
diagnostics

Article

Association of Thigh Muscle Strength with Texture Features
Based on Proton Density Fat Fraction Maps Derived from
Chemical Shift Encoding-Based Water–Fat MRI

Michael Dieckmeyer 1,* , Stephanie Inhuber 2, Sarah Schläger 1, Dominik Weidlich 3, Muthu R. K. Mookiah 4 ,
Karupppasamy Subburaj 5 , Egon Burian 1,3, Nico Sollmann 1,6,7 , Jan S. Kirschke 1,6 ,
Dimitrios C. Karampinos 3 and Thomas Baum 1

����������
�������

Citation: Dieckmeyer, M.;

Inhuber, S.; Schläger, S.; Weidlich, D.;

Mookiah, M.R.K.; Subburaj, K.;

Burian, E.; Sollmann, N.;

Kirschke, J.S.; Karampinos, D.C.; et al.

Association of Thigh Muscle Strength

with Texture Features Based on

Proton Density Fat Fraction Maps

Derived from Chemical Shift

Encoding-Based Water–Fat MRI.

Diagnostics 2021, 11, 302. https://

doi.org/10.3390/diagnostics11020302

Academic Editor: Sven Nebelung

Received: 22 January 2021

Accepted: 11 February 2021

Published: 13 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar,
Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; sarah.schlaeger@tum.de (S.S.);
egon.burian@tum.de (E.B.); nico.sollmann@tum.de (N.S.); jan.kirschke@tum.de (J.S.K.);
thomas.baum@tum.de (T.B.)

2 Department of Sport and Health Sciences, Technical University of Munich, Georg-Brauchle-Ring 60,
80992 Munich, Germany; stephanie.inhuber@tum.de

3 Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar,
Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany;
dominik.weidlich@tum.de (D.W.); dimitrios.karampinos@tum.de (D.C.K.)

4 VAMPIRE Project, Computing (SSEN), University of Dundee, Nethergate, Dundee DD1 4HN, UK;
mrk2k2@gmail.com

5 Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah
Road, Singapore 487372, Singapore; subburaj@sutd.edu.sg

6 TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22,
81675 Munich, Germany

7 Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Albert-Einstein-Allee 23,
89081 Ulm, Germany

* Correspondence: michael.dieckmeyer@tum.de; Tel.: +49-89-4140-4561; Fax: +49-89-4140-4563

Abstract: Purpose: Based on conventional and quantitative magnetic resonance imaging (MRI),
texture analysis (TA) has shown encouraging results as a biomarker for tissue structure. Chemical
shift encoding-based water–fat MRI (CSE-MRI)-derived proton density fat fraction (PDFF) of thigh
muscles has been associated with musculoskeletal, metabolic, and neuromuscular disorders and
was demonstrated to predict muscle strength. The purpose of this study was to investigate PDFF-
based TA of thigh muscles as a predictor of thigh muscle strength in comparison to mean PDFF.
Methods: 30 healthy subjects (age = 30 ± 6 years; 15 females) underwent CSE-MRI of the lumbar
spine at 3T, using a six-echo 3D spoiled gradient echo sequence. Quadriceps (EXT) and ischiocrural
(FLEX) muscles were segmented to extract mean PDFF and texture features. Muscle flexion and
extension strength were measured with an isokinetic dynamometer. Results: Of the eleven extracted
texture features, Variance(global) showed the highest significant correlation with extension strength
(p < 0.001, R2

adj = 0.712), and Correlation showed the highest significant correlation with flexion
strength (p = 0.016, R2

adj = 0.658). Multivariate linear regression models identified Variance(global)
and sex, but not PDFF, as significant predictors of extension strength (R2

adj = 0.709; p < 0.001), while
mean PDFF, sex, and BMI, but none of the texture features, were identified as significant predictors
of flexion strength (R2

adj = 0.674; p < 0.001). Conclusions: Prediction of quadriceps muscle strength
can be improved beyond mean PDFF by means of TA, indicating the capability to quantify muscular
fat infiltration patterns.

