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Abstract: Medulloblastoma (MB) is a dangerous malignant pediatric brain tumor that could lead to 
death. It is considered the most common pediatric cancerous brain tumor. Precise and timely diag-
nosis of pediatric MB and its four subtypes (defined by the World Health Organization (WHO)) is 
essential to decide the appropriate follow-up plan and suitable treatments to prevent its progression 
and reduce mortality rates. Histopathology is the gold standard modality for the diagnosis of MB 
and its subtypes, but manual diagnosis via a pathologist is very complicated, needs excessive time, 
and is subjective to the pathologists’ expertise and skills, which may lead to variability in the diag-
nosis or misdiagnosis. The main purpose of the paper is to propose a time-efficient and reliable 
computer-aided diagnosis (CADx), namely MB-AI-His, for the automatic diagnosis of pediatric MB 
and its subtypes from histopathological images. The main challenge in this work is the lack of da-
tasets available for the diagnosis of pediatric MB and its four subtypes and the limited related work. 
Related studies are based on either textural analysis or deep learning (DL) feature extraction meth-
ods. These studies used individual features to perform the classification task. However, MB-AI-His 
combines the benefits of DL techniques and textural analysis feature extraction methods through a 
cascaded manner. First, it uses three DL convolutional neural networks (CNNs), including Dense-
Net-201, MobileNet, and ResNet-50 CNNs to extract spatial DL features. Next, it extracts time-fre-
quency features from the spatial DL features based on the discrete wavelet transform (DWT), which 
is a textural analysis method. Finally, MB-AI-His fuses the three spatial-time-frequency features 
generated from the three CNNs and DWT using the discrete cosine transform (DCT) and principal 
component analysis (PCA) to produce a time-efficient CADx system. MB-AI-His merges the privi-
leges of different CNN architectures. MB-AI-His has a binary classification level for classifying 
among normal and abnormal MB images, and a multi-classification level to classify among the four 
subtypes of MB. The results of MB-AI-His show that it is accurate and reliable for both the binary 
and multi-class classification levels. It is also a time-efficient system as both the PCA and DCT meth-
ods have efficiently reduced the training execution time. The performance of MB-AI-His is com-
pared with related CADx systems, and the comparison verified the powerfulness of MB-AI-His and 
its outperforming results. Therefore, it can support pathologists in the accurate and reliable diag-
nosis of MB and its subtypes from histopathological images. It can also reduce the time and cost of 
the diagnosis procedure which will correspondingly lead to lower death rates. 

Keywords: pediatric medulloblastoma (MB) diagnosis; histopathology; computer-aided diagnosis 
(CADx); convolutional neural network (CNN); discrete wavelet transform (DWT); discrete cosine 
transform (DCT); principal component analysis (PCA) 
 

1. Introduction 
Brain tumors are very common pediatric solid tumors accounting for around 25% of 

all types of pediatric cancers [1]. Among children below 15 years old, the brain tumor is 
the second major reason for mortality after severe lymphoblastic leukemia [2]. It is stated 
that more than 1500 kids in America and 1859 kids in Britain were diagnosed annually 
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with cancer during 2014 to 2016; 15% of them consequently died [3]. About 55–70% are 
pediatric brain tumors. Including them, around 15% of brain tumors are medulloblastoma 
(MB). MB is the foremost common pediatric malignant brain tumor [4]. MB is also the 
main reason for cancer-related illness and death among children [5,6]. It develops inside 
the cerebellum on the posterior part of the brain and rapidly grows. Because MB is a pe-
diatric brain tumor, there is a necessity to attain a serious examination, so as not to result 
in an over or under treatment, which in both cases leads to an excessive death rate [7]. It 
has several subtypes. As stated in [8], the accurate diagnosis of pediatric subtype has en-
hanced the 2 and 5 year survival rates. Late diagnosis of MB and its subtypes may cause 
acute side effects. This is because the cerebellum controls all body motion and synchroni-
zation. Therefore, the accurate diagnosis of pediatric MB and its subtypes is essential to 
reduce mortality rates and select the appropriate treatment plan that prevents its progres-
sion. 

Magnetic Resonance Imaging (MRI) is the common scanning modality utilized to 
scan and diagnose children's brain tumors [9]. However, there are some difficulties that 
face radiologists to diagnose pediatric MB subtypes using MRI [1]. This is because various 
brain tumor categories do not constantly reveal obvious variations in the visible manifes-
tation of the MRI scan [10]. Moreover, employing just traditional MRI to deliver a diagno-
sis could possibly lead to an inaccurate decision [11]. Therefore, another imaging modality 
is preferred to diagnose MB and its subtypes [1]. Currently, the classification of pediatric 
MB and its subtypes is accomplished by a histopathological imaging, which is the gold 
standard to attain accurate diagnosis of MB and its subtypes [11,12]. The treatment pro-
cess relies on the MB subtype classification, as the level of aggressiveness varies from sub-
type to another. Therefore, the correct classification of the MB subtype is of great im-
portance [13]. However, limited works have studied the classification of MB subtypes us-
ing image processing and machine learning techniques [12]. Diagnosing MB is useful to 
define the destructive MB subtypes that need severe and quick treatments [14]. There are 
four subtypes of MB that depend on the histological visual appearance according to the 
World Health Organization (WHO) classification [15]. These subtypes compromise the 
classic, desmoplastic MB with extensive nodularity and large cell/anaplastic MB. Discrim-
inating among these subtypes of MB is hard mostly because of the complication among 
the patterns observed in the histopathology scans as well as the cell shape, association, 
size, and the alignment inconsistency for the distinct malignant classes of the tumor [16]. 
Conventional methods for the diagnosis of MB and its subtype depend on the recognition 
of useful, significant, and discriminating features of the visible structural patterns located 
in the histopathological images. However, unfortunately, these methods generally do not 
succeed at observing the mixture of complicated patterns that exist in the histopathologi-
cal images which are very similar for the four MB subtypes that makes the classification 
process a challenging task [17]. Moreover, the pathological analysis is complex, time-
consuming, and is subjective to the pathologist’s knowledge and experience [18]. Pro-
fessional pathologists might deliver different decisions regarding the MB subtype 
[19,20]. Additionally, the limited availability of pathologists is a serious hurdle in the anal-
ysis of histopathological images. This deficiency occurs mostly in the developed and de-
veloping countries. The lack of pathologists rises the burden on the present pathologists 
[21]. This emphasizes the necessity for powerful automatic approaches or mixtures of ap-
proaches to overcome the challenging tasks that appear during the manual analysis of 
histopathological images. Such automatic techniques will be able to lower the load made 
by the pathologist in classifying MB and its subtypes, and further support them in achiev-
ing precise MB diagnosis [18].  

In the last decade, there have been huge advancements in artificial intelligence (AI) 
methods comprising machine learning (ML) and deep learning (DL) approaches. Com-
puter-aided diagnosis (CADx) schemes based on ML and DL approaches have led to sig-
nificant enhancements in the automatic diagnosis of pediatric MB and its subtypes. CADx 
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could assist pathologists in the automatic analysis of histopathological images, thus de-
creasing the cost of diagnosis [22]. Several CADx systems have been proposed to solve 
related medical problems [23–27]. However, less work has been made to classify the child-
hood MB and its subtypes from histopathological images using ML and DL techniques, 
due to the lack of data availability. The main aim of this paper is to propose a reliable and 
time-efficient system called MB-AI-His for the automatic diagnosis of pediatric MB and 
its subtypes from histopathological images. MB-AI-His is a mixture of deep learning and 
machine learning methods. It is fully automated to avoid manual diagnosis made by 
pathologists, help them in achieving an accurate diagnosis, and identify the four subtypes 
of childhood MB. MB-AI-His overcomes the limitations and drawbacks of the related 
studies. First, it is a reliable system capable of classifying the four subtypes of childhood 
MB with high accuracy instead of only one subtype as obtained by several related works. 
Second, it merges the advantages of both deep learning and textural analysis through a 
cascaded manner. This is done by initially extracting spatial DL features from three con-
volutional neural network (CNN) approaches, then using the discrete wavelet transform 
(DWT) method to further extract textural features from the DL features which form spa-
tial-time-frequency features. Third, it combines the spatial-time-frequency features ex-
tracted from the three CNNs after passing through the DWT to benefit from each CNN 
architecture. Fourth, it fuses the three spatial-time-frequency features using the discrete 
cosine transform (DCT) and principal component analysis (PCA) methods to reduce the 
huge dimension of features and the training execution time. Note that one of the main 
challenges in classifying the subtypes of the pediatric MB is the availability of the dataset.  

