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Abstract: In chronic obstructive pulmonary disease (COPD), exertional dyspnea, which increases 
with the disease’s progression, reduces exercise tolerance and limits physical activity, leading to a 
worsening prognosis. It is necessary to understand the diverse mechanisms of dyspnea and take 
appropriate measures to reduce exertional dyspnea, as COPD is a systemic disease with various 
comorbidities. A treatment focusing on the motor pathophysiology related to dyspnea may lead to 
improvements such as reducing dynamic lung hyperinflation, respiratory and metabolic acidosis, 
and eventually exertional dyspnea. However, without cardiopulmonary exercise testing (CPET), it 
may be difficult to understand the pathophysiological conditions during exercise. CPET facilitates 
understanding of the gas exchange and transport associated with respiration-circulation and even 
crosstalk with muscles, which is sometimes challenging, and provides information on COPD treat-
ment strategies. For respiratory medicine department staff, CPET can play a significant role when 
treating patients with diseases that cause exertional dyspnea. This article outlines the advantages of 
using CPET to evaluate exertional dyspnea in patients with COPD.  

Keywords: acidosis; breathing; cardiopulmonary exercise testing; dynamic hyperinflation; muscle; 
ventilation 
 

1. Introduction 
Globally, chronic obstructive pulmonary disease (COPD) was the third leading cause 

of death in 2018 [1], and countermeasures against COPD are required. The most frequent 
and important complaint of patients with COPD is exertional dyspnea, the pathophysiol-
ogy of which is known to includes several etiological factors [2–5]. There can be no im-
provement in exercise tolerance and physical activity for patients without mitigating 
dyspnea, which is difficult to bear. Customized treatment suitable for the condition must 
be provided to alleviate exertional dyspnea after exploring the causes of COPD, given that 
COPD is a systemic disease with comorbidities [6,7] and that exertional dyspnea can have 
diverse etiologies. 

This article discusses the motor pathophysiology of COPD, which is directly related 
to the treatment of exertional dyspnea, based on previous insights into how dyspnea in 
COPD can be evaluated using cardiopulmonary exercise testing (CPET) [8]. Briefly, two 
types of protocols are used in CPET: a maximum (symptom-limited) incremental exercise 
test, and a constant work rate exercise test. Numerous exertional parameters are included, 
all of which are calculated using the ventilation amount, and the concentration of oxygen 
and carbon dioxide during inspiration or expiration [8–10]. CPET facilitates diagnosis and 
determination of the patient’s exertional pathophysiological condition and can help in the 
choice of treatment, evaluation of the response to treatment, and determination of the 
prognosis [8,11]. Although the interpretation of data obtained from CPET sometimes re-
quires a comprehensive understanding of this test method, CPET can quickly provide 
deep insights into pathophysiological responses to exercise, reflecting crosstalk between 
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the functions of the cardiopulmonary system and peripheral muscles [10]. This article also 
examines how CPET can facilitate the implementation of treatment strategies to further 
alleviate exertional dyspnea, with a particular focus on respiratory patterns. 

2. Exercise Tolerance and Exercise-Limiting Factors  
The forced expiratory volume in one second (FEV1) is an important indicator that 

correlates well with minute ventilation (V’E), but has a weak relationship with exercise 
tolerance [12]. This distinction reflects the fact that the ventilatory efficiency is related to 
wasted ventilation [13–15] and to the fact that the difference between inspired and expired 
oxygen concentrations (measured as the difference between average inspired oxygen con-
centration and average expired oxygen concentration) [9,10], not just the ventilation 
amount, is related to exercise tolerance. In this context, it is worth noting that oxygen up-
take (V’O2) is determined using an equation that includes the product of V’E and the differ-
ence between inspired and expired oxygen concentrations, and that the average expired 
oxygen concentration is dependent on the collective cardiac, pulmonary and muscular 
metabolism [9,10]. Although many factors define the daily activity level of patients with 
COPD, this activity level is often influenced by dyspnea. Predicting the level of daily ac-
tivity based on resting pulmonary function alone is difficult because other exercise limit-
ing factors, such as cardiovascular disorders and lower limb fatigue, are not evaluated. 
Evaluation of exercise tolerance by CPET indicates the level of daily activity more directly 
and is also useful in predicting the patient’s prognosis [16–20]. Adequate measures are 
needed, mainly for patients who can engage only in activities of approximately 3 meta-
bolic equivalents (METs) (maximal oxygen uptake of 10.5 mL/min/Kg) [18,21,22]. The 
pathophysiology of exertional dyspnea can be understood in due course, including the 
exercise-limiting factors concerned with dyspnea treatment.  