Keywords: magnetic resonance imaging; texture analysis; proton density fat fraction; thigh muscles;
muscle strength
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1. Introduction

Thigh muscle composition and volume have been demonstrated to be affected by
age, exercise, and a multitude of diseases, including musculoskeletal disorders, metabolic
disorders, sarcopenia, and neuromuscular diseases [1–13]. In addition to tissue composition
and volume, structure is hypothesized to play an important role for muscle quality and
function, which has put it in the focus of interest as potential biomarker for the medical
conditions mentioned above.

Magnetic resonance imaging (MRI), in particular quantitative MRI (qMRI), offers a
non-invasive, radiation-free technique for the assessment of muscle tissue. It has been
utilized for the evaluation of various properties, including cross-sectional area (CSA), fatty
infiltration, inflammation, and structure. The proton density fat fraction (PDFF), measured
by chemical shift encoding-based water–fat MRI (CSE-MRI) and validated by magnetic
resonance spectroscopy (MRS) [14] and histology [15], has been established as a robust and
reliable biomarker for muscle fat infiltration (MFI). In this context, mean PDFF values are
commonly used.

Previous studies report on an inverse relationship between MFI and muscle function
of the thigh [1,2,11,13,16–18]. Moreover, the relationship between mean PDFF and isometric
strength of muscles has been investigated previously in the thigh and paraspinal region of
healthy volunteers, demonstrating that mean PDFF better predicts muscle strength than
CSA [18,19]. However, averaging PDFF values across a segmented muscle does not take
into account the variation of muscle fat distribution within the region of interest (ROI), not
fully capturing the available information on muscle structure and resulting muscle quality.

As a promising tool to reveal more quantitative information contained in medical
imaging data, texture analysis (TA) has emerged in recent years [20,21]. Use cases in-
clude neurologic and oncologic imaging [22,23]. For example, TA based on multiple MRI
sequences was shown to differentiate pathological and clinical subtypes of cervical car-
cinoma [24], and it improved the discrimination of normal and cancerous tissue of the
prostate [25]. Regarding musculoskeletal imaging, TA has predominantly been performed
on non-quantitative data, such as sonography [26], computed tomography [27], or conven-
tional T2-weighted MRI sequences [28,29]. Furthermore, TA based on CSE-MRI-derived
PDFF maps has been used in the quantitative analysis of vertebral bone marrow [30,31]. In
this regard, PDFF-based TA can be considered superior in its ability to reveal information
on muscular fat distribution and consequently differentiate muscles with different patterns
of fatty infiltration.

Based on the hypothesis that muscle structure is a significant determinator of muscle
function, the aim of our study was to investigate whether TA of thigh muscles improves
the prediction of muscle strength beyond mean PDFF.

2. Materials and Methods
2.1. Subjects

30 healthy subjects (15 women, 15 men; age = 30.23 ± 5.97 years; body mass index
(BMI) = 27.14 ± 2.60 kg/m2) were recruited for this study as outlined previously [32]. All
subjects completed the International Physical Activity Questionnaire Short-Form (IPACQ-
SF) ensuring a moderate level of physical activity and no history of high-performance
sports [33,34]. Exclusion criteria were vertebral fractures, severe spinal anatomic abnor-
malities or pathologies (such as scoliosis and neuromuscular diseases), as well as general
MRI contraindications. Informed written consent was obtained from all subjects for MRI
examination and biometrical strength measurements. The study was approved by the local
institutional committee for human research.

2.2. MR Imaging

All subjects underwent MRI on the same 3T system (Ingenia, Philips Healthcare, Best,
Netherlands) using the built-in 12-channel posterior coil and a 16-channel anterior coil.
Subjects were positioned head-first in a supine position. An axially prescribed six-echo
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3D spoiled gradient echo sequence was used for chemical shift encoding-based water–fat
separation covering the thigh region on both sides.

The sequence acquired the six echoes in a single TR using non-flyback (bipolar) read-
out gradients with the following imaging parameters: TR/TEmin/∆TE = 6.4/1.1/0.8 ms,
field of view (FOV) = 220 mm × 401 mm × 252 mm, voxel size = 3.2 mm × 2.0 mm
× 4.0 mm, frequency encoding direction = L/R, no SENSE, scan time = 1 min 25 s. A flip
angle of 3◦ was used to minimize T1-bias effects [35].