The novelty of the paper can be summarized into the following contributions: 
i. Few related studies were conducted for classifying the four subtypes of pediatric MB. 

Most of them did not achieve very high performance, so they are not reliable. In this 
paper, a reliable CADx is constructed, called MB-AI-His, that can classify the four 
subtypes of pediatric MB with high accuracy. 

ii. Most previous studies depend only on textural analysis-based features or deep learn-
ing features that were used individually to perform classification; however, MB-AI-
His merges the benefits of the DL and textural analysis feature extraction methods 
through a cascaded manner. 

iii. The cascaded manner initially uses three deep CNNs to extract spatial features. Then, 
these spatial features enter a DWT which is a textural analysis-based method that 
generates time-frequency features ending up by generating spatial-time-frequency 
features. 

iv. Developing spatial-time-frequency features instead of using only spatial features as 
accomplished by most of the related studies. 

v. Almost all the related studies used an individual feature set to construct their classi-
fication model; however, MB-AI-His fuses the three spatial-time-frequency features 
generated from the three CNNs and DWT. 

vi. The fusion is done through DCT and PCA to generate a time-efficient CADx system 
and lower the feature space dimension as well as the classification training time 
which was one of the limitations in the previous related work. 
The paper is organized as follows. Section 2 describes the related studies with their 

limitations. Section 3 introduces the dataset used as well as the DL and ML approaches 
and the proposed MB-AI-His. Section 4 presents the parameters’ settings and the perfor-
mance metrics used to evaluate the results of MB-AI-His. The results of the proposed MB-
AI-His are shown in Section 5. Section 6 discusses the main results of MB-AI-His, and 
finally, Section 7 concludes the paper. 

2. Related Work 
This section illustrates the methods and results achieved using related studies. The 

related studies based on histopathological images along with their limitation are shown 
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in Table 1. The techniques [12,16,28–30] stated in Table 1 suffer from several limitations. 
First, most of them are based only on handcrafted feature extraction approaches which 
have some number of parameters that should be manually adjusted, which involves ad-
ditional time for training the classification model. Moreover, some of them depend on 
only textural-based feature extractors which might not succeed to explain the feature pat-
terns existing in the training instances that the data-driven method is capable to find [28]. 
Additionally, they used only individual types of features to construct their models. They 
were also all based on a very small dataset containing only 10 images. Finally, they were 
all constructed to distinguish between only anaplastic and non-anaplastic pediatric MB, 
which is only one subclass of childhood MB (binary classification problem). The draw-
backs of the methods in [7] and [31] are using conventional handcrafted features based on 
either textural analysis, color, or morphological operations to train the support vector ma-
chine SVM classifier to classify the four subtypes of MB. Moreover, the CADx proposed 
in [13] studied the fusion of only textural features to train their model and perform the 
classification task. The authors in [32] used only DL features to train an SVM classifier to 
classify the four classes of childhood MB. They used only two types of DL methods indi-
vidually for the classification task, each of them is of huge dimension. They did not com-
bine several DL features extracted from several CNNs to benefit from each CNN architec-
ture. The authors in [32] only used two pre-trained CNNs individually. Moreover, the 
classification time executed using these CNNs is high. Besides, none of the above methods 
combined DL features with textural features. Finally, most of them did not achieve a very 
high accuracy, which means they are not reliable. 

Table 1. A list of related studies that used histopathological images along with their limitations. 

Arti-
cle 

Segmentation Features 
Classi-

fier 
Accu-
racy 

Medulloblastoma 
(MB) Class 

Limitations 

[16] N/A 

• TICA 1 
• Wavelet analysis 
• 2-layered convolutional neu-

ral networks (CNN) 

Soft-
max 

99.7% 
Anaplastic and Non- 

anaplastic 

• Use only one type of feature extraction either tex-
tural features or spatial features extracted from 
CNN. 

• Very small dataset (10 images only) 

[28] N/A • TICA 
Soft-
max 

97% 
Anaplastic and Non- 

anaplastic 
• Depends on only texture-based feature extractors. 
• Very small dataset (10 images only) 

[12] N/A • Haar Wavelet Transform k-NN 2 87% 
Anaplastic and Non- 

anaplastic 

• Use only one type of feature extraction (textural 
features) to build their computer-aided diagnosis 
(CADx) 

• Very small dataset (10 images only) 

[29] N/A 
• Haar,  
• Haralick  
• Laws textural features  

RF 3 91% 
Anaplastic and Non- 

anaplastic 

• Use an only individual type of feature extraction 
to build their CADx 

• Very small dataset (6 images only) 

[30] N/A 
• 16-layered CNN 
• 2-Layered CNN 

softmax 
76.6% 
89.8% 

Anaplastic and Non- 
anaplastic 

• Depends on only spatial deep learning-based fea-
ture extractors. 

• Very small dataset (10 images only) 

[7] 
K-means clus-

tering 

• HOG 4 
• GLCM 5 
• GLRM 6 
• Tamura 
• Color Feature 
• LBP 7 
• Morphological 
• Principal component analysis 

(PCA)  

SVM 84.9% 

• Classic 
• Desmoplastic 
• Nodular 
• Large Cell (ana-

plastic) 

• Depends only on conventional handcrafted fea-
tures. 

• They used only individual feature set to perform 
the classification task. 

[31] 
K-means clus-

tering 

• HOG 
• GLCM 
• rGLRM 
• Tamura 
• Color Feature 
• LBP 
• Morphological 
• MANOVA 8 

SVM 65.2% 

• Classic 
• Desmoplastic 
• Nodular 
• Large Cell (ana-

plastic) 

• Depends only on conventional handcrafted fea-
tures. 

• Used only individual feature set to perform the 
classification task. 
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[13] 
K-means clus-

tering 

Different combinations of fused 
features including: 
• HOG 
• GLCM 
• GLRM 
• Tamura 
• LBP 
• PCA 

SVM 96.7% 

• Classic 
• Desmoplastic 
• Nodular 
• Large Cell (ana-

plastic) 

• Depends only on conventional handcrafted fea-
tures. 

[32] N/A 

• AlexNet 

Softmax 

79.3%  • Classic 
• Desmoplastic 
• Nodular 
• Large Cell (ana-

plastic) 

• Depends only on spatial deep learning (DL) fea-
tures. • VGG-16 10 65.4% 

[32] N/A 

• AlexNet DL features 

SVM 

93.21%  • Classic 
• Desmoplastic 
• Nodular 
• Large Cell (ana-

plastic) 

•  Depends only on spatial DL features. 
• Use Individual DL for the classification task. • VGG-16 DL features 93.38% 

1TICA: Topographic independent component analysis,2 k-NN: k-nearest neighbors,3RF: Random Forest,4HOG: Histogram 
of oriented gradients, 5 GLCM: grey level covariance matrix, 6 GLRM: grey level run matrix,7 LBP: local binary pattern, 
8MANOVA: Multivariate analysis of variance, and 10VGG: Visual Geometry Group. 

