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Abstract: Differential diagnosis between bacterial and viral meningitis is crucial. In our study, to
differentiate bacterial vs. viral meningitis, three machine learning (ML) algorithms (multiple logistic
regression (MLR), random forest (RF), and naïve-Bayes (NB)) were applied for the two age groups
(0–14 and >14 years) of patients with meningitis by both conventional (culture) and molecular
(PCR) methods. Cerebrospinal fluid (CSF) neutrophils, CSF lymphocytes, neutrophil-to-lymphocyte
ratio (NLR), blood albumin, blood C-reactive protein (CRP), glucose, blood soluble urokinase-type
plasminogen activator receptor (suPAR), and CSF lymphocytes-to-blood CRP ratio (LCR) were used
as predictors for the ML algorithms. The performance of the ML algorithms was evaluated through a
cross-validation procedure, and optimal predictions of the type of meningitis were above 95% for
viral and 78% for bacterial meningitis. Overall, MLR and RF yielded the best performance when
using CSF neutrophils, CSF lymphocytes, NLR, albumin, glucose, gender, and CRP. Also, our results
reconfirm the high diagnostic accuracy of NLR in the differential diagnosis between bacterial and
viral meningitis.

Keywords: meningitis; bacterial infection; viral infection; neutrophil-to-lymphocyte ratio; artificial
intelligence; machine learning

1. Introduction

Mitigating meningitis remains both a global health challenge and a clinical emergency
issue, the latter even in resource-rich settings [1,2]. Of paramount importance is its prompt
diagnosis and, in particular, the differential diagnosis between the two main categories,
bacterial and viral meningitis [3]. The latter is crucial for two main reasons: (a) failure
to deliver proper antibiotic therapy in bacterial meningitis can lead to severe, permanent
sequelae and invasive disease (especially due to Neisseria meningitidis) [4], and even death,
and (b) unnecessary antibiotic or overtreatment of viral meningitis cases can lead to antimi-
crobial resistance, increased health care services cost, changes in human microbiome, and
high levels of stress to the suffering patients [5]. Several differential diagnostic approaches
have therefore been developed or proposed, ranging from simple procedures, such as mea-
suring lactate and other parameters (for instance, albumino-cytological dissociation) [6,7],
to sophisticated strategies, such as sequencing approaches, through metagenomics [8], host
transcriptome analysis, or even single-cell RNA sequencing approaches [9–11].
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We have previously investigated the promising role of cerebrospinal fluid (CSF)
neutrophil-to-lymphocyte (NLR) ratio in the differential diagnosis of meningitis, both
in the whole (i.e., all ages-inclusive) population [12] and at an age-specific scale [13]. NLR
is a promising diagnostic biomarker because of (a) the high accuracy, especially for those
aged over 14 years, and (b) the practicality and low cost, requiring only a CSF cell count
analysis and a simple mathematical calculation [12,13]. Nonetheless, to our best knowledge,
the combined effects with other CSF and blood parameters, beyond those referring to whole
white cell counts, lymphocytes, and neutrophils, have not been explored in the differen-
tial diagnosis between bacterial and viral meningitis. Here, we attempted to address this
hovering research gap by harnessing the power of artificial intelligence—notably, Machine
Learning (ML)—approaches. In particular, we employed three different ML algorithms,
and we found that the accuracy in the differential diagnosis of meningitis might be in-
creased when these algorithms are used in a multivariate approach, instead of a ROC curve
univariate treatment of the problem.

