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Jolanta Kryczka 1,† , Monika Migdalska-Sęk 1,*,† , Jacek Kordiak 2, Justyna M. Kiszałkiewicz 1,
Dorota Pastuszak-Lewandoska 3, Adam Antczak 4 and Ewa Brzeziańska-Lasota 1
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Abstract: The aim of the study was a search for diagnostic and/or prognostic biomarkers in patients
with non-small cell lung cancer (NSCLC) patients, based on circulating microRNAs (miRs: miR-23a,
miR-361, miR-1228 and miR-let7i) in extracellular vesicles (EVs). Serum EVs were isolated from
NSCLC patients (n = 31) and control subjects (n = 21). RNA was isolated from EVs and reverse
transcription reaction was performed. Relative levels of miR-23a, miR-361, miR-1228 and miR-let7i
were assessed in real-time qPCR using TaqMan probes. Analysis was based on the 2-∆∆CT method.
Statistically significant lower levels of miR-23a and miR-let7i were observed among NSCLC patients
vs. control group: miR-23a, 0.054 vs. 0.107; miR-let7i, 0.193 vs. 0.369 (p = 0.003, p = 0.005, respectively).
A receiver operating characteristic (ROC) curve analysis demonstrated the diagnostic potential of
each individual serum EV-derived miRNA with an area under the curve AUC = 0.744 for miR-23a
(p = 0.0003), 0.733 for miR-let7i (p = 0.0007). The decreased level of miR-23a in patients correlated
with metastasis to lymph nodes and with AJCC tumor staging system. The results demonstrate that
miR-23a and miR-let7i may prove clinically useful as significant, non-invasive markers in NSCLC
diagnosis. Additionally, changing profile level of miR-23a that correlates with cancer development
may be considered as an NSCLC progression marker.

Keywords: non-small-cell lung cancer; biomarkers; miRNA; extracellular vesicles; progression

1. Introduction

Lung cancer is the most common, aggressive malignancy, which is related to the
highest number of deaths worldwide [1–3]. Lung cancer may be classified into two major
groups based on histopathological diagnosis: Small-Cell Lung Cancer (SCLC—15%) and
Non-Small-Cell Lung Cancer (NSCLC—85%) [3,4]. The NSCLC group is composed of
Squamous Cell Carcinoma (SCC), Adenocarcinoma (ADC), and Large Cell Carcinoma
(LCC) [1–4]. Due to no obvious symptoms suitable for early diagnosis and highly malignant
potential, the 5-year survival rate of NSCLC remains extremely low at 15–20%, with the
average survival time of 8–12 months [1,5].

Experimental and clinical studies showed that qualitative composition of extracellular
vesicles (EVs) may serve as reliable biomarkers and early diagnostic factors of cancer
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disease [6].The EVs are composed of: exosomes, microvesicles and apoptotic bodies [7].
Microvesicles, 150–1000 nm in size, originate from invagination of the plasma membrane
capturing cytoplasmic contents. Exosomes are smaller in size, ranging from 40 to 150 nm,
and derive from early endosomes. Apoptotic bodies measure 100–5000 nm in diameter,
and are vesicles that originate from dying cells as they disintegrate [7]. EVs collectively are
secreted by a heterogeneous group of cells in physiological and pathological conditions,
including tumor cells [8–10]. As functional carriers for intercellular communication, they
contain thousands of active particles, such as various types of lipids, proteins, mRNA
and microRNAs (miRNAs) [8,9]. Furthermore, they exert good stability in most body
fluids, thus enabling delivery to the target tissue [6]. EVs are mediators of the constant
communication between tumor cells and surrounding stromal cells during tumor invasion.
They are recognized as a bioactive reservoir of oncogenic proteins such as tyrosine kinase.
For example, in tumorgenesis of colon cancer, they trigger the phenotypic conversion
of progenitor smooth muscle cells into matrix metalloproteinases 1 (MMP1) secreting
tumor-promoting cells [11].

MicroRNAs transported in EVs are highly conserved, non-coding, single-stranded,
endogenous RNA molecules (21–25 nucleotides), that are transcribed by RNA polymerase
II into pri-pre-miRNA [1,5,12]. They can bind to the 3′-untranslated regions (3′UTR) of the
target gene and regulate its expression at the post-transcriptional level [13].

Numerous data show that miRNAs may act as oncogenes or tumor suppressors
playing an important role in the regulation of the expression of genes involved in the
carcinogenesis, metastasis and invasion, thus causing lung cancer reemission [4,12,14].
Hence, such miRNAs are referred to as “oncomiRs” [15]. Aberrant expression of miRNAs
is observed in different materials isolated from patients with NSCLC, such as plasma,
serum and lung tissue and also from patient-derived cell lines [4,16–22]. Furthermore, no
potential biomarkers have aroused as much interest as miRNAs, which are considered as a
future early diagnostic and prognostic tool [22–24].

The expression of miRNAs: miR-23a, miR-361, miR-1228 and miR-let7i has been exten-
sively studied in many types of human cancer (including lung cancer) and the significant
dysregulation of their expression levels was observed in different biological materials
isolated from patient [4,5,15,23,25–28]. However, the potential prognostic/diagnostic EV-
derived miRNA panel has not been assessed.

There are several studies on the role of miR-23 as an oncogene in various types of
cancers, mainly due to its stimulatory effect on cell migration and invasion [23,29]. Mi-
croRNA profiling analysis points that miR-23a cluster is significantly upregulated in breast
cancer, hepatocellular carcinoma (HCC), pancreatic adenocarcinoma and lung cancer [16].
MiR-23a plays a vital role in the regulation of TGF-β-induced epithelial to mesenchymal
transition (EMT) by targeting E-cadherin, as shown in lung cancer cells [29]. Additionally,
upregulated expression level of miR-23a in NSCLC cell lines and tissue samples leads to
increased drug-resistance, which further proves its prognostic usefulness [22,23].

The research conducted on the lung cancer cell lines showed that miR-1228 acts as
a regulator of the tumorgenesis progress and cell response to environmental stress [25].
Significant downregulation of miR-1228 was observed in gastric cancer tissues compared
with normal tissues [27]. Additionally, miR-1228 is extensively involved in metabolism-
related signal pathways, as well as in organ morphology regulation, implying that miR-1228
could function as a housekeeping gene [30].