3. Materials and Methods 
3.1. Childhood MB Dataset Description 

The Guwahati Medical College and Hospital GMCH and Guwahati Neurological Re-
search Centre (GNRC) were both employed as collaborating medical institutes in collect-
ing childhood MB dataset. The dataset used in constructing MB-AI-His was collected from 
only patients experiencing childhood MB. All these patients are of age lower than 15 years. 
Few blocks of the data were generated from children under 15 years of age who were 
identified with childhood MB at the neurosurgery department of GMCH. The samples 
were gathered from the tissue blocks and utilized as an element of the post-operative pro-
cess. Blocks of tissues were then stained using hematoxylin and eosin (HE) at Ayursundra 
Pvt where pathological assistance was delivered by a local medical specialist. The dataset 
was collected from 15 children from whom the samples were gathered. Afterward, the 
slide’s scans and the region of interest were observed for ground truth by a qualified 
pathologist at the Pathological Department of GNRC. Next, pictures of the region of in-
terest where microscopic images were taken at magnification 10x were saved in JPEG for-
mat. These images were captured using a Leica 1CC50 HD microscope. The dataset con-
tains images for the four subtypes of MB tumors. The total number of images is 204. The 
number of images for the classic, desmoplastic, large cell, and nodule MB subtypes is 59, 
42, 30, and 23, respectively. Whereas the number of normal images that do not contain 
signs of MB is 50. Details of the dataset can be found in [33]. The dataset can be found at 
[34]. Samples of normal and MB subtypes’ images available in the dataset are shown in 
Figure 1 which are (a) normal, (b) classic, (c) desmoplastic, (d) large cell, and (e) nodular. 

 
Figure 1. Samples of the childhood pediatric MB images: (a) normal, (b) classic, (c) desmoplastic, (d) large cell, (e) nodular. 
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3.2. Deep Learning Approaches 
Deep learning (DL) approaches are a new branch of machine learning techniques that 

arose as a solution to overcome the limitations of the traditional artificial neural network 
(ANN) when analyzing images. The traditional ANN does not take into account the ben-
efit of the underlying spatial information located in images [35–37]. There are several ar-
chitectures for DL. Among them is the convolutional neural network (CNN), which is the 
most used architecture for medical problems, especially dealing with medical images [38–
40]. A CNN contains a huge number of layers; thus, it is denoted deep networks. It consists 
of convolutional layers, non-linear activation layers, pooling layers, and fully connected 
(FC) layers. Instead of supplying the whole image to every neuron, the convolutional layer 
of the CNN convolves a region of the image (equivalent to the size of the filter) with a 
filter of compact size. This filter passes through the whole regions of the image in the 
previous layer, one region (equivalent to the size of the filter) at a time. The output of the 
filter utilized in the previous layer is known as a feature map. Every location leads to the 
activation of the neuron and the outputs are stored in the feature map [41]. Three state-
of-the-art CNN architectures are used in this paper including ResNet-50, DenseNet-201, 
and MobileNet CNNs. 

3.2.1. ResNet-50 
The ResNet is considered to be one of the powerful and latest CNNs. It achieved the 

first position in the ImageNet Large Scale Visual Recognition Challenge ILSVRC and 
Common Objects in Context COCO 2015 competition [42]. ResNet can efficiently converge 
with acceptable computation cost even with increasing the number of layers, which is not 
the case with AlextNet and Inception CNNs [40,43]. This is because He et al. [42] delivered 
a new structure that depends on deep residual learning. This structure includes cutoffs 
(called residuals) inside the layers of a traditional CNN to cross over some convolution 
layers at a time. Such residuals boost the performance of the CNN. Moreover, these resid-
uals accelerate and smoothen the convergence procedure of the CNN despite the huge 
amount of deep convolution layers [26]. ResNet-50 CNN is employed in the paper which 
is 50 layers deep. The architecture of ResNet-50 is shown in Figure 2. The dimensions of 
the various layers of ResNet 50 CNN are shown in Table 2. 

 
Figure 2. The structural design of ResNet 50 CNN. 
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Table 2. The dimensions of the various layers of ResNet 50 CNN. 

Layer Label Input Layer Dimension Output Dimension 
Input Layer 224 × 224 × 3 

Conv1 112 × 112 × 64 

Filter size = 7 × 7 
Number of filters = 64 

Stride = 2 
Padding = 3 

pool1 56 × 56 × 64 
Pooling size = 3 × 3 

Stride = 2 

conv2_x 56 × 56 × 64 
1 × 1. 643 × 3. 641 × 1. 256  × 3 

conv3_x 28 × 28 × 128 
1 × 1. 1283 × 3. 1281 × 1. 512  × 4 

conv4_x 14 × 14 × 256 
1 × 1. 2563 × 3. 2561 × 1. 1024  × 6 

conv5_x 7 × 7 × 512 
1 × 1. 5123 × 3. 5121 × 1. 2048  × 3 

Average pooling 
Pool size = 7 × 7 

Stride = 7 
1 × 1 

Fully connected (FC) Layer 1000 

3.2.2. DenseNet-201 
Recent studies have shown that deep CNNs could be substantially deeper, more pre-

cise, and have efficient training ability if constructed with smaller links among layers close 
to input and output. For this reason, Huang et al. [44] in 2017 introduced a new CNN 
architecture based on the previous short connections called Dense Convolutional Net-
work (DenseNet). This network joins every single layer to all other layers in a feed-for-
ward process. Whereas traditional CNN with Z layers have Z links, one within each layer 
and its subsequent layer, DensNet consists of Z(Z+1)/2 successive links. For every single 
layer, the feature maps of the whole preceding layers are employed as inputs, whereas its 
feature maps are employed as inputs into the entire succeeding layers. This network ben-
efits from its great capability to decrease the vanishing-gradient problem, strengthen fea-
ture distribution, enhance feature recovers, and significantly lower the number of param-
eters. DenseNet-201 is employed in this study, which is 201 layers deep. The architecture 
of DenseNet-201 is shown in Figure 3. The dimensions of the various layers of DenseNet-
201 CNN are displayed in Table 3. 
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Figure 3. The architecture of DenseNet-201 CNN. 

Table 3. The dimensions of the various layers of DenseNet-201 CNN. 

Layer Label Input Layer Dimension Output Dimension 
Input Layer 224 × 224 × 3 

Convolution 112 × 112  
Filter size = 7 × 7 

Stride = 2 
Padding = 3 

pooling 56 × 56  
Maximum Pooling = 3 × 3  

Stride = 2 

Dense Block 1 56 × 56  1 ×     13 ×     3 × 6 

Transition Layer 1 
56 × 56 1 × 1 convolution 
28 × 28 2 × 2 average pooling, stride =2 

Dense Block 2 28 × 28 1 ×     13 ×     3 × 12 

Transition Layer 2 
28 × 28 1 × 1 convolution 
14 × 14 2 × 2 average pooling, stride =2 

Dense Block 3 14 × 14 1 ×     13 ×     3 × 48 

Transition Layer 3 
14 × 14 1 × 1 convolution 
7 × 7 2 × 2 average pooling, stride =2 

Dense Block 4 7 × 7  1 ×     13 ×     3 × 32 

Pooling 
Average Pooling= 7 × 7 

Stride = 7 
1 × 1  

FC Layer 1000 
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3.2.3. MobileNet 
To benefit from the powerful capability of CNN while making it more usable, prac-

tical, and time-efficient, a lightweight CNN called MobileNet was proposed [45]. It was 
created to enhance the instantaneous performance of CNN under hardware restrictions. 
MobileNet is capable of lowering the amount of parameters devoid of surrendering accu-
racy. It only requires 1/33 of the parameters needed for VGG-16 CNN to attain similar 
accuracy using 1000 images of ImageNet. It consists of point-wise layers (pw) and depth-
wise layers (dw). The latter are convolutional layers of size 3 × 3 kernels, whereas the 
former are convolutional layers of size 1x1 kernels. These layers are handled using the 
activation function rectified linear unit and the batch normalization algorithm [46]. It con-
tains 19 deep layers. Figure 4 shows the structure of the pointwise and depthwise convo-
lution layers, where Z × Z is the size of the feature map, N is the input channel, M is the 
output channel, and Y × Y is the kernel size for the depthwise convolution layer. Table 4 
shows the structure of MobileNet CNN.  