2. Materials and Methods
2.1. Patients, Setting, Laboratory Testing, and Diagnosis

A retrospective study of data from the Greek National Meningitis Reference Labo-
ratory was performed, with the approach in regard to the diagnostic flow chart and the
calculation of several biomarkers (e.g., blood soluble urokinase-type plasminogen activa-
tor receptor (suPAR), blood albumin, blood C-reactive protein (CRP) which is a protein
related to the acute phase of inflammation, blood glucose) as previously described in the
methodology [12–14]. Briefly, CSF samples were sent to the National Meningitis Reference
Laboratory from adult and pediatric (that is, those hosting children aged less than 14 years)
hospitals throughout the country. All samples were processed for diagnosis of bacterial
meningitis mainly based on non-culture diagnosis with the application of two in-house,
multiplex PCR techniques [14]; in particular, the latter consisted of a single-tube PCR as-
say for the simultaneous detection of Neisseria meningitidis, Haemophilus influenzae type b and
Streptococcus pneumoniae [15] while, the second mPCR employed was for the simultane-
ous detection of Haemophilus influenzae, Pseudomonas aeruginosa, Staphylococcus aureus, and
Streptococcus spp. [16] Calculations were performed as previously described using the age
of 14-years-old as a binary classification [12,13] due to the age limit dividing referral to
pediatric vs. adult hospitals in Greece.

2.2. Predicting the Type of Meningitis

After initial analysis, the data were divided into two groups (0–14 and >14 years) as
previously applied [12,13]. Overall, the data consisted of 4339 cases (1758 and 2581 bacterial
and viral meningitis, respectively) out of which there were 1737 viral and 940 bacterial
meningitis cases among those aged 0–14 years. Outliers using appropriate criteria were
removed, and the definition of NLR used in previous studies [12,13] was retained. Fur-
thermore, the CSF lymphocytes-to-blood-C-reactive protein ratio (LCR) by dividing the
number of CSF lymphocytes with the values of CRP for each patient, following similar
approaches in blood [17] was calculated. All data were processed using the free-access R
language (https://cran.r-project.org/). The statistical significance level was set at <0.05.

Regarding the differential diagnosis based on ML algorithms, three machine learning
(ML) algorithms, i.e., MLR, RF, and NB were applied for predicting the type of meningitis
of patients in the three age groups (all the ages, 0–14 and >14 years) with meningitis
diagnosed by both conventional (culture) and molecular (mPCR) methods. As a first step,
the data set where the explanatory variables (or predictors) were CSF Neutrophils, CSF
Lymphocytes, CSF NLR, Blood Albumin, Gender, Blood Glucose, Blood CRP, Blood suPAR,
and LCR from these patients was defined, and the outcome was defined as the type of
meningitis, respectively. During a second step, the dataset was split into two parts, i.e.,
the training set and the testing set, where (a) the training set was selected randomly as a
set of cases from the data set, by fixing the number of training data points at 80% of the
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original data set, and (b) the testing set (20%) as the remaining data. Afterward, during a
third step, a cross-validation procedure fitting each model was applied (likewise, it tuned
the parameters of each model) using only part of the training set and examining how well
the model predicted the testing set. The above indicated that the models were fitted to
reproduce the outcomes corresponding to the predictor’s values from each patient in the
training set; of note, after these parameters were tuned, the model was used to predict the
outcomes corresponding to the predictor’s values for each patient in the testing set, and
the percentage of right predictions (i.e., that coincides with the observed outcomes) were
recorded. This procedure was repeated from the second step forward 500 times, and the
mean values and 95% confidence intervals for these percentages were obtained from the
resampled (bootstrapped) data. Specifically, the different sets of variables that were used
as predictors from the number of available cases are shown in Table 1. In brief, Group 1
(G1) included the available values of the variables CSF Neutrophils and CSF Lymphocytes,
Group 2 (G2) included the cases where there were available values of the variables from
G1 and CSF NLR, Group 3 included the cases where values of the variables from G2 and
Blood Albumin were available, Group 4 included the group of cases where values of the
variables from G3 and Gender and Group were available, Group 5 included the cases of
the variables included in G4 in addition to Blood Glucose, Group 6 included the group
of cases from the G5 values in addition to Blood CRP, Group 7 included the values of the
variables obtained from G6 in addition to values from Blood suPAR, and Group 8 included
the group of cases where values of the variables from G7 and LCR were available.

Table 1. Displayed number of available cases for the different sets of explanatory variables based on 4339 meningitis cases.