Accurate evaluation during the CPET of leg fatigue, in addition to dyspnea during 
CPET, is important for determining the treatment plan. The evaluation must be performed 
while the patient is not talking, thereby ensuring that there is no interference with exhaled 
gas evaluation. The 10-point modified Borg Scale, with 0 corresponding to no dyspnea 
and 10 corresponding to maximal dyspnea or leg fatigue, is often used [23]. When dysp-
nea and leg fatigue are evaluated during CPET, dyspnea alone, leg fatigue alone, or the 
combination of both dyspnea and leg fatigue is commonly reported at the end of exercise. 
On this scale of dyspnea, scores of 2 or 3 correspond to the anaerobic metabolism thresh-
old and are associated with an elevated threshold of sympathetic nerve activity not only 
in COPD but also in interstitial pneumonia [3,24]. Therefore, it is useful to instruct people 
to engage, as part of their self-range, in activities for which dyspnea is 2–3 points on the 
modified Borg scale, thereby avoiding excessive exercise in daily life. If the causes of dysp-
nea are examined closely, the exercise-limiting factors among these causes can be classi-
fied broadly into three categories, namely: dyspnea due to ventilatory impairment, lower 
limb fatigue, and cardiovascular impairment (Figure 1). 
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Figure 1. Schematic pathophysiologic pathway exertional dyspnea in chronic obstructive pulmo-
nary disease. CO2: carbon dioxide; CPET: cardiopulmonary exercise testing; ECG: electrocardio-
gram; HR: heart rate; O2: oxygen; O2 pulse: V’O2/heart rate; V’O2: oxygen uptake; WR: work rate. 
This is an original figure (no permission is required). 

2.1. Exertional Dyspnea Due to Cardiovascular Disorders 
In previous studies of patients with COPD who exhibit exertional dyspnea [12,25], 

10–17% of patients with exertional dyspnea were subjects whose dyspnea was due to car-
diovascular disorders; many of these patients were observed to have abnormalities as as-
sessed by electrocardiogram (ECG). Reports from the United States and Europe indicate 
that the percentage of ischemic heart disease and heart failure is higher among patients 
with COPD complications [26]. According to reports from Japanese cardiovascular facili-
ties, the percentage of patients with COPD who also exhibited cardiovascular diseases 
represented 27% of individuals with COPD complications [27]. Determining that the heart 
is the limiting factor for exercise may be difficult if the ECG does not indicate an abnor-
mality. In such cases, limitation due to the heart is indicated if (during CPET) the slope of 
V’O2 versus work rate (measured in watts) is reduced (Figure 1). Alternatively, a plateau 
phenomenon of the oxygen pulse (V’O2/heart rate (HR)), which is almost equivalent to the 
stroke volume, may be occurring (Figure 1). In either instance, a steep slope of HR versus 
V’O2 can be used as a reference to assess whether cardiovascular disorders are limiting 
factors for exercise (Figure 1) [28]. If the oxygen pulse plateaus during exercise, but there 
are no abnormalities in the ECG during exercise, then the pathological condition may be 
clarified using an echocardiogram to test for the existence of a valve disease, possibly in-
cluding that of the mitral valve [29]. In addition, evaluating impairments of the pulmo-
nary microvasculature may be informative, given that such impairments already can be 
seen in mild-stage COPD; indeed, reduced pulmonary blood flow during exercise has 
been reported in such patients [30,31]. Furthermore, the evaluation of sympathetic activity 
during exercise may provide important information on the pathophysiologic conditions 
underlying not only cardiovascular disease but also COPD during exercise (Figure 1). El-
evated sympathetic activity already will be apparent in the resting condition in patients 
with advanced COPD, and the change of sympathetic activity has been shown to correlate 
with exertional dyspnea in patients with stable COPD [3,20,22]. Therefore, respiratory 
medicine department staff need to remember that cardiovascular diseases may be a cause 
of exertional dyspnea. 
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2.2. Measures and Treatment of Lower Limb Fatigue 
Work by the author and colleagues has revealed that, in 20% of the patients with 