 
Figure 4. The architecture of MobileNet CNN: (a) pointwise convolution layer, (b) depthwise (dw) 
convolution layer. 

Table 4. The general structure of MobileNet CNN. 

Layer Label Input Layer Dimension Filter and Stride Size 

Convolution/S2 224 × 224 × 3 
Filter size = 3 × 3 × 3 × 32 

Stride = 2 

Convolution/dw8/S1 112 × 112 × 32 
Filter size = 3 × 3 × 32 dw 

Stride = 1 

Convolution/S1 112 × 112 × 32 
Filter size 1 × 1 × 32 ×64 

Stride = 1 

Convolution/dw/S2 112 × 112 × 64 
Filter size = 3 × 3 × 64 dw 

Stride = 2 

Convolution/S1 56 × 56 × 64 
Filter size 1 × 1 × 64 × 128 

Stride = 1 

Convolution/dw/S1 56 × 56 × 128 
Filter size = 3 × 3 × 128 dw 

Stride = 2 

Convolution/S1 56 × 56 × 128 
Filter size 1 × 1 × 128 × 128 

Stride = 1 

Convolution/dw/S2 56 × 56 × 128 
Filter size = 3 × 3 × 128 dw 

Stride = 2 

Convolution/S1 28 × 28 × 128 
Filter size 1 × 1 × 128 × 256 

Stride = 1 
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Convolution/dw/S1 28 × 28 × 256 
Filter size = 3 × 3 × 256 dw 

Stride = 1 

Convolution/S1 28 × 28 × 256 
Filter size 1 × 1 × 256 × 256 

Stride = 1 

Convolution/dw/S2 56 × 56 × 128 
Filter size = 3 × 3 × 256 dw 

Stride = 2 

Convolution/S1 14 × 14 × 256 
Filter size 1 × 1 × 256 × 512 

Stride = 1 

5 × Convolution dw/S1 
5 × Convolution S1 

14 × 14 × 512 
14 × 14 × 512 

Filter size = 3 × 3 × 512 dw 
Filter size 1 × 1 × 512 × 512 

Stride = 1 

Convolution dw/S2 14 × 14 × 512 Filter size = 3 × 3 × 512 dw 
Stride 2 

Convolution/S1 7 × 7 × 512 
Filter size 1 × 1 × 512 × 512 

Stride = 1 

Convolution dw/S2 7 × 7 × 1024 
Filter size = 3 × 3 × 1024 dw 

Stride 2 

Convolution/S1 7 × 7 × 1024 
Filter size 1 × 1 × 1024 × 1024 

Stride = 1 

Pooling 
Average Pooling= 7 × 7 

Stride = 1 
1 × 1 × 1024 

FC Layer 1 ×1 × 1000 
dw stands for depthwise. 

3.3. Proposed MB-AI-His  
MB-AI-His perform the automatic diagnosis of pediatric MB and its subtypes from 

the histopathological images in two levels. The first level classifies the images into normal 
and abnormal (binary classification level), the second level classifies the abnormal images 
containing MB tumor into the four subtypes of childhood MB tumor (multi-classification 
level). MB-AI-His consists of five stages which are image preprocessing, spatial feature 
extraction, time-frequency feature extraction, feature fusion and reduction, and classifica-
tion stages. In the image preprocessing stage, images are resized and augmented. In the 
spatial feature extraction stage, spatial features are extracted from three deep learning 
CNNs. In the time-frequency feature extraction stage, time-frequency features are ex-
tracted using the DWT method. In the feature fusion and reduction stage, the feature sets 
extracted in the previous stage are fused using DCT and PCA feature reduction tech-
niques. Figure 5 shows a block diagram of the proposed MB-AI-His.  



Diagnostics 2021, 11, 359 11 of 26 
 

 

 
Figure 5. A block diagram of the proposed MB-AI-His. 

3.3.1. Image Pre-processing  
In this stage, for the first level of the proposed CADx, 50 images are selected at ran-

dom from the four subtypes of childhood MB. This step is made to balance the normal 
and abnormal classes to 50 images for the binary classification task. Next, for both levels 
of the proposed MB-AI-His, images are resized to 224 × 224 × 3 to fit the size of the input 
layer of each CNN. Afterward, these images are augmented. This augmentation step is 
necessary to elevate the number of images of a dataset to prevent the classification model 
from overfitting [40,47]. The augmentation methods employed in MB-AI-His to generate 
new microscopic images from the training images are flipping in x and y directions, trans-
lation (−30,30), scaling (0.9,1.1), and shearing (0,45) in x and y directions. 

3.3.2. Spatial Feature Extraction 
Three deep pre-trained CNNs are utilized with transfer learning. Transfer learning 

is the capacity to attain matches among distinct data or information to facilitate the train-
ing progression of another classification task that has similar mutual elements. This means 
that the pre-trained CNN can understand representations from large data like ImageNet, 
and then utilize these demonstrations in other areas having the equivalent classification 
problem [37]. It is commonly used in the medical field, as finding medical datasets of 
massive size and mostly labeled as ImageNet dataset is a challenge [35,38]. Transfer learn-
ing is also done to allow the CNN to be used as a feature extractor. In this stage, after 
modifying the FC layers of the three CNNs to be equivalent to the number of classes of 
the childhood MB dataset (2 in case of binary level and 4 for multiclass level) instead of 
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the 1000 class of ImageNet, spatial features are extracted using three deep pre-trained 
CNNs including ResNet-50, DenseNet-201, and MobileNet CNNs. These features are 
taken out from the “global average pooling 2D layer” of ResNet-50, DenseNet-201, and 
MobileNet CNNs. The dimensions of these spatial deep features are 2048, 1280, and 1920 
for ResNet-50, MobileNet, and Dense-Net-201 CNNs respectively as shown in Table 5. 

Table 5. The number of layers and output size of each CNN. 