Covariates Total Number of Cases Viral Cases Bacterial Cases

G1 = CSF Neutrophils + CSF Lymphocytes 1860 1005 (54%) 855 (46%)
G2 = G1 + CSF NLR 1844 1002 (54%) 842 (46%)

G3 = G2 + Blood Albumin 1684 932 (55%) 752 (45%)
G4 = G3 + Gender + Group 1668 918 (55%) 750 (45%)
G5 = G4 + Blood Glucose 1606 911 (57%) 695 (43%)

G6 = G5 + Blood CRP 955 553 (58%) 402 (42%)
G7 = G6 + Blood suPAR 125 69 (55%) 56 (45%)

G8 = G7 + LCR 125 69 (55%) 56 (45%)

3. Results
3.1. Differential Diagnosis of Meningitis

Three standard ML algorithms—multivariate logistic regression (MLR), random forest
(RF), and naïve-Bayes (NB)—were applied. For the first two models—MLR and RF—the
most important predictors were reportedly straightforward when using the R libraries. We
noted that several sets of covariates leading to good performance were demonstrated when
ML was used for predicting the type of meningitis (Table 2). Depicted in the following
tables of note are: the analyses using CSF neutrophils and CSF lymphocytes as predictors
(Table 2a); those using CSF neutrophils, CSF lymphocytes, and NLR as predictors (Table 2b);
those using CSF neutrophils, CSF lymphocytes, NLR, and blood albumin as predictors
(Table 2c); those using CSF neutrophils, CSF lymphocytes, NLR, albumin, glucose, age
group, and gender as predictors (Table 2d); those using CSF neutrophils, CSF lymphocytes,
NLR, blood albumin, glucose, age group, gender, and CRP as predictors (Table 2e); those
using CSF neutrophils, CSF lymphocytes, NLR, blood albumin, blood glucose, age group,
gender, CRP, and blood suPAR as predictors (Table 2f), and; those using CSF neutrophils,
CSF lymphocytes, NLR, blood albumin, blood glucose, age group, gender, blood CRP,
blood suPAR, and LCR as predictors (Table 2g).
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Table 2. Differential diagnosis of meningitis based on machine learning algorithms using different combinations of
covariates across all age groups.

ML Algorithm
Percentage of Viral

Meningitis Detected:
Mean Value and CI (95%)

Percentage of Bacterial
Meningitis Detected:

Mean Value and CI (95%)
Most Important Predictor

Table 2a
MLR 96% (92%, 99%) 49% (40%, 58%) CSF Neutrophils

RF 86% (79%, 90%) 61% (51%, 70%) CSF Neutrophils
NB 96% (94%, 99%) 44% (35%, 54%) NA

Table 2b
MLR 95% (91%, 97%) 68% (61%, 75%) NLR

RF 87% (81%, 90%) 78% (70%, 82%) CSF Neutrophils
NB 96% (92%, 98%) 60% (50%, 68%) NA

Table 2c
MLR 96% (93%, 99%) 66% (58%, 74%) NLR

RF 91% (86%, 65%) 72% (65%, 79%) CSF Neutrophils
NB 95% (91%, 98%) 63% (53%, 71%) NA

Table 2d
MLR 95% (92%, 98%) 73% (66%, 79%) NLR

RF 90% (85%, 93%) 71% (64%, 79%) CSF Neutrophils
NB 96% (93%, 99%) 64% (56%, 73%) NA

Table 2e
MLR 95% (92%, 98%) 73% (66%, 79%) NLR

RF 90% (85%, 93%) 78% (72%, 84%) CSF Neutrophils
NB 95% (92%, 98%) 66% (59%, 74%) NA