Down-regulated expression of miR-361, which acts as tumor suppressor, is observed
in gastric cancer tissues and cancer cell line models, colorectal cancer, prostate cancer,
cutaneous squamous cell carcinoma and lung cancer [5,25,31]. In NSCLC tissue, the
expression level of miR-361 is significantly lower as compared to adjacent tissues thus
suggesting its potential inhibitory role in cancer progression [32]. Kaplan–Meier analysis
of NSCLC patient survival, based on miR-361 expression in cancer tissue, proved that its
low expression significantly decreases patients survival time, serving as a predictor factor
of clinical outcome [33].
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The let7 family is known to be a tumor suppressor, with significantly down-regulated
expression observed in several cancers [15,34]. As found in NSCLC tissue and NSCLC cell
line models, it is involved in the regulation of key metastatic processes such as: proliferation,
invasion and apoptosis [35] via down-regulation of a number of oncogenes (KRAS, c-MYC,
CDK6, HOXA9, TGFBR1, BCL-XL, and MAP4K3) and key cell cycle regulators (CDK6,
CDC25A, and cyclin-D2) [15,34–37]. The early let-7 down-regulation in rat cancer tissue has
been recognized as a fundamental step in cigarette smoke-induced lung carcinogenesis [38].
Additionally, it has been shown that lung cancer patients with low let-7 expression in
cancer tissue had significantly shorter survival time compared to its moderate or high
expression [39].

In the light of many reports focused on evaluation of the circulating miRNA expression
in patients with NSCLC, it seems reasonable to conduct further research in this area in
order to improve therapy and diagnosis of NSCLC.

The aim of the research is to specify the level of selected miRNAs in EVs: miR-23a,
miR-361, miR-1228 and miR-let7i among NSCLC patients compared with health controls in
order to search for NSCLC biomarkers, useful for diagnosis and monitoring of the disease.

2. Materials and Methods
2.1. Research Ethics

This study was conducted in accordance with Good Clinical Practice and the principles
of the Helsinki Declaration. The protocols of this study were approved by the Bioethics
Committee of the Medical University of Lodz (resolution No. RNN/85/18/KE of 13 March
2018). All participants signed an individual consent form for participation in the study.

2.2. Patient and Control Group Selection

A total of thirty-one (n = 31) patients with a confirmed diagnosis of NSCLC, 20 men
and 11 women (mean age, 67 ± 7.31 years, range 51–79 years) were enrolled into the study.
Patients were qualified in the Department of Thoracic Surgery, General and Oncologic
Surgery, Military Medical Academy Memorial Teaching Hospital of Medical University of
Lodz—Central Veterans’ Hospital, Lodz, Poland, between 2018 and 2019. The smoking
status data was collected. A total of 14 patients were ex-smokers, 12 current smokers and
5 patients were never smokers. For further correlation analyses, smokers were divided
into two groups: ≤40 PYs (n = 10) and >40 PYs (n = 13), depending on the numbers of
pack-years (PY, 1 Pack Year = 20 cigarettes smoked per day for 1 year; according to NCI
Dictionary of Cancer Terms) [40]. The pack-year smoking history was not available for
3 patients. The tissue samples were subjected to postoperative histopathological evaluation
and classified according to the AJCC and TNM staging system (pTNM) [41]. The results of
the histopathological verification of lung cancer, based on pathomorphological reports, are
summarized in Table 1.

The control group (n = 21) consisted of age-matched (mean age, 65 ± 11.52 years,
range 42–86 years) healthy female volunteers who participated in the screening tests at
the Outpatient Clinic of Osteoporosis; Regional Center of Menopause and Osteoporosis,
Military Medical Academy Memorial Teaching Hospital of Medical University of Lodz—
Central Veterans’ Hospital, Lodz, Poland. The exclusion criteria included osteoporosis,
diagnosis of cancer and the presence of other comorbidities that could significantly affect
the study results.

Regarding age, there were no statistically differences between NSCLC patients and
control group (p = 0.8389; Mann–Whitney U-test).
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Table 1. Histopathological features of NSCLC samples.

Features n (%)

Histopathological type n = 31
SCC 15 (48.5)
ADC 15 (48.5)
LCC 1 (3)

Tumor size; T (pTNM staging system) n = 31
T1a + T1b + T1c 10 (32)

T2a + T2b 12 (39)
T3 + T4 8 (26)

Tx 1 (3)

Intrathoracic lymph node involvement; N (pTNM staging system) n = 31
N0 18 (58)
N1 9 (29)
N2 4 (13)

Malignant stage (AJCC staging system) n = 30 *
Stage I 12 (40)
Stage II 9 (30)
Stage III 9 (30)

* AJCC was not determined in one patient due to the lack of T (Tx) feature. SCC—squamous cell carcinoma;
ADC—adenocarcinoma, AJCC—American Joint Committee on Cancer Staging according to the IASCLC Staging
Project 8th ed. (2017) [42] Cancer; pTNM—post-operative Tumor Node Metastasis staging system according to
the WHO Histological Typing of Lung Tumor.

2.3. Serum Collection

A total of four milliliters of venous blood was collected into tubes without anticoagu-
lant and left at room temperature until clot formation (about 30–60 min). Next, the samples
were centrifuged (1200× g, 10 min, 23 ◦C), and serum was separated into new sterile tubes,
frozen, and stored at −20 ◦C. Serum from all (n = 31) NSCLC patients was collected before
the surgery. Serum from 21 patients (volunteers) was obtained as a control group, during a
routine medical visit.

2.4. Extracellular Vesicles Isolation from Serum

EVs isolation from frozen human serum was performed using a Total Exosome Iso-
lation (from serum) kit (Life Technologies, Carlsbad, CA, USA), according to the manu-
facturer’s protocol. Serum samples were thawed by placing them in a 25 ◦C water bath.
To remove the cells and residues from the serum, samples were centrifuged at 2000× g
for 30 min. Then, 500 µL of the supernatant containing the clear serum was moved to
a new tube and 0.2 volumes of the Total Exosome Isolation reagent was added. The
serum/reagent mixture was mixed well by vortex until there was a homogenous solution.
The samples were incubated at 2–8 ◦C for 30 min, and afterwards they were centrifuged at
10,000× g for 10 min at room temperature. The supernatant was removed and the pellet
containing the EVs was suspended in 200 µL of 1× PBS and stored at 2–8 ◦C for a week or
frozen at −20 ◦C until RNA isolation.

2.5. RNA Isolation from EVs, Qualitative and Quantitative RNA Assessment

RNA isolation was performed using a Total Exosome RNA & Protein Isolation Kit
(Life Technologies, Carlsbad, CA, USA), according to the manufacturer’s protocol.