CNN Structure Number of Layers Size of Output (Features) 
ResNet-50 50 2048 
MobileNet 19 1280 

DenseNet-201 201 1920 

3.3.3. Time-Frequency Feature Extraction 
In this stage, time-frequency features are extracted using the discrete wavelet trans-

form (DWT) method. The DWT is a textural analysis based-method that is commonly used 
in the medical field [48–50]. It offers time-frequencies description by decomposing data 
via a set of perpendicular basis functions. The DWT consists of a group of transforms; 
everyone has a distinct class of wavelet basis functions. To analyze a 1-D data, a 1-D DWT 
is employed, which convolve low pass and high pass filters with the input data. Next, a 
dyadic decimation process is executed which is a down-sampling procedure usually made 
to reduce the aliasing distortion. Once the 1-D DWT is operated to the 1-D input data, two 
clusters of coefficients are produced which are the approximation coefficients CA1, and 
detail coefficients CD1 [48]. This process can be repeated for the approximation coefficients 
CA1 to attain the second level of decomposition, and again, two sets of coefficients will be 
created; the second level approximation coefficients CA2, and detail coefficients CD2. This 
process can be further performed to produce multi-decomposition levels of DWT. In this 
stage, one level of DWT is performed for each spatial feature extracted from each CNN of 
the previous stage. Meyer wavelet (dmey) is utilized as a wavelet basis function. CD1 cor-
responds to the detailed coefficients of the first level of DWT. These details coefficients 
are produced when passing the image through a high pass filter [51]. In medical images, 
the details of the images that help in the diagnosis are found in the high frequencies  
[52–54]. Therefore, only CD1 coefficients are chosen in this step, as they contain most of the 
information available in the data, and also to reduce the huge dimension of the features 
extracted in the earlier stage. Finally, spatial-time-frequency feature sets will be generated 
at this stage having dimensions of 1074, 1010, and 690 coefficients after applying to Res-
Net-50, Dense-201, and MobileNet spatial DL features. This step is made to benefit from 
the advantages of both the DL and DWT textural analysis feature extraction methods. It 
is also done to verify that the spatial-time-frequency representations are better than the 
spatial representations. 

3.3.4. Feature Fusion and Reduction 
To merge the privilege of each of the deep learning techniques used as feature extrac-

tors with textural analysis-based features, a fusion process is made in this stage using DCT 
and PCA. These methods are also used to lower the huge dimension of features. The num-
bers of DCT coefficients and principal components are chosen using a sequential forward 
search strategy.  
• DCT is regularly applied to decompose a data into primitive frequency elements. It 

reveals the data as a total of cosine functions fluctuating at separate frequencies [55]. 
Usually, the DCT is applied to the data to get the DCT coefficients which are split 
into two groups [56,57]; low frequencies are known as DC coefficients, and high fre-
quencies are known as AC coefficients. High frequencies illustrate edge, details, and 
tiny changes [57], while low frequencies are linked with the brightness situations. 
The dimension of the DCT coefficient matrix is identical to the input data [58].  
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• PCA is a popular feature reduction approach that is commonly employed to com-
press the huge dimension of features via operating a covariance analysis among ob-
served features. The PCA lessens the full number of observed variables to a reduced 
quantity of principal components. Such principal components resemble the variance 
of the original features. It is generally utilized if the observed features of a dataset are 
very correlated. The PCA is appropriate for datasets having very huge dimensions 
[59]. 

3.3.5. Classification 
The classification procedure of this stage is done with four distinct scenarios. The 

initial scenario introduces the utilization of three deep pre-trained networks with transfer 
learning including ResNet-50, DenseNet-201, MobileNet CNNs as classifiers (end to end 
deep learning process). The second scenario represents the classification using the spatial 
features extracted in the spatial feature extraction stage of MB-AI-His. Later, in the third 
scenario, the classification process is achieved using the spatial-time-frequency features 
extracted in the time-frequency feature extraction stage of MB-AI-His. Finally, in the last 
scenario, the spatial-time-frequency features are fused using DCT and PCA and utilized 
to perform the classification process. Note that in this scenario the numbers of DCT coef-
ficients and principal components are chosen using a sequential forward strategy to re-
duce the huge dimension of features. Five popular classifiers are used to perform the clas-
sification procedure including linear SVM, cubic SVM, k-nearest neighbors k-NN, linear 
discriminant analysis (LDA), and ensemble subspace discriminant (ESD). Figure 6 de-
scribes the four scenarios of the proposed MB-AI-His. 

 
Figure 6. The four scenarios of MB-AI-His. 
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4. Experimental Setup 
4.1. Parameters Setting 

Initially, the FC layer of the pre-trained CNNs is modified to the number of classes 
of the childhood MB dataset (2 in the case of binary level and 4 for multiclass level) instead 
of the 1000 classes of ImageNet. Next, several parameters are altered for the three CNNs 
including the number of epochs, initial learning rate, mini-batch size, and validation fre-
quency. The total amount of epochs and the initial learning rate are 20 and 3 × 10-4 respec-
tively. The mini-batch size and validation frequency are 4 and 17 for binary class and 26  
for multi-class, whereas the other CNN parameters are kept unchanged. The optimization 
algorithm used is the Stochastic Gradient Descent with Momentum (SGDM). To test the 
capability of the classification models, 5-fold cross-validation is utilized and repeated 5 
times. For the k-NN classifier, the number of k is equal to 1 and the Euclidean distance is 
used as a distance metric, and these parameters attained the highest performance. For the 
ESD classifier, the number of learners is 30 and the subspace dimension is 1024. 

4.2. Evaluation Metrics 
To evaluate the performance of the introduced MB-AI-His, different evaluation met-

rics are employed. These metrics are the accuracy, the precision, the sensitivity, and the 
specificity. They are calculated using the following formulas [26] (1–4). 
• True Positives (TP): Images that have their true label as positive and whose class is 

correctly classified to be positive. 
• False Positives (FP): Images that have their true label as negative and whose class is 

wrongly classified to be positive. 
• True Negatives (TN): Images that have their true label as negative and whose class 

is precisely classified to be negative. 
• False Negatives (FN): Images that have their true label as positive and whose class 

is wrongly classified to be negative. 
The accuracy is a performance metric that shows how the system has properly clas-

sified the childhood MB class and its four subtypes. Thus, it identifies the ability of the 
MB-AI-His to perform well. 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑃       (1)

The sensitivity is for a given class, the number of images that are correctly classified 
as positive out of the sum of actual positives images. 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁           (2)

The specificity is for a given class, the number of images that are correctly classified 
as negative out of the sum of actual negative images. 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁𝑇𝑁 + 𝐹𝑃        (3)

The precision is the proportion of images that are correctly classified as positive to 
the total number of images that are truly labeled to be positive. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃𝑇𝑃 + 𝐹𝑃        (4)
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5. Results 
This section illustrates the classification results of the four scenarios of MB-AI-His. 

As mentioned before, MB-AI-His performs two levels of classification. The first level clas-
sifies the pediatric MB images as either normal or abnormal (binary classification). The 
other level classifies the four subtypes of MB (multi-class classification). Scenario I is an 
end-to-end deep learning procedure where ResNet-50, DenseNet-201, and MobileNet 
CNNs are used to perform the classification task. Scenario II resembles the extraction of 
the spatial features from the three-deep learning CNNs and using them individually to 
feed five classifiers including linear SVM, cubic SVM, LDA, and KNN, and ESD classifiers. 
Scenario III represents the extraction of the time-frequency features from the spatial DL 
features to form three spatial-time-frequency DL features sets. These feature sets are used 
individually for the classification process achieved by the same five classifiers. This sce-
nario is executed to examine if the spatial-time-frequency feature set of a reduced dimen-
sion performs better than the spatial features alone. Scenario IV presents the fusion of the 
three spatial-time-frequency DL feature sets using DCT and PCA and using the reduced 
fused feature set to perform the classification process. Note that the numbers of DCT co-
efficients and principal components are selected using a sequential forward search strat-
egy. This scenario is done to merge the benefits of the DL techniques and textural analysis 
feature extraction methods as well as combining the privilege of each CNN architecture. 
The scenario examines if this feature fusion successfully enhances the performance of MB-
AI-His. It also investigates if DCT and PCA can produce a time-efficient CADx system 
with enhanced accuracy. 