exertional dyspnea as the chief complaint, lower limb fatigue, not dyspnea, was actually 
the exercise-limiting factor (Figure 1); in such patients, resting pulmonary function was 
relatively preserved [12]. With the progression of respiratory or cardiovascular diseases, 
ventilatory disorders, circulatory disorders, or muscle sympathetic overactivity develop 
in addition to the lower limb fatigue, leading to the progression of dyspnea as the patho-
logical condition worsens. Furthermore, aside from the case where dyspnea is the only 
exercise-limiting factor, if dyspnea and lower limb fatigue are of approximately the same 
intensity, then ventilation must compensate for exercise-induced acidosis (due to lactic 
acid production by the muscles). In such cases, exercise therapy focusing on the lower 
limbs may improve exertional dyspnea by suppressing excessive lactic acid production 
and consequently lowering the need for ventilation [32,33]. In any case, exercise therapy 
for the lower limbs should be performed from an early stage. The staff of respiratory med-
icine or cardiovascular departments often tend to neglect exercise therapy for the lower 
limbs in favor of their department’s respective specialty. Increasing physical activity at an 
earlier stage of COPD is associated with a better prognosis, and it is important to teach 
exercise habits that make use of hobbies from an earlier stage, thereby promoting behav-
ioral changes [34]. Unfortunately, however, as COPD advances, the related functional im-
pairments lead to muscle weakness and body weight loss [35,36]. Indeed, loss of muscle 
mass and muscle strength are greater in patients in the advanced stages of COPD [37], the 
progress of which particularly affects the lower limbs [36,38]. In patients that are under-
weight or have sarcopenia, exertional dyspnea can become very severe, because such pa-
tients must compensate for muscle impairments as well as for ventilatory impairments 
[39–41]. To treat such patients, it may be important to choose suitable therapies based on 
cardiopulmonary–peripheral muscle crosstalk. Ghrelin, first discovered in 1999 as a novel 
growth-hormone-releasing peptide isolated from the stomach [42], has a variety of effects, 
such as causing a positive energy balance and weight gain by decreasing fat utilization 
[43], stimulating food intake [44], and inhibiting sympathetic nerve activity [45]. The au-
thor and colleagues reported that, in cachectic patients with COPD, ghrelin administration 
with exercise training provided improvements in exertional dyspnea [39,46], respiratory 
strength [39], and exertional intolerance [47] in randomized, double-blind, placebo-con-
trolled trials.  

In the future, as the population ages, the number of patients who are immobilized 
due to lower limb fatigue is expected to increase, and the need for exercise therapy of the 
lower limbs based on the cardiopulmonary–peripheral muscle crosstalk will increase fur-
ther. CPET will be useful for identifying patients who are candidates for exercise therapy 
of the lower limbs. 

2.3. Exertional Dyspnea Due to Ventilatory Impairment 
In a study by the author and colleagues [12], exertional dyspnea due to ventilatory 