Qualitative and quantitative evaluation of the isolated RNA was performed by
spectrophotometric method, measuring the absorbance with the Eppendorf BioPhotome-
terTM Plus (Eppendorf, Hamburg, Germany), at 260/280 nm wavelengths. RNA with
a 260/280 nm ratio in a range of 1.8–2.0 was considered to be of high quality and used
to synthesize cDNA. Then RNA was aliquoted and frozen at −80 ◦C until the real-time
polymerase chain reaction (qPCR) was performed.
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2.6. Reverse Transcription, Real-Time Quantitative PCR and miRNAs Level

cDNA was transcribed from 5 µL (10 ng) of template RNA, using TaqMan® Mi-
croRNA Reverse Transcription Kit (Applied Biosystems, Carlsbad, CA, USA) and 3 µL
of specific RT primers (small RNA-specific RT primers) included in individual TaqMan®

MicroRNA Assays: hsa-miR-23a (AUCACAUUGCCAGGGAUUUCC, ID 000399), hsa-
miR-361 (UUAUCAGAAUCUCCAGGGGUAC, ID 000554), hsa-miR-1228 (UCACAC-
CUGCCUCGCCCCCC, ID 002919) and hsa-let7i (UGAGGUAGUAGUUUGUGCUGUU,
ID 002221) (Applied Biosystems, Carlsbad, CA, USA). Reverse Transcription (RT) master
mix contained: 0.15 µL 25× dNTP Mix (100 mM), 1 µL MultiScribe™ Reverse Transcrip-
tase (50 U/µL), 1.5 µL 10× RT buffer, 0.19 µL RNase Inhibitor (20 U/µL), and 4.16 µL
nuclease-free water. Negative control was included in each RT reaction, containing no
RNA (No RT control). RT reaction, in a total volume of 15 µL, was performed in a Personal
Thermocycler (Eppendorf, Germany). The RT reaction conditions were as follows: 30 min
at 16 ◦C, 30 min at 42 ◦C, then 5 min at 85 ◦C and 4 ◦C hold. RT products were stored at
−20 ◦C until further analysis.

The levels of the studied miRNAs were assessed in real-time quantitative PCRs (qPCR)
using TaqMan® probes (Applied Biosystems, Carlsbad, CA, USA). A total reaction mixture
volume of 20 µL contained: 1.33 µL RT Product, 1 µL TaqMan® MicroRNA Assays, 10 µL
KAPA PROBE FAST qPCR Master Mix (2X) ABI Prism™ (Kapa Biosystems Ltd., London,
UK), and 7.67 µL nuclease-free water (Applied Biosystems, Carlsbad, CA, USA). The
qPCR of miRNAs was performed on 96-well plates and assessed in the Applied Biosystems
7900 HT Fast Real-Time PCR System (Applied Biosystems, Carlsbad, CA, USA) for 39 cycles,
with an annealing temperature of 60 ◦C; this was repeated three times for each sample.

MiRNAs level analysis was performed using DataAssist v3.01 (Life Technologies,
Carlsbad, CA, USA), based on the global normalization method [43]. The software cal-
culates the mean level of all the miRNAs. The median CT of those assays is used as the
normalizer to perform the ∆Ct per a sample. Next, the formula ∆∆Ct = ∆CT test sample—
∆CT calibrator sample is calculated, where RNA isolated from a healthy patient (reference
patient) serves as a calibrator, for which the RQ (relative quantification) value is considered
equal to 1.

2.7. Statistical Analysis

The statistical analysis was carried out using the Statistica 13.1 program (StatSoft,
Cracow, Poland). The Shapiro–Wilk test showed that data were not normally distributed. In
order to look for the statistical significance between the analyzed groups, Mann–Whitney U-
test and/or Kruskal–Wallis tests were used, depending on the size of the groups. Neuman–
Keuls’ multiple comparison test was used to identify possible significant differences in RQ
values between the individual variables. The area under the receiver operating characteris-
tic (ROC) curve was assessed to test the sensitivity and specificity of the studied miRNAs.
The area under the curve (AUC) was resolved with a 95% confidence interval (CI). For all
statistical analysis, the level of statistical significance was assumed at p < 0.05. The RQ
values for the studied miRNAs are presented as mean ± standard deviation (median).

3. Results
3.1. The Levels of NSCLC EV-Derived miRNAs vs. Control

The qPCR results (RQ values) for miRNAs were obtained for all NSCLC patients
and control samples. For details, see Supplementary Tables S1 and S2. In comparison to
calibrator, miR-let7i, miR-23a and miR-361 revealed RQ < 1.0 in the majority of samples:
98–100%, depending on the miRNA. Among study samples, lower RQ values (RQ < 0.5
indicating < two fold lower level of miRNA) was observed in 86.5% NSCLC samples for
miR-let7i, in 96.2% samples for miR-361 and in 100% samples for miR-23a. The level of
miR-1228 was higher (RQ > 1) in all (100%) of study samples compared to the calibrator.
Moreover, 96.2% of samples showed RQ > 2.0, thus indicating more than a two-fold higher
level of this miRNA in NSCLC samples compared to the calibrator. The results representing
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RQ values for all miRNAs and the number of samples with lower/higher miRNA levels in
NSCLC vs. calibrator are presented in Table 2.

Table 2. RQ values for all studied miRNAs in serum EVs of patients with NSCLC and the control group.

miRNA Sample
RQ Value Mean ± SD

(Median)
Range of RQ

Value
Number (%) of Samples with

RQ Value > 1 RQ Value < 1

miR-23a

NSCLC 0.054455 ± 0.066
(0.024) 0.000100–0.219600 0 (0) 31 (100)

Control 0.107062 ± 0.058
(0.087) 0.010600–0.208100 0 (0) 21 (100)

miR-361

NSCLC 0.193529 ± 0.130
(0.177) 0.038100–0.644600 0 (0) 31 (100)

Control 0.206724 ± 0.124
(0.177) 0.074100–0.592100 0 (0) 21 (100)

miR-1228

NSCLC 7.725716 ± 5.756
(5.661) 1.551500–26.23720 31 (100) 0 (0)

Control 6.264948 ± 3.098
(5.637) 1.689000–13.48830 21 (100) 0 (0)

miR-let7i

NSCLC 0.192923 ± 0.187
(0.128) 0.004200–0.826300 0 (0) 31 (100)

Control 0.369348 ± 0.312
(0.260) 0.077400–1.378300 1 (95) 20 (95)

The relative levels of the studied miRNAs were compared between NSCLC patients
and controls. MiR-23a and miR-let7i were significantly down-regulated in NSCLC patients
in comparison to control group (p = 0.0030 and p = 0.0047, respectively, Mann-Whitney
U-test) (see Figure 1). Statistical analysis did not reveal significant differences in the relative
levels of miR-361 and miR-1228 between NSCLC and control samples (p = 0.6278 and
p = 0.6278, respectively, Mann–Whitney U-test).

Receiver operating characteristic (ROC) curve analyses were performed to calculate
the diagnostic value of the studied miRNAs in NSCLC patients compared to healthy control
group. A measure of the overall performance of a diagnostic test is the area under the ROC
curve (AUC), which was calculated to estimate the specificity and sensitivity of miRNA to
diagnose patients with NSCLC. The choice of an optimal cutoff point for dis-criminating
between the NSCLC patients and the healthy controls was determined by the Youden index
(J). J is the maximum vertical distance between the ROC curve and the diagonal reference
line and is calculated as J = maximum (sensitivity + specificity − 1) [44].