Table 2f
MLR 95% (90%, 99%) 62% (50%, 74%) NLR

RF 91% (86%, 95%) 76% (70%, 83%) NLR
NB 96% (92%, 100%) 52% (38%, 66%) NA

Table 2g
MLR 86% (63%, 100%) 72% (43%, 100%) NLR

RF 93% (87%, 97%) 69% (57%, 81%) NLR
NB 88% (67%, 100%) 64% (22%, 89%) NA

3.1.1. Group Aged 0–14 Years

For the study group of 0–14 years of age, the same cross-validation procedure as that
used in the age-independent case when applying ML algorithms was applied. Using CSF
neutrophils and CSF lymphocytes as predictors, we found 1051 available cases distributed
among 672 (64%) viral and 379 (36%) bacterial cases (Table 3). Our training set used
840 cases, and our testing set had 211 cases (Table 3a). Using CSF neutrophils, CSF
lymphocytes, and NLR as predictors, we identified 1044 available cases distributed in 670
(64%) viral and 374 (36%) bacterial cases with a training set of 835 cases, and a testing set of
209 cases (Table 3b). Using CSF neutrophils, CSF lymphocytes, NLR, and blood albumin
as predictors, we identified 983 available cases distributed among 635 (65%) viral and 348
(35%) bacterial cases with a training set of 786 cases, and a testing set of 197 cases (Table 3c).
Using CSF neutrophils, CSF lymphocytes, NLR, blood albumin, blood glucose, and gender
as predictors, we identified 966 available cases distributed among 631 (65%) viral and 335
(35%) bacterial cases with a training set of 772 cases, and testing set of 194 cases (Table 3d).
Using CSF neutrophils, CSF lymphocytes, NLR, blood albumin, blood glucose, gender, and
blood CRP as predictors, there were 691 available cases distributed among 432 (63%) viral
and 259 (37%) bacterial cases with a training set of 552 cases, and testing set of 139 cases
(Table 3e).
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Table 3. Differential diagnosis of meningitis based on machine learning algorithms using different combinations of
covariates in those aged 0–14 years.

ML Algorithm
Percentage of Viral

Meningitis Detected:
Mean Value and CI (95%)

Percentage of Bacterial
Meningitis Detected:

Mean Value and CI (95%)
Most important predictor

Table 3a
MLR 97% (94%, 99%) 56% (46%, 66%) CSF Neutrophils

RF 89% (83%, 94%) 67% (56%, 76%) CSF Neutrophils
NB 96% (93%, 99%) 42% (32%, 52%) NA

Table 3b
MLR 96% (93% 99%) 61% (50%, 72%) NLR

RF 89% (83%, 94%) 66% (55%, 76%) CSF Neutrophils
NB 95% (92%, 98%) 55% (44%, 65%) NA

Table 3c
MLR 96% (93%, 99%) 63% (53%, 74%) NLR

RF 90% (85%, 95%) 67% (57%, 77%) CSF Neutrophils
NB 95% (91%, 98%) 60% (50%, 71%) NA

Table 3d
MLR 95% (90%, 98%) 63% (53%, 74%) CSF Neutrophils

RF 90% (85%, 95%) 67% (57%, 77%) CSF Neutrophils
NB 95% (91%, 98%) 60% (50%, 71%) NA

Table 3e
MLR 95% (91%, 99%) 67% (56%, 78%) NLR

RF 90% (83%, 96%) 70% (58%, 81%) CSF Neutrophils
NB 94% (89%, 99%) 65% (53%, 77%) NA

Table 3f
MLR 89%% (73%, 100%) 67% (33%, 100%) NLR

RF 84%% (58%, 100%) 69%% (33%, 97%) NLR
NB 86% (64%, 97%) 61% (29%, 97%) NA

Table 3g
MLR 86% (64%, 100%) 61% (29%, 97%) NLR

RF 92% (77%, 100%) 73% (41%, 97%) NLR
NB 85%% (61%, 100%) 66% (33%, 97%) NA

NLR refers to Neutrophil-to-Lymphocyte Ratio. MLR refers to multiple logistic regression. RF refers to random forest. NB refers to
naïve-Bayes. NA refers to non-available.

Although the cases below have few data, an attempt to perform the calculations in
question for the sake of completeness was made. In doing so, using CSF neutrophils, CSF
lymphocytes, NLR, blood albumin, blood glucose, gender, blood CRP, and blood suPAR as
predictors, we identified 99 available cases distributed among 59 (60%) viral and 40 (40%)
bacterial cases with a training set of 79 cases, and testing set of 20 cases (Table 3f). Using
CSF neutrophils, CSF lymphocytes, NLR, blood albumin, blood glucose, gender, blood
CRP, blood suPAR, and LCR as predictors, we identified 99 available cases distributed
among 59 (60%) viral and 40 (40%) bacterial cases (training set of 79 cases, and testing set
of 20 cases; Table 3g).