impairment accounted for 70% of patients with exertional dyspnea as the chief complaint 
(Figure 1). Here, the author considers the mechanism of exertional dyspnea due to venti-
latory impairment and the relevant remedies that focus on respiratory patterns. Although 
tachypnea [48] is often considered to be a cause of dyspnea and a target of treatment, 
tachypnea is observed during maximal exercise in patients with COPD who exhibit a pre-
served exercise tolerance, and even in healthy individuals [49], and is considered to be a 
standard physiological mechanism used by the body to increase the amount of ventilation. 
On the other hand, it should be noted that, among patients with COPD who exhibit exer-
cise intolerance, a surprisingly large number of subjects have a slow-shallow pattern with 
prolonged expiration (Figure 2a–c), where expiratory tidal volume (VTex) is reduced with-
out an increase in the respiratory frequency. Typically, such patients do not demonstrate 
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a rapid-shallow pattern, where a rise in the VTex is limited and is compensated by tachyp-
nea [12]. The worsening of these mechanical ventilatory abnormalities during exercise is 
explained by i) high elastic load, ii) decreased dynamic lung compliance, and iii) increased 
resistive load of respiratory muscles, all of which lead to dynamic lung hyperinflation in 
COPD [50–54]. Studies of dynamic blood gas show that, in healthy individuals and pa-
tients with COPD who retain ventilation capacity, metabolic acidosis (resulting from ele-
vated levels of lactic acid) progresses during exercise; ventilation compensation for such 
acidosis is detected as a decrease in bicarbonate ions, and exercise is terminated when 
metabolic acidosis is no longer compensated [12]. On the other hand, in patients with poor 
ventilation compensation capacity and decreased exercise tolerance, exercise is termi-
nated when the patient develops respiratory acidosis (Figure 2 d), which does not lead to 
an elevation in lactic acid levels but rather to an elevation in the partial pressure of arterial 
carbon dioxide and bicarbonate ions [12]. These observations explain why patients with 
dynamic lung hyperinflation [55,56] may become breathless. Dyspnea is an exercise-lim-
iting factor in a high percentage of these patients [12], and an increase in ventilation ca-
pacity, ideally by increasing VTex, or using a treatment to improve ventilatory efficiency, 
is expected to yield successful results. Interestingly, in patients with COPD who possess 
various resting pulmonary functions, ventilation limitations, and exercise tolerances, ex-
ercise was terminated when exercise-induced acidosis (pH) and dyspnea during maximal 
exercise (Figure 2e) were comparable [12]. This observation suggests that, though dyspnea 
is caused by complex factors, including the central nervous network and peripheral mus-
cles [5], one of the common mechanisms in exertional dyspnea involves a compensatory 
mechanism that maintains acid-base homeostasis in the blood [3,12,57]. In the body, CO2 
transport is affected by the exertional pH change that accompanies CO2 production due 
to ventilatory impairments or lactate production during exercise. Furthermore, in a study 
examining exercise-limiting factors in patients with idiopathic pulmonary fibrosis and 
COPD [3,58], exercise-induced acidosis was a limiting factor for exercise regardless of the 
concentration of oxygen administered. In addition, exertional hypoxemia was not a nor-
mal feature in heathy subjects who also felt exertional dyspnea at the end of exercise 
[24,59]. In other words, exertional dyspnea is associated with exercise-induced acidosis 
rather than with hypoxia, and ventilation may be an important compensatory mechanism 
for maintaining acid-base homeostasis, the mechanism of which may lead to optimal ex-
ercise performance. Therefore, adequate ventilation, especially exhalation, is fundamental 
to the treatment of COPD. As mentioned above, the slow-shallow pattern during exertion 
in patients with exercise intolerance is often accompanied by prolonged expiration (Figure 
2c). Laveneziana et al. [60] reported that expiratory muscle activity in COPD was rela-
tively increased during exercise but did not mitigate dynamic lung hyperinflation. More 
recently, it has been reported that expiratory muscle strength often increases in patients 
with COPD, perhaps to compensate for inadequate ventilation [61]; a negative correlation 
has been observed between maximal expiratory muscle strength at rest and maximal ox-
ygen uptake, especially in patients with COPD who have prolonged expiration [61,62]. In 
other words, although the slow-shallow pattern prolongs expiration (Figure 2a–c), this 
ventilation pattern requires high expiratory muscle strength but does not raise oxygen 
uptake, making breathing difficult for the patient. Inadequate exhalation leading to pro-
longed expiration results in a large amount of air remaining in the lung after expiration 
(VTin–VTex), expressed as the difference between the inspiratory tidal volume (VTin) and 
VTex [61,62]. Excess expiratory muscle recruitment might be a compensatory mechanism 
to improve exercise intolerance. Further studies are necessary to clarify the implications 
for the COPD of excess expiratory muscle recruitment.  
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Figure 2. Typical responses to incremental exercise by patients with chronic obstructive pulmo-
nary disease. Data are presented as mean  SD. ex.: exercise; fR: respiratory frequency; HCO3-: bi-
carbonate ion; Ti/Ttot: inspiratory duty cycle; Vex: tidal volume. The 10-point modified Borg Scale, 
with 0 corresponding to no dyspnea and 10 corresponding to maximal dyspnea was used to evalu-
ate the exertional dyspnea. Among the four Global Initiative for Chronic Obstructive Lung Disease 
(GOLD) stages, despite the different breathing patterns (a: fR, b: Vex, and c: Ti/Ttot) during exer-
cise, patients with COPD did not regulate the exertional acidosis (d: HCO3-) to stop exercise, reach-
ing a similar exertional dyspnea level (e). Using the Kruskal–Wallis test to compare the groups 
consisting of the four GOLD stages, there was a significant difference in fR (p = 0.0021), VT (p < 
0.0001), Ti/Ttot (p < 0.0001), and HCO3- (p < 0.0001) at peak exercise, and HCO3- (p < 0.0001) at rest. 
Using the Steel–Dwass test to carry out between-group comparisons, *a, p < 0.05 versus GOLD I; 
*b, p < 0.05 versus GOLD II; *c, p < 0.05 versus GOLD III. This is an original figure (no permission 
is required). 

2.3.1. Improving Ventilatory Impairments to Reduce Exertional Dyspnea 
Reducing the air remaining in the lung after the expiration of each exhaled breath is 