The levels of miR-23a and miR-let7i in the NSCLC samples were significantly lower
than in the healthy controls. These two miRNAs can differentiate NSCLC patients from
controls, with AUC = 0.744 for miR-23a and 0.733 for miR-let7i. An optimal cutoff point was
indicated at 0.039 with a sensitivity of 58% and a specificity of 95% (p = 0.0003) for miR-23a
and 0.182 with a sensitivity of 71% and a specificity of 71% (p = 0.0007) for miR-let7i. AUC
for miR-361 classifier was 0.538 and an optimal cutoff point was indicated at 0.57 with
a sensitivity of 13% and a specificity of 0% (p > 0.05). AUC for miR-1228 classifier was
0.459 and an optimal cutoff point was indicated at 8.089 with a sensitivity of 81% and a
specificity of 24% (p > 0.05) (see Figure 2 and Table 3).

All tested miRNAs were also analyzed as combined (in a panel). The highest
AUC = 0.705 among the proposed panels was obtained for miR23a + miR-let7i. An optimal
cutoff point for this panel was indicated at 0.076 with a sensitivity of 52% and a specificity of
83% (p = 0.00001) (see Figure 2). Combined miR-23a and/or miR-let7i with either miR-361
and/or miR-1228 gave an AUC < 0.6 (see Table 3).
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Table 3. Diagnostic values with area under the curve (AUC) data from ROC curves and 95%
confidence intervals (CI) for serum EV-derived miRNAs (individually and in panels).

miRNA AUC 95% CI p Value

miR-23a 0.744 0.611–0.877 0.0003
let7i 0.733 0.598–0.867 0.0007

let7i + miR-23a 0.705 0.606–0.803 0.00001
let7i + miR-361 0.651 0.546–0.756 0.0048

let7i + miR-23a + miR-361 0.650 0.565–0.735 0.0005
miR-23a + miR-361 0.612 0.505–0.718 0.0406

let7i + miR-23a + miR-361 + miR-1228 0.582 0.505–0.659 0.0357
miR-23a + miR-1228 0.551 0.441–0.662 0.364

let7i + miR-1228 0.548 0.438–0.658 0.392
miR-361 0.538 0.378–0.698 0.6379

miR-361 + miR-1228 0.499 0.387–0.612 0.992
miR-1228 0.459 0.3–0.619 0.619

1 

 

 

  
Figure 1. The dot plots, representing miRNA levels (RQ values) in NSCLC samples and control group.



Diagnostics 2021, 11, 425 8 of 15
 

2 

 

  
Figure 2. Receiver operating characteristic (ROC) curve analysis for serum EVs miRNA diagnostic potential in differentiating
NSCLC and control.

3.2. Correlations between EV-Derived miRNA Levels and Clinicopathological Characteristics of
NSCLC Patients

The levels of miRNA were evaluated in correlation with such clinicopathological data
as: age at time of diagnosis, sex and smoking history as well as histopathological character-
istics of tumors (according to pTNM and AJCC classifications and NSCLC subtypes). For
details, see Supplementary Table S3.

The statistically significant differences in the RQ values of miR-23a, depending on the
degree of lymph node involvement (N0 vs. N1 vs. N2 according to pTNM staging) were
noted (p = 0.0313, Kruskal-Wallis test). Significantly lower miR-23a level was found in N2
than in N1 (p = 0.0277, Neuman–Keuls’ multiple comparison test) (see Figure 3).
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3 

 

Figure 3. The dot plots representing miR-23a levels (RQ values) in the studied NSCLC groups
classified according to the degree of lymph node involvement in pTNM classification.

According to the AJCC classification the relationship between the RQ values of miR-
23a and the stage of tumor was revealed (p = 0.0391, Kruskal-Wallis test). The Neuman–
Keuls’ multiple comparison test found a borderline statistically significant decrease in
miR-23a level in the stage III when compared to the stage II (p = 0.0696).

Any statistically significant correlations were found between the RQ values of the
studied miRNAs and the clinical features of NSCLC patients, i.e., patient age, sex, or history
of smoking assessed as PYs (p > 0.05; Kruskal-Wallis test). Similarly, no associations were
found with the histopathological NSCLC subtypes and tumor size (pT) according to the
pTNM staging (p > 0.05; Mann–Whitney U-test, Kruskal–Wallis test).

4. Discussion

NSCLC is the most common cause of cancer deaths worldwide, mainly due to the
lack of effective early detection methods. This leads to late diagnosis and poor prognosis
resulting in the inability to treat the advanced metastatic disease [45,46]. Currently, clinical
factors such as age, tumor stage, smoking history, histological type of cancer and treatment
modality are conventionally used as predictors for the prognosis of NSCLC [47]. There is a
real necessity to search for reliable and non-invasive diagnostic and/or prognostic markers
of lung cancer.

Liquid biopsy is a marginally invasive method that can detect circulating tumor cells
and tumor-derived nucleic acids (e.g., cell-free DNA and miRNAs) in the blood of patients
with lung cancer [48]. However, an increasing interest in potential clinical application
of EVs has recently emerged. They may be recommended as ideal biomarkers, because
of their considerable stability in blood as well as their protective role in relation to the
content of the informative biological material (including mRNAs, miRNAs, and proteins)
derived from the cancer cells. The growing number of studies focused on the biological
function and implications of EVs load during cancer progression and metastasis has been
published [47].

In our research, due to the limited amount of material, we isolated EVs from human
serum. The method is based on the polymer precipitation technique. The polymers bind
water molecules, allowing the reagent to remove less soluble reagents from the solution
and isolate them in the sediment by brief centrifugation. EVs after spin remain in pellets
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resuspended in PBS. The purity of the sample allows for further RNA isolation. The widely
used approach isolation of exosomes from body fluids is based on ultracentrifugation
in combination with sucrose density gradients or sucrose cushions to float the relatively
low-density exosomes away from other vesicles and particles. These protocols can range
in time from 8 to 30 h and a require large amount of material for successful isolation of
exosomes [49]. However, comprehensive study of Helwa I. et al. supported the use of
the commercial kits including Invitrogen Total Exosome Isolation Reagent as an adequate
alternative to ultracentrifugation, even with limited amounts of heterogeneous biological
starting material [50]. Due to limited amount of material no further characterization of the
isolated vesicles was performed.