The gradient echo imaging data was processed online using the vendor’s routines as
described in the following: The multi-echo mDIXON algorithm performs a phase error
correction followed by a complex-based water–fat decomposition using a precalibrated
seven-peak fat spectrum and a single T2* to model the signal variation with echo time. The
imaging-based PDFF maps were computed as the ratio of the fat signal over the sum of fat
and water signals.

2.3. MR Image Segmentation

For each side, segmentation of the quadriceps (EXT) and ischiocrural (FLEX) muscles
was performed by a radiologist by drawing ROIs on the PDFF maps, using the open-source
software MITK (Medical Imaging Interaction Toolkit, German Cancer Research Center,
Division of Medical and Biological Informatics, Heidelberg, Germany). The ROIs covered
the ten most central slices of the thigh muscles and were generated semi-automatically by
prescribing the ROI borders of slices 1, 4, 7, and 10 manually and generating the missing
ROI slices by interpolation. Each generated ROI was visually checked and manually
corrected if necessary, e.g., in case of apparent inclusion of subcutaneous adipose tissue
or unintended exclusion of muscle tissue. Good reproducibility of this approach has been
shown before [16].

ROIs were placed at the muscle contour to minimize the inclusion of subcutaneous fat
or the muscle–fat interface. A representative PDFF map with corresponding segmentation
masks of EXT and FLEX muscles is shown in Figure 1. Mean PDFF of each of the four
muscles was extracted. Mean PDFF values were calculated of EXT and FLEX for the left and
right side, respectively, to obtain values for both muscle groups on both sides (PDFFEXT,left,
PDFFEXT,right, PDFFFLEX,left, and PDFFFLEX,right). Sample color-coded PDFF maps of two
subjects, one with high strength and low mean PDFF, and one with low-strength and
high-mean PDFF are shown in Figure 2.

2.4. Texture Analysis of PDFF Maps

Subsequent to segmentation, TA was performed on the PDFF maps of the segmented
thigh muscles. Three global features (variance, skewness, kurtosis) and the following
eight second-order features were extracted: energy, entropy, contrast, homogeneity, and
correlation were calculated according to [36], variance and sum-average according to [37]
and dissimilarity according to [38]. All texture features were calculated for each of the
four muscles (EXT and FLEX for left and right side, respectively) to obtain texture feature
values for both muscle groups on both sides (e.g., Variance (global)EXT,left, VarianceEXT,right,
VarianceFLEX,left, and VarianceFLEX,right).

Global features were extracted from intensity histograms. In histogram analysis, there
is no universal method for choosing the ideal number and size of bins. The number of
bins used in our analysis was calculated by taking the median of three different methods,
known as Sturges’ method, Scott’s method, and the Freedman–Diaconis method since it
yielded the most reasonable results compared to visual inspection of the histograms, and
showed the best representation of the relevant data characteristics [39–41].
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Figure 1. Representative axial PDFF map (a) with overlays of the four segmented muscle ROIs (b). 
1: right quadriceps muscle, 2: right ischiocrural muscles, 3: left quadriceps muscle, 4: left ischiocru-
ral muscles. (PDFF, proton density fat fraction; ROI, region of interest). 

Figure 1. Representative axial PDFF map (a) with overlays of the four segmented muscle ROIs (b).
1: right quadriceps muscle, 2: right ischiocrural muscles, 3: left quadriceps muscle, 4: left ischiocrural
muscles. (PDFF, proton density fat fraction; ROI, region of interest).

Second-order features were extracted using gray level co-occurrence matrix (GLCM)
analysis [36]. As a preprocessing step, gray level quantization of the PDFF maps was
performed to prevent sparseness by normalizing the image intensities using 200 equally
sized bins and the minimum and maximum gray levels present, corresponding to values
of 0% and 100%, respectively.

GLCM was obtained by computing the joint probability of two adjacent voxel intensi-
ties at a given offset d = (dx, dy, dz) and angular directions θ = (0◦, 45◦, 90◦, and 135◦). dx,
dy, and dz denote the displacement along the x-, y-, and z-axis, respectively.