3.1.2. Age Group over 14 Years

In the group aged over 14 years, 824 viral (source = 1) and 803 bacterial (source = 2)
meningitis cases (in total, 1662 cases) were identified. Outliers using appropriate criteria
were removed, and the same cross-validation procedure when applying ML algorithms
was applied (Table 4); by the use of CSF neutrophils and CSF lymphocytes as predictors,
we identified 791 available cases distributed among 317 (40%) viral and 474 (60%) bacterial
cases (Table 4a). By using the combination of CSF neutrophils, CSF lymphocytes, and
NLR as covariate predictors, we identified 782 available cases distributed among 316
(40%) viral and 466 (60%) bacterial cases (Table 4b), by using the CSF neutrophils, CSF
lymphocytes, NLR, and blood albumin as predictors, we identified 685 available cases
distributed among 283 (41%) viral and 402 (59%) bacterial cases (Table 4c), by using
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CSF neutrophils, CSF lymphocytes, NLR, blood albumin, blood glucose, and gender as
predictors, we identified 640 available cases distributed among 280 (44%) viral and 360
(56%) bacterial cases, (Table 4d), using CSF neutrophils, CSF lymphocytes, NLR, blood
albumin, blood glucose, gender, and blood CRP as predictors, we identified 264 available
cases distributed among 121 (46%) viral and 143 (54%) bacterial cases. Our training set
had 211 cases and our testing set had 53 cases (Table 4e). Nonetheless, the combinations
below represent only 26 available cases and are, therefore, too small to justify applying
ML—that is, (a) using CSF neutrophils, CSF lymphocytes, NLR, blood albumin, blood
glucose, gender, blood CRP, and blood suPAR as predictors, and (b) using CSF neutrophils,
CSF lymphocytes, NLR, albumin, blood glucose, gender, blood CRP, blood suPAR, and
LCR as predictors.

Table 4. Differential diagnosis of meningitis based on machine learning algorithms using different combinations of
covariates in those aged over 14 years.

ML Algorithm
Percentage of Viral

Meningitis Detected: Mean
Value and CI (95%)

Percentage of Bacterial
Meningitis Detected: Mean

Value and CI (95%)
Most Important Predictor

Table 4a
MLR 97% (94%, 100%) 75% (67%, 82%) CSF Neutrophils

RF 82% (71%, 91%) 86% (79%, 92%) CSF Neutrophils
NB 97% (91%, 100%) 51% (40%, 65%) NA

Table 4b
MLR 96% (91%, 100%) 83% (75%, 90%) NLR

RF 84% (75%, 92%) 85% (78%, 91%) CSF Neutrophils
NB 96% (90%, 100%) 65% (53%, 79%) NA

Table 4c
MLR 95% (89%, 100%) 83% (75%, 90%) NLR

RF 87% (78%, 95%) 87% (80%, 93%) CSF Neutrophils
NB 94% (89%, 98%) 68% (58%, 81%) NA

Table 4d
MLR 95% (89%, 100%) 81% (74%, 89%) CSF Neutrophils

RF 89% (80%, 96%) 88% (80%, 94%) CSF Neutrophils
NB 94% (88%, 100%) 65% (51%, 79%) NA

Table 4e
MLR 94% (84%, 100%) 82% (70%, 93%) NLR

RF 89% (76%, 100%) 87% (73%, 97%) CSF Neutrophils
NB 95% (84%, 100%) 59% (37%, 82%) NA

