definitions for commonly
used radiomics features; (b) establish a general radiomics image processing scheme for
calculation of features from imaging; (c) provide data sets and associated reference values
for verification and calibration of software implementations for image processing and
feature computation; and (d) provide a set of reporting guidelines for studies involving
radiomic analyses” [184]. Additionally, the methodologic quality of radiomic studies to
produce stable features that can be linked to cancer biology can be evaluated using the
radiomics quality scoring (RQS) [185].

In order to address the problem of inadequate reporting, the American College of
Radiology (ACR) endorsed a Reporting and Data Systems (RADS) framework which pro-
vides standardized imaging terminology and report organization to document the findings
imaging procedures [2,4]. Additionally, modern picture archiving and communication
systems (PACS) [186] possess digital modalities which are connected via the digital imaging
and communications in medicine (DICOM) protocol [187]. The DICOM header usually
provides information to interpret the body part examined and patient attributes such as
position. The type of reported information can be adjusted from the machine settings
before performing the imaging procedure.

10. Selected Examples on MRI Biomarkers in Solid Tumors
10.1. MRI Biomarkers for Prostate Cancer

Prostate cancer (PCa) is one of the most prevalent cancers occurring in men. The early
detection of PCa is essential for successful treatment and to increase survival rate [188].
Lately, magnetic resonance imaging (MRI), has gained a progressively significant role in
the diagnosis and early detection of PCa [189]. Multiparametric MRI (mpMRI) has been
proven as a valuable procedure in detection, localization, risk stratification and staging of
clinically significant prostate cancer (csPCa). Multiparametric MRI is based on combining
the morphological evaluation of T2-weighted imaging (T2WI) with diffusion-weighted
imaging (DWI), dynamic contrast-enhanced (DCE) perfusion imaging and spectroscopic
imaging (MRSI) to better assess prostate morphology and identify tumor growth [190–195].

In addition, mpMRI-targeted biopsies have been shown to provide more accurate
diagnosis of csPCa and to reduce the number of repeated biopsies needed for correct
diagnosis relative to the transrectal ultrasound-guided biopsies [196]. However, mpMRI
still suffers from inter-personnel agreement and variability of diagnostic accuracy based on
the specialist’s experience [29,190,197–199].

Numerous studies in the literature described the potential role of employing MRI
and ML for the analysis of prostate gland tissues and cellular densities to detect PCa. For
example, McGarry et al. [200] established an adequate model to obtain a stable fit for ML
MRI detection of augmented epithelium and diminished lumen density areas asserting
high-grade PCa.

In addition, the volumetric regions of interest (ROI) analysis of index lesions on
mpMRI [201] that is based on data available from T2-weighted, DWI and DCE images in
combination with a support vector machine (SVM) ML, has been shown to significantly
increase he diagnostic performance of PI-RADS v2 in clinically relevant prostate cancer.
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Another useful application of ML MRI has been reported for the accurate distinction
of stromal benign prostatic hyperplasia from PCa in the transition zone, a challenging
diagnosis particularly in the presence of small lesions. Using ML based statistical analysis
of quantitative features such as ADC maps, shape, and image texture, immense diagnostic
accuracy in the of differentiation between small neoplastic lesions from benign ones was
demonstrated [202].

The implication and feasibility of multiparametric machine learning and radiomics
have been frequently discussed in literature for the identification and segmentation of clini-
cally significant prostate cancer [203]. A deep learning–based computer-aided diagnostic
approach for the identification and segmentation of clinically significant prostate cancer
in low-risk patients was recently reported by Arif et al. [204]. The average sensitivity was
82–92% at an average specificity of 43–76% with an area under the curve (AUC) of 0.65 to
0.89 for several lesion volumes ranging from >0.03 to >0.5 cc. In addition, supervised ML
classifiers have been used to successfully predict clinically significant cancer prostate cancer
utilizing a group of quantitative image-features and comparing them with conventional
PI-RADS v2 assessment scores [205].

10.2. MRI Biomarkers for Brain Tumors

Brain tumors are graded to benign (grade I and II) and malignant tumors (grade III
and IV). Non-progressive (benign tumors) are originated in the brain but grow slowly and
tend not to metastasize to other parts of the body while the malignant tumors grow rapidly
with poor differentiation. They maybe originated in the brain and metastasize to other
organs (primary) or initiated elsewhere in the body and migrated to the brain (secondary
tumor) [206,207].

Magnetic resonance imaging (MRI) is a universal method for differential diagnosis of
brain tumors. However, imaging with MRI is always susceptible to human subjectivity
and early brain–tumor detection usually depends on the expertise of the radiologist [208],
thus accurate diagnosis requires additional medical procedures such as brain biopsy.
Unfortunately, biopsy of the brain tumor requires major brain surgery that puts patients at
risk. The advancement of new technologies, such as machine learning has had substantial
impact on the use of MRI as diagnostic tool for brain tumors. In addition, imaging
biomarkers are routinely used for prognosis, and following up on treatment approaches
for brain tumors.