5.1. Scenario I Results 
The classification performance of the three CNNs used to perform the end-to-end 

deep learning procedure for both binary and multi-class classification levels is shown in 
Table 6. The table shows that the classification accuracies achieved for the binary classifi-
cation level are 100%, 90%, and 100% for the ResNet-50, MobileNet, and DenseNet-201 
CNNs, respectively, whereas the training execution times are 2 min 5 s, 2 min 13 s, and 9 
min for the ResNet-50, MobileNet, and DenseNet-201 CNNs, respectively. This means 
that the ResNet-50 CNN is faster than the DenseNet-201 CNN while achieving the same 
accuracy. For the multi-class classification level, the classification accuracies attained are 
93.62%, 91.49%, and 89.36% for the ResNet-50, MobileNet, and DenseNet-201 CNNs, re-
spectively. These accuracies indicate that the ResNet-50 CNN has the highest perfor-
mance, followed by the MobileNet and DenseNet-201 CNNs. The training execution times 
are 4 mins 9 sec, 2 mins 5 sec, and 14 mins 10 sec for the ResNet-50, MobileNet, and Dense-
Net-201 CNNs, respectively.  

Table 6. The classification testing accuracy (%) and execution training time for the three CNNs for both binary and multi-
class classification. 

CNN Structure 
Binary Classification Level Multi-Class Classification Level 

Accuracy(%) Execution Time Accuracy(%) Execution Time 
ResNet-50 100 2 min 5 s 93.62 4 min 9 s 
MobileNet 90 2 min 13 s 91.49 2 min 5 s 

DenseNet-201 100 9 min 89.36 14 min 10 s 

5.2. Scenario II Results 
The classification performance of the five classifiers trained with the spatial features 

extracted from each of the deep learning CNNs for both binary and multi-class classifica-
tion levels is shown in Table 7. Table 7 indicates that for the binary classification level, the 
spatial DL features extracted from the ResNet 50 CNN and used to train the cubic SVM 
and LDA classifiers, the highest accuracy of 100% is achieved. Whereas, for the spatial DL 
features extracted from the DensNet-201 CNN and utilized to train the ESD classifier, a 
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peak accuracy of 99.2% is attained. For the spatial DL features extracted from the Mo-
bileNet CNN, a maximum accuracy of 99.4% is obtained using the ESD classifier. On the 
other hand, for the multi-class classification level, the spatial DL features extracted from 
the ResNet 50 CNN and employed as inputs to the LDA classifier, the highest accuracy of 
95.74% is acheived. Whereas, for the spatial DL features extracted from the DensNet-50 
CNN, the LDA classifier attained a peak accuracy of 97.16%. While, for the spatial DL 
features extracted from MobileNet CNN, a maximum accuracy of 94.54% is obtained us-
ing the LDA classifier. These accuracies conclude that the LDA classifier outperforms all 
other classifiers and is suitable to classify the four subtypes of pediatric MB. 

Table 7. The classification testing accuracy (%) for the five classifiers used in MB-AI-His trained using spatial DL features 
extracted from the three CNNs. 

Binary Classification Level 

Features Linear-SVMCubic-SVMk-NN Linear Discriminant Analysis
(LDA) 

Ensemble Subspace Discriminant 
(ESD) 

Spatial-ResNet-50 99.6 100 98 100 94.8 
Spatial-MobileNet 99.2 99.2 98.2 99 99.4 

Spatial-DenseNet-201 98 98 97.6 98 99.2 
Multi-Class Classification Level 

Spatial-ResNet-50 93.66 94.96 88.18 95.74 93.9 
Spatial-MobileNet 91.72 92.2 87.28 94.54 93.4 

Spatial-DenseNet-201 94.32 96.26 92.88 97.16 94.84 

5.3. Scenario III Results 
The accuracies obtained using the five classifiers learned with the spatial-time-fre-

quency DL features extracted from each deep learning CNNs for both binary and multi-
class classification levels are shown in Table 8. Table 8 demonstrates that for the binary 
classification level, the spatial-time-frequency DL features (1074 features) pulled out from 
the ResNet-50 CNN and used to build the LDA classifier achieved the highest accuracy of 
100%, which is the same accuracy of the spatial features (2048 features) extracted from 
ResNet-50 as shown in Table 7 but with lower dimension. For the spatial-time-frequency 
DL features (1010 features) pulled out from the DensNet-50 CNN and utilized to learn the 
ESD classifier attained a peak accuracy of 99.2%, which is the same accuracy obtained by 
the same classifier when trained with the spatial features (1920 features) extracted from 
the DensNet-201 CNN (shown in Table 7) but with lower dimension.  For the spatial-
time-frequency DL features (660 features) extracted from the MobileNet CNN, a maxi-
mum accuracy of 98.4% is obtained using the ESD classifier. On the other hand, in the case 
of the multi-class classification level, for the spatial-time-frequency DL features (1074 fea-
tures) extracted from the ResNet 50 CNN, the LDA classifier achieved the highest accu-
racy of 96.66%, which is higher than the 95.74% (shown in Table 7) obtained with the same 
classifier trained with only spatial DL features of higher dimension extracted from the 
ResNet-50 CNN. Whereas, for the spatial-time-frequency DL features (1010) extracted 
from the DensNet-201 CNN, the LDA classifier attained a peak accuracy of 98.46%, which 
is better than the 97.16% (shown in Table 7) obtained with the same classifier when trained 
with spatial features only which have a higher dimension of (1920 features). While, for the 
spatial-time-frequency DL features (690) extracted from the MobileNet CNN, a maximum 
accuracy of 98.46% is obtained using the LDA classifier which is better than the 94.54% 
(shown in Table 7) achieved using the same classifier trained with spatial features only of 
higher dimension (1280 features) extracted from the MobileNet CNN. These accuracies 
conclude that the spatial-time-frequency DL features are better than using the spatial DL 
features alone, as the spatial-time-frequency DL features have improved the classification 
accuracy and reduced the feature space dimension used in MB-AI-CADx. This makes 
them more appropriate to be used for classifying the four subtypes of pediatric MB.   
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Table 8. The classification testing accuracy (%) for the five classifiers used in MB-AI-His trained using spatial-time-fre-
quency DL features extracted from the three CNNs. 

Binary Classification Level 
Features Linear-SVM Cubic-SVM  k-NN LDA ESD 

Spatial-Time-Frequency-ResNet-50 100 100 98.2 100 99 
Spatial-Time-Frequency-MobileNet 98.2 98.4 98.4 98 98.2 

Spatial-Time-Frequency-DenseNet-201 98.4 98.2 98.4 98.2 99.2 
Multi-Class Classification Level 

Spatial-Time-Frequency-ResNet-50 94.32 95.22 89.48 96.66 95.36 
Spatial-Time-Frequency-MobileNet 93.76 94.18 90.14 94.32 93.66 

Spatial-Time-Frequency-DenseNet-201 95.74 97.16 95.08 98.46 97.42 

5.4. Scenario IV Results 
This section illustrates the performance of the five classifiers used in MB-AI-His after 

the fusion process accomplished using both the PCA and DCT methods. It also describes 
the numbers of the DCT coefficients and principal components selected to reduce the fea-
ture space dimension and produce an efficient CADx. Table 9 shows the numbers of the 
DCT coefficients and principal components as well as classification accuracy (%) for the 
five classifiers used in MB-AI-His after fusion using the PCA and DCT approaches for the 
binary classification level. It is obvious from the table that both DCT and PCA have suc-
cessfully enhanced the classification accuracy after the fusion process to reach 100% for 
all classifiers, which is higher than those obtained using the five classifiers trained with 
the individual spatial-time-frequency DL features shown in Table 8. Moreover, the num-
bers of DCT coefficients and principal components attained are 300 and 2 for the DCT and 
PCA, respectively, which are much lower than the 2274 features equivalent to the total 
sum of features of the spatial-time-frequency DL features extracted from the three CNNs. 

Table 9. The numbers of discrete cosine transform (DCT) and principal components, and classification testing accuracy 
(%) for the five classifiers used in MB-AI-His after the fusion using PCA and DCT for the binary classification level. 