Tumor cells secreting large amounts of EVs (significantly more than normal cells of
the same origin) seem to be essential from diagnostic and a prognostic point of view. In
patients with diagnosed cancer, an isolated EVs fraction from blood is mainly composed of
tumor derived particles [48]. Therefore, miRNAs derived from cancer EVs play a significant
role in the transduction of various signals between tumor cells. They are recognized as a
regulator of distant metastatic niche and drug resistance [47,48].

Based on the above reports, we analyzed the levels of three miRNAs, miR-26a, miR-
29b and miR-519d in NSCLC tissue samples, and evaluated their diagnostic potential in
NSCLC carcinogenesis [46]. As a continuation of this research, we have selected other
miRNAs that could enlarge the possible panel of NSCLC diagnostic biomarkers.

In the present study, we determined the profile of levels of four miRNAs (miR-let7i,
miR-23a, miR-361, miR-1228), incorporated into blood circulating EVs and evaluated
their potential role as diagnostic and/or prognostic biomarkers of NSCLC. We observed
decreased levels of three out of four studied miRNAs (i.e., miR-let7i, miR-23a and miR-361)
and an increased level of one miRNA (miR-1228) in NSCLC patients compared to reference
patient. Significant differences were found for miR-23a and miR-let7i compared control
group.

The decreased level of miR-23a revealed in our study is in contrary to the results
of other authors, who found its higher expression in plasma and different NSCLC cell
lines [20,21,51]. However, Wei-Qing Qu et al. showed that in lung tissues samples obtained
from NSCLC patients, the percentage of probes with a reduced miRNA-23a expression
level was similar to that with an up-regulated miR-23a expression level [4]. Moreover, in
our study, miRNA-23 was isolated from EVs, while in the above-mentioned studies, other
biological materials were used, such as blood, plasma, lung tissue or cell lines, which may
affect the differences in the obtained results. The selective packaging of biological active
molecules, including miRNAs, into EVs may drastically change during tumorgenesis [47].
Interesting and important results were obtained by Jin X. et al., who demonstrated that
the expression level of the isolated miRNAs from plasma exosomes differed significantly
when compared to the miRNA isolated from exosome-depleted plasma. Much lower levels
of miRNAs were observed in EVs. However, total circulating plasma miRNAs may be
composed of endogenous cellular miRNAs derived from debris from all cell types [18].

Interestingly, Kaplan–Meier meta-analysis of miR-23a expression level in various tissue
cancers, including lung cancer, proved that its up-regulated level may be considered as
a prognostic marker [4,23]. Several studies on lung cancer cell lines showed that particu-
larly miR-23 may serve as an excellent marker for poor prognosis of lung cancer [23,29]
through its stimulatory role in migration and invasion of cancer cells [52]. MiR-23a via
targeting E-cadherin may regulate TGF-β-induced EMT [20]. A study conducted by others
confirmed a significant difference in the expression levels of plasma miRNA-23a between
the different stages of the disease. The plasma miRNA-23a expression levels in the lung
cancer patients with distant metastasis were significantly higher than those in the patients
without metastasis, and the expression of miRNA-23a was significantly associated with
tumor size, but not significantly related to lymph node metastasis [33]. On the contrary,
we observed a statistically significant lower level of miR-23a in N2 group compared to
N1. However, our test groups were small and this result requires further confirmation on
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the larger groups of patients with diagnosed N1 and N2 stage (according to TNM staging
system). Furthermore, in our research most patients with diagnosed NSCLC were in early
stage cancer disease according TNM classification (70% patients were in I and II stage),
while in the study of Hetta et al. 84.4% of patients were in advanced cancer stage (III, IV
stage) [20].

An increasing number of publications confirms also the significance of miR-let7i and
its correlation with the staging, differentiation, and metastasis of cancer [53]. Therefore,
in our study, we also analyzed miR-let7i level and found it decreased in NSCLC patients
compared to control group. Our results are consistent with the data obtained by others,
who focused on NSCLC patients or lung cancer cell lines [54,55]. According to published
data, the expression level of miR-let7i is reduced in various lung cancer cell lines and
pulmonary tumors, compared to normal lung samples [50–52]. It is consistent with the
recognized role of let7 family as tumor suppressor [15,55–57]. During carcinogenesis, the
chromosomal region involving miR-let7 locus is often deleted, resulting in the reduced
expression of this miRNA, and thus associated with poor prognosis [37]. The putative
mechanisms of let7 down-regulation in cancer include not only genetic alterations, but
also regulation of RAS and MYC oncogenes, direct targeting of DICER mRNA and cell
proliferation control in a cyclin-dependent manner [58]. It was recognized that its cancer
tissue level may be considered as a survival prognostic marker for surgically treated lung
cancer patients [55]. Furthermore, miR-let7i is mainly involved via down-regulation of
a number of oncogenes (RAS, c-MYC, CDK6, HOXA9, TGFBR1, BCL-XL, and MAP4K3)
in the negative regulation of metastatic processes [35]. MiR-let7i acts as a negative regu-
lator of the RAS family and its level in cancer tissue is reversely correlated with cancer
progression [15,35–37,55]. Surprisingly, in our study, we did not notice any significant
correlation between miR-let7i level and the cancer staging system (according to the pTNM
and AJCC classifications). However, the limitation of our research that may contribute to
the lack of statistical significance of the results was the small number of groups which we
compared. Similarly to our research, there are about 16% of other studies which have the
limited statistical power [59].

According to other authors, the modified miR-let7 expression was found in up to 50%
of cells in lung adenocarcinoma cell lines and tissue samples, which led to increased cancer
progression [54,55]. It was confirmed that the overexpression of miR-let7 may repress
proliferation of A549 lung adenocarcinoma cells, whereas administration of antisense
molecules targeting let7 increased their proliferation rates [54,55]. In turn, we observed the
down-regulated miR-let7 level in all study histopathological NSCLC subtypes (SCC, ADC
and LCC) with the highest level in ADC samples. In our study, there were no correlations
between histopathological NSCLC subtypes and the changed level of miR-let7 and miR-23.
Similarly, data published by others did not confirm the significant difference in the serum
EV-derived miRNA-23a levels in the lung cancer patients with different histopathological
types [20].

Using the ROC curve analysis for miR-23a and miR-let7i separately, we found miR-23a
to be more specific and miR-let7i more sensitive. The combination of miR-23a and miR-let7i
shows greater specificity than miRNAs analyzed individually and similarly, moderate
diagnostic value for NSCLC. Thus, these two miRNAs may have potential for further
evaluation as biomarkers in the early diagnosis of NSCLC.

In our study we evaluated EV-derived miRNAs levels, considering such factors as age
at time of diagnosis, sex and smoking history. We did not notice any significant differences
in the level of miR-23a and miR-let7i in relation to those parameters.