expected to improve dynamic hyperinflation, respiratory acidosis, and eventually dysp-
nea. COPD is recognized as a disease that primarily involves pulmonary parenchyma and 
obstructs the peripheral respiratory tract, which affects the exertional dyspnea [63]. Inter-
estingly, however, collapse of the respiratory tract during forced expiration was reported 
in the 1960s among patients with COPD [64]. In addition, since its first description in the 
1980s, exercise-induced laryngeal obstruction has been considered problematic because 
this condition may affect young adults and can mimic exercise-induced asthma [65–68]. 
Although there is no standardized methodology for confirming exertional laryngeal ob-
struction and dyspnea severity, continuous laryngoscopy during CPET has been reported 
to improve diagnostic sensitivity [69]. Furthermore, Baz et al. [70] recently reported that 
the central respiratory tract outside the mediastinum, namely, the vocal cords, is ob-
structed during exercise. As the obstruction intensifies, the degree of prolonged expiration 
also increases. The expiratory airflow limitation in patients with COPD involves obstruc-
tion of the peripheral respiratory tract and of the central respiratory tract, including the 
vocal cords, which affects exertional dyspnea and breathing patterns. In a preliminary 
study, the author and colleagues observed that expiratory pressure load training in pa-
tients with severe and very severe COPD increased the expiratory tidal volume, reduced 
the air remaining in the lung after expiration, and improved prolonged expiration. In 
other words, the slow-shallow pattern with prolonged expiration improved, which in turn 
resulted in improvements in subjective symptoms and exercise tolerance [62]. In contrast, 
inspiratory pressure load training, which is also referred to as inspiratory muscle training, 
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has been recommended as a pulmonary rehabilitation (PR) program [71]. However, at 
least in patients with advanced COPD, no large studies have reported the adjunctive ef-
fects of inspiratory pressure load training added to PR [72–74]. In addition, Yamamoto et 
al. reported that, especially in underweight patients with advanced COPD, inspiratory 
pressure load training might lead to tachypnea and wasted ventilation, which would in 
turn decrease exercise performance; however, this point was made as part of a case report 
[75]. Further studies are needed to evaluate the effect of expiratory or inspiratory pressure 
load training on exertional dyspnea in patients with COPD. In the future, the author hopes 
to develop therapies for the slow-shallow pattern with prolonged expiration, which is the 
cause of exertional dyspnea in patients with advanced COPD. 

2.3.2. Reducing Ventilatory Demand to Reduce Exertional Dyspnea 
 In contrast to providing adequate ventilation, reducing ventilatory demand or in-

creasing oxygen utilization may be of help in improving exertional dyspnea in COPD. 
Especially in patients who exhibit exercise intolerance due to the reduced capability to 
increase ventilation during exercise, a strategy related to oxygen utilization may be useful 
in reducing exertional dyspnea. Acupuncture, an Eastern medical practice, has been re-
ported to improve exercise intolerance, dyspnea, and quality of life in patients with COPD 
[76,77]. In addition, the physiological benefits of acupuncture have been reported to in-
clude the relaxation of muscle tension, along with improvements of muscle/anti-muscle 
fatigue, muscle blood flow, and sympathetic control [78,79]. However, to date, little is 
known about the mechanism whereby acupuncture improves exertional dyspnea. Using 
CPET, Maekura et al. [80] investigated the effect and mechanism of acupuncture on exer-
cise intolerance and exertional dyspnea in patients with COPD. Their findings demon-
strated that the effects of acupuncture on exertional dyspnea were associated primarily 
with improved oxygen utilization and reduced ventilation during exercise.  

 A similar mechanism explains how PR improves exercise performance and exer-
tional dyspnea [81–84]. Using CPET, the author and colleagues [83] investigated how PR 
reduces exertional dyspnea; the results demonstrated that the reduced exertional dyspnea 
obtained from PR was associated with reduced ventilatory demand due to the econo-
mized oxygen requirements. In addition, although the mechanisms underlying medita-
tive movement (tai chi, yoga, and qigong) on COPD are unclear, a systematic review and 
meta-analysis reported that the application of meditative movement as non-conventional 
therapies might improve exercise capacity, dyspnea, and health-related quality of life in 
COPD patients [85]. 

3. Conclusions 
Diverse exertional dyspnea is related to the crosstalk between the heart, lungs, and 

muscles; further exploration of the exertional dyspnea patterns, which are related to car-
diovascular disorders, ventilatory impairment, and/or lower limb fatigue, will not only 
facilitate elucidation of the dynamic pathophysiology of COPD but will also contribute 
directly to the treatment of patients with this disease. Reducing the air remaining in the 
lungs after the expiration of each exhaled breath is expected to improve dynamic hyper-
inflation, respiratory acidosis, and eventually dyspnea. Furthermore, reducing ventilatory 
demand or increasing oxygen utilization may also facilitate improvements in exertional 
dyspnea in COPD. Considering that CPET can provide key information on specific dys-
functions in COPD patients that can be used to help them maintain daily living activities 
and allow them to feel that they can “walk with a little more ease”, staff providing respir-
atory care should make the most of CPET as a more approachable test. 
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