4. Discussion

Our study represents the first attempt on assessing the prognosis of meningitis based
NLR and other covariates through the use of ML approaches (Figure 1), as those are
gaining increasing interest in clinical microbiology [18] and, alongside clinical guidelines
for AI implementation in clinical decisions, they are expected to reach a clinical prime
time in the coming decade [19]. Most of the previous studies in the differential diagnosis
between viral and bacterial meningitis involve a ROC-Area under the curve (AUC)-like
analysis, where only one variable was considered at one time. For instance, sensitivity
and specificity should be computed for different threshold values of NLR alone, and
then the ROC generated for finally getting the AUC for NLR, at which the analysis is
individually performed for the AUC of the other covariates. This prevents the identification
of synergistic combinations of the variables and their use for optimized predictions. On the
contrary, when applying an ML-based procedure, a set of variables is considered together
(CSF neutrophils, NLR, albumin, and so on) in order to generate the predicted value of the
response (that is, the type of meningitis), and then this prediction is compared with the
observed value to compute the percentage of viral cases being correctly predicted and the
percentage of bacterial cases being correctly predicted.
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flicted resource-poor settings, and the possibility that some patients suspected of menin-
gitis could have meningitis due to M. tuberculosis and HIV-related or other central nervous 
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Figure 1. Summary plot whereby the optimal results (expressed as a percentage (%) of meningitis
cases detected) are displayed for each Machine Learning (ML) model, i.e., Multiple logistic regression
(MLR), Random forest (RF), and Naïve-Bayes (NB). Blue bars correspond to viral and red to bacterial
meningitis.

From an initial set of predictors that included only CSF neutrophils and CSF lym-
phocytes, the present study increased the number of predictors one by one in steps by
the implementation of a cross-validation procedure at each step, starting by training the
ML models (that is, tuning the parameters) on a randomly selected subset of cases, and
further using the fitted models to predict the type of meningitis on a new “not seen before”
dataset (testing set) and computed the percentages of correct predictions, by repeating this
procedure 500 times and computed 95% confidence intervals from the predictions.

Although the followed forward stepwise scheme gave a limited combination of pre-
dictors, our results demonstrated the important role of NLR when it is used as a predictor
in ML algorithms for the differential diagnosis between viral and bacterial meningitis,
building upon previous studies on NLR’s validity in different diseases, even chronic ones
such as cancer [20]. Furthermore, our results highlight the emerging applications of ML
approaches in medicine, in a whole spectrum from diabetes and cancer to infectious dis-
eases and sepsis-associated events [21–23]. Of note, regarding the prediction of diseases in
general, the most to least frequently applied algorithms are the support vector machine,
NB, and RF algorithms, respectively; nonetheless, the latter algorithm presented the highest
accuracy in a previous study that aimed to compare the above algorithms [24], a finding
also corroborated in recent studies in young febrile patients [25].

This study’s limitations include the lack of validation on meningitis epidemics-afflicted
resource-poor settings, and the possibility that some patients suspected of meningitis could
have meningitis due to M. tuberculosis and HIV-related or other central nervous system
infections; both types relatively rare in Greece. Moreover, some outliers that were removed
may likely be encountered in daily clinical practice; however, only a very small number of
cases have been removed which is unlikely to affect the outcomes of this study.

As this is the first attempt on assessing the prognosis of meningitis based on our
covariates, future multicenter studies in the field are needed for further individualized
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predictions—for instance, as part of meningitis prognostic scores during the P4 (Predictive,
Preventive, Personalized and Participatory) Medicine era [26,27]. Moreover, regarding
linking clinical data with CSF neutrophil counts and NLR, future studies could link all the
clinical phenotypes with CSF and NLR, to potentially identify other biomarkers that are
crucial for specific clinical phenotypes, as previously described [13]. Lastly, future studies
could assess what are the cellular and signalling underpinnings explaining why NLR is of
additive value to neutrophils and lymphocytes in the differential diagnosis of meningitis,
e.g., following studies on neutrophils-related signatures [28].

5. Conclusions

In conclusion, from the results of the percentages of the rightly predicted type of
meningitis in Tables 2–4, it can be concluded that ML models may be used as an accurate
method to predict whether a patient has viral or bacterial meningitis from their values for
CSF neutrophils, CSF lymphocytes, NLR, albumin, glucose, gender, and CRP and might
be included in the mainstream of computer-aided diagnosis systems for this purpose.
Of note, for both age groups, the MLR model consistently predicted the percentage of
viral meningitis more accurately than the other two models, RF was the best model when
predicting bacterial meningitis, whereas NB showed the lowest performance. This indicates
that a combination of these two models could potentially optimize the differential diagnosis.
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