Cigarette smoking is a significant risk factor for lung cancer. High expression of miR-
23a in NSCLC tissues was shown to be significantly associated not only with the advanced
stage of diseases but also independently with the smoking status. Current data suggests
that smoking influences different molecular alterations, including dysregulation of miRNA
expression level in tumor tissue, body fluids and serum in lung cancer [60,61]. In our
study, 84% of patients were ex-smokers or current smokers while levels of miR-23a were
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decreased, without statistically significant differences in both these groups. Our results
do not confirm the research of others who documented a positive correlation between
miR-23a up-regulated expression and smoking [61,62]. Interestingly, recent reports prove
that the level of serum let7 is down-regulated in smoking patients, with a significant
up-regulation of cyclin F that is directly targeted by let7 [28,63]. Our results are similar to
those of other authors. We confirmed the down-regulation of miR-let7i in all patients with
diagnosed NSCLC, including smokers but without statistical significance, also regarding
ex-smokers or current smokers. The correlation between smoking status and miRNAs level
is difficult to establish, especially considering the fact that EVs are subjects of selective
content packaging of different biological signaling molecules including miRNAs [47].

Our study was limited by: small number of miRNAs assessed, small number of
patients and no extra-cellular vesicles characterization.

5. Conclusions

EVs as potential source of biomarkers are currently strongly considered, due to their
easy accessibility and high stability. They contain information derived from the original
tissues and as such, reflects this information using different molecules, including miRNA.
Establishing of qualitative and quantitative molecular signatures of specific EVs is necessary
in order to apply EV-based tumor diagnostic and cancer development monitoring.

We confirmed the association between modified levels of EV-derived miRNAs and
NSCLC as compared to healthy controls. Based on our data, we conclude that miR-23a
and miR-let7i may be considered as potential non-invasive biomarkers differentiating
healthy people from patients with diagnosed NSCLC. Nevertheless, this data requires
further confirmation on a larger group of patients that would provide higher statistical
significance.

Supplementary Materials: The following are available online at https://www.mdpi.com/2075-441
8/11/3/425/s1, Table S1: The levels of miRNAs (RQ values) in NSCLC samples group, Table S2: The
levels of miRNAs (RQ values) in control group, Table S3: Comparison of miRNAs levels and clinico-
pathological data as: age at time of diagnosis, sex and smoking history as well as histopathological
characteristics of tumors (according to pTNM and AJCC classifications and NSCLC subtypes); Data
are is presented as mean ± standard deviation (median).

Author Contributions: Conceptualization, E.B.-L.; methodology, J.K. (Jolanta Kryczka) and M.M.-S.;
software, J.K. (Jolanta Kryczka) and M.M.-S.; validation, J.K. (Jolanta Kryczka) and M.M.-S.; formal
analysis, J.K. (Jolanta Kryczka) and M.M.-S.; investigation, J.K. (Jolanta Kryczka) and M.M.-S.; data
curation, J.K. (Jolanta Kryczka), M.M.-S. and J.K. (Jacek Kordiak); writing—original draft, J.K. (Jolanta
Kryczka) and M.M.-S.; writing—review and editing, J.M.K., D.P.-L. and E.B.-L.; supervision, A.A.
and E.B.-L.; project administration, J.K. (Jolanta Kryczka), M.M.-S. and E.B.-L.; funding acquisition,
J.K. (Jolanta Kryczka), M.M.-S. and E.B.-L. All authors have read and agreed to the published version
of the manuscript.

Funding: This study was supported by the Medical University of Lodz (Statute No. 503/1-013-
02/503-11-001-19-00). The founder had no role in study design data collection and analysis, decision
to publish or preparation of the manuscript.

Institutional Review Board Statement: This study was conducted in accordance with Good Clinical
Practice and the principles of the Helsinki Declaration. The protocols of this study were approved by
the Bioethics Committee of the Medical University of Lodz (resolution No. RNN/85/18/KE of 13
March 2018).

Informed Consent Statement: All participants signed an individual consent form for participation
in the study.

Data Availability Statement: The research date well be available upon request.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.mdpi.com/2075-4418/11/3/425/s1
https://www.mdpi.com/2075-4418/11/3/425/s1


Diagnostics 2021, 11, 425 13 of 15

References
1. Chen, W.; Wang, J.; Liu, S.; Wang, S.; Cheng, Y.; Zhou, W.; Duan, C.; Zhang, C. MicroRNA-361-3p suppresses tumor cell

proliferation and metastasis by directly targeting SH2B1 in NSCLC. J. Exp. Clin. Cancer Res. 2016, 35, 1–16. [CrossRef]
2. Wang, P.; Lv, H.; Zhou, D.; Zhang, E. miR-204 suppresses non-small-cell lung carcinoma (NSCLC) invasion and migration by

targeting JAK2. Genet. Mol. Res. 2016, 15, 1–9. [CrossRef] [PubMed]
3. Arab, A.; Karimipoor, M.; Irani, S.; Kiani, A.; Zeinali, S.; Tafsiri, E.; Sheikhy, K. Potential circulating miRNA signature for early

detection of NSCLC. Cancer Genet. 2017, 216, 150–158. [CrossRef]
4. Qu, W.-Q.; Liu, L.; Yu, Z. Clinical value of microRNA-23a upregulation in non-small cell lung cancer. Int. J. Clin. Exp. Med. 2015,

8, 13598–13603.
5. Yang, S.; Zhang, Y.; Zhao, X.; Wang, J.; Shang, J. microRNA-361 targets Wilms’ tumor 1 to inhibit the growth, migration and

invasion of non-small-cell lung cancer cells. Mol. Med. Rep. 2016, 14, 5415–5421. [CrossRef] [PubMed]
6. Soung, Y.H.; Ford, S.; Zhang, V.; Chung, J. Exosomes in Cancer Diagnostics. Cancers 2017, 9, 8. [CrossRef]
7. Mathew, M.; Zade, M.; Mezghani, N.; Patel, R.; Wang, Y.; Momen-Heravi, F. Extracellular Vesicles as Biomarkers in Cancer

Immunotherapy. Cancers 2020, 12, 2825. [CrossRef] [PubMed]
8. Li, K.; Chen, Y.; Li, A.; Tan, C.; Liu, X. Exosomes play roles in sequential processes of tumor metastasis. Int. J. Cancer 2019, 144,

1486–1495. [CrossRef]
9. Giallombardo, M.; Borrás, J.C.; Castiglia, M.; Van Der Steen, N.; Mertens, I.; Pauwels, P.; Peeters, M.; Rolfo, C. Exosomal miRNA

Analysis in Non-small Cell Lung Cancer (NSCLC) Patients’ Plasma Through qPCR: A Feasible Liquid Biopsy Tool. J. Vis. Exp.
2016. [CrossRef] [PubMed]

10. Colombo, M.; Raposo, G.; Théry, C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular
vesicles. Annu. Rev. Cell Dev. Biol. 2014, 30, 255–289. [CrossRef]