 Binary Classification Level 
Features No of Features Linear-SVM Cubic-SVM  k-NN LDA ESD 

DCT 300 100 100 100 100 100 
PCA 2 100 100 100 100 100 

Figure 7 shows the number of DCT coefficients versus the classification accuracies 
attained for the five classifiers of MB-AI-His CADx. It is clear from Figure 7 that for the 
multi-class classification level, the highest accuracy of 99.4 % is attained using the LDA 
classifier using 1000 coefficients only, which is lower than the 2774 features of the fused 
spatial-time-frequency DL features of the three networks. Following the LDA classifier' 
performance is the cubic SVM classifier, which attained an accuracy of 98.7% with 1100 
DCT coefficients, followed by the k-NN classifier achieving an accuracy of 98.1% with 
1200 DCT coefficients, ending by the linear SVM and ensemble (ESD) classifiers which 
achieved an accuracy of 97.4% using 800 and 600 coefficients, respectively. 
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Figure 7. The number of DCT coefficients versus the classification accuracies attained for the five classifiers of MB-AI-His. 

Figure 8 shows the number of principal components versus the classification accura-
cies attained for the five classifiers of MB-AI-His CADx. The figure indicates that the max-
imum accuracy of 99.4% is obtained using the LDA and ESD classifiers using only 95 and 
65 principal components respectively. This performance is followed by the cubic SVM 
achieving an accuracy of 97.4% using 35 components, the linear SVM obtaining an accu-
racy of 96.8% using 35 components, and finally the k-NN attaining an accuracy of 95.5% 
using 25 components. 

 
Figure 8. The number of principal components versus the classification accuracies attained for the five classifiers of MB-
AI-His-CADx. 
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Table 10 shows the performance metrics for the five classifiers used in MB-AI-His 
after the fusion process using the PCA and DCT methods for the binary classification 
level. It is obvious from the table that the sensitivities, specificities, and precisions are 
equal to 1 for all classifiers. This is because MB-AI-His is capable of perfectly differentiat-
ing between normal images and images of childhood MB achieving an accuracy of 100% 
using the k-NN, linear and cubic SVM, the LDA, and ESD classifiers. In other words, the 
combination of features used in MB-AI-His is capable of discriminating among normal 
and abnormal images, enabling the five classifiers to attain 100% accuracy. Figure 9 shows 
the performance metrics for the five classifiers used in MB-AI-His CADx after the fusion 
process using the PCA approach for the multi-class classification level. The figure indi-
cates that the maximum sensitivity, specificity, and precision of 0.995, 0.996, and 0.996 are 
attained using the LDA classifier. Figure 10 shows the performance metrics for the five 
classifiers used in MB-AI-His CADx after the fusion procedure using the DCT method for 
the multi-class classification level. The figure indicates that the highest specificity and pre-
cision are attained using the LDA classifier. For medical systems to be reliable, the speci-
ficity and precision should be greater than 0.95, whereas the sensitivity should be greater 
than 0.8 as indicated in [60,61]. It is clear from Table 10 and Figures 9 and 10 that sensitiv-
ities for the binary and multi-class levels are greater than 0.8. The specificities and preci-
sions are also greater than 0.95 for both the binary and multi-class classification levels, 
therefore, MB-AI-His can be considered as a reliable CADx system that enables the accu-
rate and reliable diagnosis of pediatric MB and its subtypes. 

Table 10. The performance metrics for the 5 classifiers used in MB-AI-His CADx after the fusion using PCA and DCT for 
binary class classification level. 

Binary Classification Level 
Features Linear-SVM Cubic-SVM k-NN LDA ESD 

DCT and PCA 
Sensitivity 1 1 1 1 1 
Specificity 1 1 1 1 1 
Precision 1 1 1 1 1 

 
Figure 9. The performance metrics for the five classifiers used in MB-AI-His CADx after the fusion using PCA for the 
multi-class classification level. 
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Figure 10. The performance metrics for the five classifiers used in MB-AI-His CADx after the fusion using DCT for the 
multi-class classification level. 

Table 11 shows the training execution time for the five classifiers of MB-AI-His after 
the fusion procedure done using the DCT and PCA methods for both the binary and multi-
class classification levels compared to the end-to-end DL process. The table proves that 
the fusion process using both the PCA and DCT methods has efficiently reduced the train-
ing execution time for both the binary and multi-class classification levels. This is clear as 
for the binary classification level, the lowest training execution times are 1.996 sec and 
0.858 sec for thePCA and DCT obtained using the LDA and k-NN classifiers respectively, 
which attained 100% accuracy. These execution times are much lower than those of 125 s, 
132 s, and 540 s obtained using the ResNet-50, MobileNet, and DenseNet-201 CNNs, re-
spectively. On the other hand, for the multi-class classification level, the training execution 
times for the LDA classifiers are 2.79 s and 2 s for the PCA and DCT approaches, where 
they obtained the highest accuracy of 99.4%. These execution times are much lower than 
those of 249 s,125 s, and 850 s obtained using the ResNet-50, MobileNet, and DenseNet-
201 CNNs, respectively. 

Table 11. The training execution time (sec) of the three CNN used in MB-AI-His CADx and after the fusion stage of MB-
AI-His CADx for both binary and multi-class classification levels. 

   Multi-Class Classification Level  
DL Method Time Feature Reduction Method Linear-SVM Time Cubic-SVM Time  k-NN Time LDA Time ESD Time 
ResNet-50 249 DCT 2.15 2.03 1.98 2 3.39 
MobileNet 125 

PCA 2.74 3.17 4.75 2.79 6.23 
DenseNet-201 850 

   Binary-Class Classification Level  
DL Method Time Feature Reduction Method Linear-SVM Time Cubic-SVM Time k-NN Time LDA Time ESD Time 
ResNet-50 125 DCT 0.873 0.886 0.858 0.888 2.54 
MobileNet 132 

PCA 2.05 2 2.07 1.996 3.314 
DenseNet-201 540 
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6. Discussion 
MB is the utmost common childhood malignant brain tumor [4]. It is the main reason 

for cancer-related disease and mortality among children [5,6]. Correct identification of the 
pediatric MB and its subtypes can lead to an increased 2 and 5 year survival rate as de-
scribed in [8]. Since follow-up medication extremely depends on identifying the subtype 
of MB, it is essential to achieve an accurate diagnosis [13]. MRI imaging modality produces 
insufficient accuracy when classifying the subtypes of MB, whereas the histopathological 
investigation of biopsy samples is more capable in accurately diagnosing the childhood 
MB and its subtypes [11]. However, the manual analysis of histopathological is very time 
consuming, hard, and requires a need for a pathologist with great experience and skills to 
assess the very detailed property of the subtypes of MB. The availability of such 
pathologists is smaller than the number of patients, especially in the developed and de-
veloping countries. Due to this lack of availability patients travel abroad to make such 
analyses for better prospects which is exhausting and expensive [13]. To overcome these 
challenges, the automatic diagnosis using CADx systems are recommended. These sys-
tems could assist pathologists in the automatic analysis of histopathological images, thus 
decreasing the cost of diagnosis [22].  