Cheng et al., developed databases to classify tumor types using augmented tumor
region of interest, image dilatation, and ring-form partition. Intensity histogram and
gray level co-occurrence matrix were used to extract features and achieve an accuracy of
91.28% [209]. Additionally, the convolutional neural network (CNN) has made enormous
improvement in the field of image processing, with particular impact on segmentation
and classification of brain tumors. Brain tumor segmentation methods can be generally
classified into three groups: based on traditional image algorithms, based on machine
learning, and based on deep learning. Therefore, the segmentation method based on
the CNN is widely used in segmentation of lung nodules, retinal segmentation, liver
cancer segmentation, and glioma segmentation [210]. Milica et al. [211] recently reported a
new CNN architecture for brain tumor identification, with good generalization capability
and good execution speed, that was tested on T1-weighted contrast-enhanced magnetic
resonance images.

The use of machine learning and radiomics have been suggested for various ap-
plications in the imaging and diagnosis of meningiomas with promising outcomes [212].
Differentiating between meningeal-based and intra-axial lesions using MRI can be chal-
lenging in some cases. Banzato et al. [213] reported the use of CNN to extract and analyze
complex sets of data to discriminate between meningiomas and gliomas in pre- and post-
contrast T1 images and T2 images. In their study, an image classifier combining CNN and
MRI, was developed to distinguish between meningioma and glioma lesions with accu-
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racy of 94% (MCC = 0.88) on post-contrast T1 images, 91% (MCC = 0.81) on pre-contrast
T1-images and 90% (MCC = 0.8) on T2 images.

11. Assigning and Interpreting of Proper Imaging Biomarkers to Confirm
Decision-Making

Computerized quantitative evaluations are convenient to implement in machine learn-
ing systems. Therefore, the limit values, that determine the possibility of disease occurrence
compared to no disease, should be recognized [214]. Such recognized values potentiate
the use of imaging a computational biopsy. Assignment of biomarker selection depends
on treatment protocol and disease response. Non-selective treatment, tissue necrosis is
considered; therefore, biomarkers that evaluate increased free water (CT Hounsfield units)
or decreased cell density (ADC) are beneficial. However, selective-treatment such as anti-
angiogenesis therapy, perfusion measurements (CT, MRI, and US) as selective biomarkers
are considered [215]. Non-selective and selective agents terminate cancer metabolism;
therefore, in glycolytic cancers fluorodeoxyglucose (FDG) assessments are reliable [216].
The deformity of tissues after surgery or changes in normal tissues after radiotherapy [217]
as well as decrease in quantitative variations between metastatic and non-metastatic tis-
sue [218] should be considered.

12. Progress in Quantitative Imaging Biomarkers as Decision-Making Tools in
Clinical Practice

Biomarkers should be reliable, reproducible, in addition to being biologically, clinically
and cost effective [18]. While reproducibility is a necessity, it is not frequently observed
in practice [219] because incorporating of fundamental research in clinical studies is an
arduous task for both patients and investigators. Technical verification determines whether
a biomarker can be reproduced in different places on diverse panels. Technical validation
may take place after biological validation especially for biological changes that modify
imaging biomarker traces that endorse the values assigned to biomarkers. Correlation
between clinical and technical validation precedes the assignment of biomarker for specific
use. The implementation of imaging biomarkers in clinical diagnosis is assessed as a
parameter in medical management such as circulating cancer DNA is specific for cancer
identification. The incorporation of imaging biomarkers such as tissue and liquid biomark-
ers replaces old and simple protocols. The robustness of biomarker’s cost is significant in
economically limited medical systems [220]. Further imaging protocols are expensive in
contrast to liquid-and tissue-derived biomarkers. Health financial measurement is benefi-
cial for incorporating a new biomarker in clinical diagnosis. The use of imaging biomarkers
is a key tool in supporting medical diagnosis protocols.

13. The Challenges for Prioritizing MRI Biomarkers

Despite major advancements in big data analysis and machine learning methods, the
development of quantitative imaging biomarkers that can be exploited effectively in medical
decisions is hampered by major challenges related to data availability, variability and lack
of reliability [3]. Data availability is impacted by limitations related to data sharing, data
ownership and patient privacy [221]. Furthermore, the absence of international standard
protocols along with quality assurance (QA) and quality control (QC) procedures contributes
in an inadequate quantification and interpretation of MRI biomarkers [4,18,222]. This
prevents physicians from extracting the required clues for interpreting disease status [223],
or for assessing the efficacy of treatment protocols [22]. Additionally, it decreases our
capability of merging MRI biomarkers that have been extracted from different imaging
methods [1].

14. Conclusions

In this article, we have provided an overview of ML and MRI data. We discussed the
nature of MRI data, local and global features, and most frequently used ML methods for
model building to prioritize MRI biomarkers. These biomarkers have the potential to revo-
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lutionize cancer care, providing a platform for personalized, high-quality, and cost-effective
health care for oncology patients. The application of ML methods for the analysis of MRI
data has led to the development of disease-specific biomarkers for many cancers including
hematological, lymphatic and solid tumors. Neural networks, contrastive learning and
deep learning are becoming the leading methods for prioritizing MRI biomarkers. The
performance of MRI biomarkers is now exceeding 80% for most methods and cancer types.
MRI biomarker performance for disease classification (i.e., malignancy vs. benign) is ex-
ceeding 90% for deep learning, neural networks and SVM. Advances in deep learning and
AI are expected to revolutionize MRI biomarkers and increase their utility for preclinical
and clinical applications in oncology.
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