11. Yu, S.; Cao, H.; Shen, B.; Feng, J. Tumor-derived exosomes in cancer progression and treatment failure. Oncotarget 2015, 6,
37151–37168. [CrossRef]

12. Zhang, L.; Li, J.; Wang, Q.; Meng, G.; Lv, X.; Zhou, H.; Li, W.; Zhang, J. The relationship between microRNAs and the STAT3-related
signaling pathway in cancer. Tumor Biol. 2017, 39. [CrossRef] [PubMed]

13. Ambros, V. The functions of animal microRNAs. Nature 2004, 431, 350–355. [CrossRef]
14. Cao, M.; Li, Y.; Lu, H.; Meng, Q.; Wang, L.; Cai, L.; Dong, X. miR-23a-mediated migration/invasion is rescued by its target, IRS-1,

in non-small cell lung cancer cells. J. Cancer Res. Clin. Oncol. 2014, 140, 1661–1670. [CrossRef]
15. An, Z.; Ren, J.; Yang, G.; Zhang, W.; Yu, C. MicroRNA let-7: Regulation, single nucleotide polymorphism, and therapy in lung

cancer. J. Cancer Res. Ther. 2015, 11, 1. [CrossRef]
16. Ma, Y.; Bao, C.; Kong, R.; Xing, X.; Zhang, Y.; Li, S.; Zhang, W.; Jiang, J.; Zhang, J.; Qiao, Z.; et al. MicroRNA-361-5p suppresses

cancer progression by targeting signal transducer and activator of transcription 6 in non-small cell lung cancer. Mol. Med. Rep.
2015, 12, 7367–7373. [CrossRef]

17. Roth, C.; Stückrath, I.; Pantel, K.; Izbicki, J.R.; Tachezy, M.; Schwarzenbach, H. Low Levels of Cell-Free Circulating miR-361-3p
and miR-625 as Blood-Based Markers for Discriminating Malignant from Benign Lung Tumors. PLoS ONE 2012, 7, e38248.
[CrossRef]

18. Jin, X.; Chen, Y.; Chen, H.; Fei, S.; Chen, D.; Cai, X.; Liu, L.; Lin, B.; Su, H.; Zhao, L.; et al. Evaluation of Tumor-Derived Exosomal
miRNA as Potential Diagnostic Biomarkers for Early-Stage Non–Small Cell Lung Cancer Using Next-Generation Sequencing.
Clin. Cancer Res. 2017, 23, 5311–5319. [CrossRef] [PubMed]

19. Xue, W.-X.; Zhang, M.-Y.; Li, R.; Liu, X.; Yin, Y.-H.; Qu, Y.-Q. Serum miR-1228-3p and miR-181a-5p as Noninvasive Biomarkers for
Non-Small Cell Lung Cancer Diagnosis and Prognosis. BioMed Res. Int. 2020, 2020, 1–13. [CrossRef] [PubMed]

20. Hetta, H.F.; Zahran, A.M.; Shafik, E.A.; El-Mahdy, R.I.; Mohamed, N.A.; Nabil, E.E.; Esmaeel, H.M.; Alkady, O.A.; Elkady, A.;
Mohareb, D.A.; et al. Circulating miRNA-21 and miRNA-23a Expression Signature as Potential Biomarkers for Early Detection of
Non-Small-Cell Lung Cancer. microRNA 2019, 8, 206–215. [CrossRef]

21. Mei, Y.; Si, J.; Wang, Y.; Huang, Z.; Zhu, H.; Feng, S.; Wu, X.; Wu, L. Long Noncoding RNA GAS5 Suppresses Tumorigenesis by
Inhibiting miR-23a Expression in Non-Small Cell Lung Cancer. Oncol. Res. Featur. Preclin. Clin. Cancer Ther. 2017, 25, 1027–1037.
[CrossRef] [PubMed]

22. Han, Z.; Zhou, X.; Li, S.; Qin, Y.; Chen, Y.; Liu, H. Inhibition of miR-23a increases the sensitivity of lung cancer stem cells to
erlotinib through PTEN/PI3K/Akt pathway. Oncol. Rep. 2017, 38, 3064–3070. [CrossRef] [PubMed]

23. Quan, J.; Liu, S.; Dai, K.; Jin, L.; He, T.; Pan, X.; Lai, Y. MicroRNA-23a/24-2/27a as a potential diagnostic biomarker for cancer: A
systematic review and meta-analysis. Mol. Clin. Oncol. 2017, 8, 159–169. [CrossRef]

24. Fassina, A.; Cappellesso, R.; Fassan, M. Classification of Non-small Cell Lung Carcinoma in Transthoracic Needle Specimens
Using MicroRNA Expression Profiling. Chest 2011, 140, 1305–1311. [CrossRef] [PubMed]

25. Li, X.; Ding, Z.; Zhang, C.; Zhang, X.; Meng, Q.; Wu, S.; Wang, S.; Yin, L.; Pu, Y.; Chen, R. MicroRNA-1228* inhibit apoptosis in
A549 cells exposed to fine particulate matter. Environ. Sci. Pollut. Res. 2016, 23, 10103–10113. [CrossRef]

26. Wu, X.; Xi, X.; Yan, Q.; Zhang, Z.; Cai, B.; Lu, W.; Wan, X. MicroRNA-361-5p facilitates cervical cancer progression through
mediation of epithelial-to-mesenchymal transition. Med. Oncol. 2013, 30, 1–12. [CrossRef]

27. Ma, R.; Wang, C.; Wang, J.; Wang, N.; Xu, J. miRNA–mRNA Interaction Network in Non-small Cell Lung Cancer. Interdiscip. Sci.
Comput. Life Sci. 2015, 8, 209–219. [CrossRef]