This paper proposes a CADx system, namely MB-AI-His, to automatically diagnose 
the pediatric MB and its subtypes from histopathological images with high accuracy and 
efficient time. MB-AI-His consists of five stages: the image preprocessing, subsequent by 
spatial feature extraction, time-frequency feature extraction, feature fusion and reduction, 
and finally the classification stage. Images are augmented and resized in the prepro-
cessing stage. Next, spatial DL features are extracted from the ResNet-50, MobileNet, and 
DenseNet-201 CNNs in the spatial feature extraction stage. Afterward, time-frequency 
features are extracted using the DWT approach from the spatial DL features of the previ-
ous stage to form three spatial-time-frequency DL features. Then, these features are fused 
using the DCT and PCA methods to produce a time-efficient system. Finally, the classifi-
cation stage is made via four different scenarios. Initially, the pre-trained ResNet-50, Mo-
bileNet, and DenseNet-201 CNNs are trained in an end-to-end classification process 
which corresponds to the first scenario. Next, spatial features are pulled out and used 
individually to train five machine learning classifiers corresponding to the second sce-
nario. Afterward, in the third scenario, the spatial-time-frequency DL features (which 
have a lower dimension than the spatial features) are utilized individually to learn the 
five classifiers. Finally, in the last scenario, those features are fused using PCA and DCT 
which further reduce the dimension of the features to produce a timely efficient system. 

Figure 11 shows a comparison between the highest classification accuracy achieved 
for each scenario for the multi-class classification level. The figure verifies that each sce-
nario enhances the accuracy of MB-AI-His compared to the previous scenario. This means 
that using spatial features with ML classifiers (scenario II) is better than the end-to-end 
DL process of scenario I. Using spatial-time-frequency DL features (Scenario III) is also 
better than using only spatial features. Finally, fusing spatial-time-frequency with the 
PCA method (Scenario IV) is superior to using the individual features of the three former 
scenarios.  

For the binary classification level, the spatial-time-frequency features extracted from 
the MobileNet, DenseNet-201, and ResNet-50 CNNs followed by the DWT method are 
reduced using both the PCA and DCT methods. The PCA and DCT feature reduction 
methods have attained an accuracy of 100% for the five classifiers used in MB-AI-His, as 
shown in Table 9. On the other hand, for the multi-class classification level, the PCA meth-
ods has reduced those spatial-time-frequency features extracted from the three CNNs and 
the DWT approach and led to an accuracy of 99.4% using the LDA and ESD classifiers. 
Thus, the architecture of MB-AI-His for both the binary and multi-class classification lev-
els can be concluded as shown in Figure 12. This figure shows that MB-AI-His architecture 
represents the fusion of the MobileNet, DenseNet-201, and ResNet-50 CNN features after 
applying the DWT method to each spatial feature individually. Afterward, these fused 
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features are reduced using the PCA method and then classified via the LDA or ESD clas-
sifier. 

  
Figure 11. A comparison between the highest classification accuracy achieved for each scenario for 
multi-class classification level. 

 
Figure 12. The final architecture of MB-AI-His. 

All experiments were performed using Matlab 2020 a. The processor used is Intel(R) 
Core (TM) i7-10750H (10th generation), processor frequency of 2.6 GHz, Hexa-core proces-
sor RAM 16 GB of type DDR4, hard disc capacity of 1.512 TB, and 64-bit operating system. 
The video controller is NVIDIA GeForce GTX 1660, graphics card capacity is 6 GB. 

To verify the completeness of the introduced MB-AI-His CADx, it is compared with 
related CADx based on the same dataset. This comparison is shown in Table 12. The table 
proves the competence of MB-AI-His CADx over other related CADx for both the binary 
and multi-class classification levels. This is because MB-AI-His CADx achieved an accu-
racy of 100%, which is similar to that obtained by [7,31,33], but higher than that obtained 
by [32]. The competence of MB-AI-His appears clearly in classifying the four subtypes of 
childhood MB, as it attained an accuracy of 99.4%, a sensitivity of 0.995, a specificity of 
0.996, and a precision of 0.996, which are higher than all the related CADx. MB-AI-His is 
reliable for both the binary and multi-class classification levels which is not the case in 
other studies. Therefore, it can be used to help doctors and pathologists in achieving an 
accurate diagnosis, thus reducing the cost of diagnosis and reduce the misdiagnosis that 
might cause during the manual diagnosis by a pathologist. It can also fasten the diagnosis 
procedure and reduce other challenges regarding manual diagnosis. 
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Table 12. A comparison between MB-AI-His and related CADx based on the same dataset. 

Binary Classification Level 

Article Method 
Testing Accuracy 

(%) 
Sensitivity Specificity Precision 

[33] GLCM, GRLN, HOG, Tamura, and LBP features++SVM 100 1 1 1 
[7] Color and Shape features+ PCA+ SVM 100 1 1 1 

[31] GLCM, GRLN, HOG, Tamura and LBP features++MANOVA+SVM 100 1 1 1 

[32] 
AlexNet 
VGG-16 

98.5 
98.12 

- - - 

[32] AlexNet+SVM 
VGG-16+SVM 

99.44 
99.62 

- - - 

Proposed MB-AI-
His 

DenseNet + MobileNet +ResNet fusion using PCA+LDA or ESD classi-
fier 

100 1 1 1 

Multi-Class Classification Level 

  
Testing Accuracy 

(%) 
Sensitivity Specificity Precision 

[7] Color and Shape features+ PCA+ SVM 84.9 - - - 
[13] LBP+GRLM+GLCM +Tamura features +SVM 91.3 0.913 0.97 0.913 
[13] LBP+GRLM+GLCM+Tamura features + PCA+SVM 96.7 - - - 
[31] GLCM, GRLN, HOG, Tamura and LBP features++MANOVA+SVM 65.21 0.72 - 0.666 

[32] 
AlexNet 
VGG-16 

79.33 
65.4 

- - - 

[32] 
AlexNet+ SVM 
VGG-16+SVM 

93.21 
93.38 

- - - 

Proposed MB-AI-
His DenseNet+MobileNet+ResNet fusion using PCA+LDA or ESD classifiers 99.4 0.995 0.996 0.996 

7. Conclusions 
This paper proposed a time-efficient CADx, namely MB-AI-His, for automatic diag-

nosis of pediatric MB and its subtypes from histopathological images. It consists of image 
processing, spatial feature extraction, time-frequency feature extraction, feature fusion 
and reduction, and classification stages. Spatial DL features were extracted from ResNet-
50, MobileNet, and DenseNet-201 CNNs in the spatial feature extraction stage. Afterward, 
spatial-time-frequency DL features were extracted from spatial DL features using DWT. 
Next, these three sets of features were merged using PCA and DCT feature reduction 
methods. MB-AI-His performed the classification of MB and its subtype using four differ-
ent scenarios. Scenario I used the CNNs to perform classification. Spatial DL features were 
extracted from the three CNNS and used individually to train five ML classifiers in sce-
nario II. Spatial-time-frequency DL features extracted in the time-frequency feature ex-
traction stage were utilized individually to train the five ML classifiers in scenario III. Fi-
nally, these feature sets were combined using PCA and DCT and employed to train the 
five ML classifiers. The results showed that each scenario has improved the classification 
accuracy, and this appeared clearly in classifying the four subtypes of MB. The results of 
scenario III showed that using spatial-time-frequency was better than using spatial fea-
tures alone (scenario II) and (scenario I). Moreover, fusing such features using PCA and 
DCT was superior and achieved accuracies of 100% and 99.4% for binary and multi-class 
classification levels respectively, which are higher than scenario III and scenario II and 
could extremely reduce the training execution time compared to scenario I. This means 
that MB-AI-His is accurate, reliable, and time-efficient. It can be used by the pathologist 
to reduce the complications they face while analyzing histopathological images. It can also 
speed up the diagnosis and make it more accurate which will correspondingly lower the 
cost of diagnosis, reduce the risk of tumor progression, and help in choosing the appro-
priate follow-up and treatment plans. Future work will consider collecting additional data 
from more patients and making a full dataset available for researchers. Further investiga-
tion will be conducted on using more DL methods to analyze childhood MB subtypes. 
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