http://doi.org/10.1186/s13046-016-0357-4
http://doi.org/10.4238/gmr.15026415
http://www.ncbi.nlm.nih.gov/pubmed/27323056
http://doi.org/10.1016/j.cancergen.2017.07.006
http://doi.org/10.3892/mmr.2016.5858
http://www.ncbi.nlm.nih.gov/pubmed/27779659
http://doi.org/10.3390/cancers9010008
http://doi.org/10.3390/cancers12102825
http://www.ncbi.nlm.nih.gov/pubmed/33007968
http://doi.org/10.1002/ijc.31774
http://doi.org/10.3791/53900
http://www.ncbi.nlm.nih.gov/pubmed/27285610
http://doi.org/10.1146/annurev-cellbio-101512-122326
http://doi.org/10.18632/oncotarget.6022
http://doi.org/10.1177/1010428317719869
http://www.ncbi.nlm.nih.gov/pubmed/28859543
http://doi.org/10.1038/nature02871
http://doi.org/10.1007/s00432-014-1725-0
http://doi.org/10.4103/0973-1482.163830
http://doi.org/10.3892/mmr.2015.4411
http://doi.org/10.1371/journal.pone.0038248
http://doi.org/10.1158/1078-0432.CCR-17-0577
http://www.ncbi.nlm.nih.gov/pubmed/28606918
http://doi.org/10.1155/2020/3496328
http://www.ncbi.nlm.nih.gov/pubmed/33299866
http://doi.org/10.2174/1573399815666190115151500
http://doi.org/10.3727/096504016X14822800040451
http://www.ncbi.nlm.nih.gov/pubmed/28059053
http://doi.org/10.3892/or.2017.5938
http://www.ncbi.nlm.nih.gov/pubmed/28901474
http://doi.org/10.3892/mco.2017.1492
http://doi.org/10.1378/chest.11-0708
http://www.ncbi.nlm.nih.gov/pubmed/21622546
http://doi.org/10.1007/s11356-016-6253-9
http://doi.org/10.1007/s12032-013-0751-0
http://doi.org/10.1007/s12539-015-0117-8


Diagnostics 2021, 11, 425 14 of 15

28. Geretto, M.; Pulliero, A.; Rosano, C.; Zhabayeva, D.; Bersimbaev, R.; Izzotti, A. Resistance to cancer chemotherapeutic drugs is
determined by pivotal microRNA regulators. Am. J. Cancer Res. 2017, 7, 1350–1371. [PubMed]

29. Cao, M.; Seike, M.; Soeno, C.; Mizutani, H.; Kitamura, K.; Minegishi, Y.; Noro, R.; Yoshimura, A.; Cai, L.; Gemma, A. MiR-23a
regulates TGF-β-induced epithelial-mesenchymal transition by targeting E-cadherin in lung cancer cells. Int. J. Oncol. 2012, 41,
869–875. [CrossRef]

30. Hu, J.; Wang, Z.; Liao, B.-Y.; Yu, L.; Gao, X.; Lu, S.; Wang, S.; Dai, Z.; Zhang, X.; Chen, Q.; et al. Human miR-1228 as a stable
endogenous control for the quantification of circulating microRNAs in cancer patients. Int. J. Cancer 2014, 135, 1187–1194.
[CrossRef] [PubMed]

31. Kanitz, A.; Imig, J.; Dziunycz, P.J.; Primorac, A.; Galgano, A.; Hofbauer, G.F.L.; Gerber, A.P.; Detmar, M. The Expression Levels of
MicroRNA-361-5p and Its Target VEGFA Are Inversely Correlated in Human Cutaneous Squamous Cell Carcinoma. PLoS ONE
2012, 7, e49568. [CrossRef] [PubMed]

32. Xu, D.; Dong, P.; Xiong, Y.; Yue, J.; Ihira, K.; Konno, Y.; Kobayashi, N.; Todo, Y.; Watari, H. MicroRNA-361: A Multifaceted Player
Regulating Tumor Aggressiveness and Tumor Microenvironment Formation. Cancers 2019, 11, 1130. [CrossRef] [PubMed]

33. Zhuang, Z.-L.; Tian, F.-M.; Sun, C.-L. Downregulation of miR-361-5p associates with aggressive clinicopathological features and
unfavorable prognosis in non-small cell lung cancer. Eur. Rev. Med. Pharmacol. Sci. 2016, 20, 5132–5136. [PubMed]

34. Akao, Y.; Nakagawa, Y.; Naoe, T. let-7 MicroRNA Functions as a Potential Growth Suppressor in Human Colon Cancer Cells. Biol.
Pharm. Bull. 2006, 29, 903–906. [CrossRef]

35. Thammaiah, C.K.; Jayaram, S. Role of let-7 family microRNA in breast cancer. Non-Coding RNA Res. 2016, 1, 77–82. [CrossRef]
36. Wang, X.; Cao, L.; Wang, Y.; Wang, X.; Liu, N.; You, Y. Regulation of let-7 and its target oncogenes (Review). Oncol. Lett. 2012, 3,

955–960. [CrossRef]
37. Trang, P.; Medina, P.P.; Wiggins, J.F.; Ruffino, L.; Kelnar, K.; Omotola, M.; Homer, R.; Brown, D.; Bader, A.G.; Weidhaas, J.B.; et al.

Regression of murine lung tumors by the let-7 microRNA. Oncogene 2009, 29, 1580–1587. [CrossRef]
38. Izzotti, A.; Calin, G.A.; Arrigo, P.; Steele, V.E.; Croce, C.M.; De Flora, S. Downregulation of microRNA expression in the lungs of

rats exposed to cigarette smoke. FASEB J. 2008, 23, 806–812. [CrossRef]
39. Xia, X.-M.; Jin, W.-Y.; Shi, R.-Z.; Zhang, Y.-F.; Chen, J. Clinical significance and the correlation of expression between Let-7 and

K-ras in non-small cell lung cancer. Oncol. Lett. 2010, 1, 1045–1047. [CrossRef] [PubMed]
40. NCI Dictionary of Cancer Terms. Available online: https://www.cancer.gov/publications/dictionaries/cancer-terms (accessed

on 13 January 2020).
41. Lim, W.; Ridge, C.A.; Nicholson, A.G.; Mirsadraee, S. The 8th lung cancer TNM classification and clinical staging system: Review

of the changes and clinical implications. Quant. Imaging Med. Surg. 2018, 8, 709–718. [CrossRef]
42. Amin, M.B.; Greene, F.L.; Edge, S.B.; Compton, C.C.; Gershenwald, J.E.; Brookland, R.K.; Meyer, L.; Gress, D.M.; Byrd, D.R.;

Winchester, D.P. The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a
more “personalized” approach to cancer staging. CA Cancer J. Clin. 2017, 67, 93–99. [CrossRef]

43. Mestdagh, P.; Van Vlierberghe, P.; De Weer, A.; Muth, D.; Westermann, F.; Speleman, F.; Vandesompele, J. A novel and universal
method for microRNA RT-qPCR data normalization. Genome Biol. 2009, 10, 1–10. [CrossRef]

44. Akobeng, A.K. Understanding diagnostic tests 3: Receiver operating characteristic curves. Acta Paediatr. 2007, 96, 644–647.
[CrossRef] [PubMed]

45. Hirsch, F.R.; Franklin, W.; Gazdar, A.F.; Bunn, P. Early detection of lung cancer: Clinical perspectives of recent advances in biology
and radiology. Clin. Cancer Res. 2001, 7, 5–22. [PubMed]

46. Pastuszak-Lewandoska, D.; Kordiak, J.; Czarnecka, K.H.; Migdalska-Sęk, M.; Nawrot, E.; Domańska-Senderowska, D.; Kisza-
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