For 3D GLCM analysis, the co-occurrence probabilities of voxel intensities were com-
puted from the 26 direct neighbors, aligned in 13 directions taking into account discretiza-
tion length differences. The mean value of the features computed from the 13 directions
ensures the rotation invariance. Image preprocessing, including isotropic resampling,
gray level uniform quantization, and TA were performed using MATLAB 2018 (Math-
Works Inc., Natick, MA, USA) and a radiomics toolbox (https://github.com/mvallieres/
radiomics/(accessed on 12 February 2021)) [42–44].

2.5. Isometric Muscle Strength Measurements

The maximum voluntary isometric contraction (MVIC) in single-joint knee extension
and flexion was measured in Nm separately for each side using an isokinetic rotational
dynamometer (IsoMed Back Module, D&R Ferstl GmbH, Hemau, Germany), as described
previously [18,19].

https://github.com/mvallieres/radiomics/
https://github.com/mvallieres/radiomics/
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Figure 2. Exemplary color-coded axial PDFF maps of two study participants. (a) Participant with 
high strength (left side: MVICEXT = 281.7 Nm, MVICFLEX = 113.5 Nm; right side: MVICEXT = 298.7 
Nm, MVICFLEX = 147.0 Nm) and low mean PDFF values (left side: PDFFEXT = 1.07%, PDFFFLEX = 
1.46%; right side: PDFFEXT = 0.31%, PDFFFLEX = 0.98%). (b) participant with low strength (left side: 
MVICEXT = 126.7 Nm, MVICFLEX = 77.2 Nm; right side: MVICEXT = 149.1 Nm, MVICFLEX = 68.1 Nm) 
and high mean PDFF values (left side: PDFFEXT = 5.31%, PDFFFLEX = 6.94%; right side: PDFFEXT = 
4.71%, PDFFFLEX = 8.59%). The upper limit of the color window was set to 30% to better depict the 
PDFF values within the thigh muscles. (PDFFEXT/FLEX, proton density fat fraction of quadriceps and 
ischiocrural muscles; MVICEXT/FLEX, maximum voluntary isometric contraction of extension and 
flexion; Nm, newton meter) 
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Figure 2. Exemplary color-coded axial PDFF maps of two study participants. (a) Participant with high
strength (left side: MVICEXT = 281.7 Nm, MVICFLEX = 113.5 Nm; right side: MVICEXT = 298.7 Nm,
MVICFLEX = 147.0 Nm) and low mean PDFF values (left side: PDFFEXT = 1.07%, PDFFFLEX = 1.46%;
right side: PDFFEXT = 0.31%, PDFFFLEX = 0.98%). (b) participant with low strength (left side:
MVICEXT = 126.7 Nm, MVICFLEX = 77.2 Nm; right side: MVICEXT = 149.1 Nm, MVICFLEX = 68.1 Nm)
and high mean PDFF values (left side: PDFFEXT = 5.31%, PDFFFLEX = 6.94%; right side:
PDFFEXT = 4.71%, PDFFFLEX = 8.59%). The upper limit of the color window was set to 30% to
better depict the PDFF values within the thigh muscles. (PDFFEXT/FLEX, proton density fat fraction
of quadriceps and ischiocrural muscles; MVICEXT/FLEX, maximum voluntary isometric contraction
of extension and flexion; Nm, newton meter).

2.6. Statistical Analysis

Statistical analyses were performed with SPSS 26.0 (SPSS Inc., Chicago, IL, USA) using
a two-sided level of significance α = 0.05 for all statistical tests.

The Kolmogorov–Smirnov test indicated normally distributed data for age, BMI,
PDFF, and isometric strength measurements, as well as for the majority of texture features.
Mean and standard deviation (SD) of age, BMI, PDFFEXT,left, PDFFEXT,right, PDFFFLEX,left,
PDFFFLEX,right, and texture features were calculated for males and females, and sex-
dependent differences were compared using unpaired t-tests.

Multiple linear regression analyses were performed to determine significant corre-
lations of the measured parameters and MVICEXT. For each regression, independent
variables were sex, side (left or right), age, BMI (all for adjustment), and one of the follow-
ing twelve parameters: mean PDFFEXT and texture features of the quadriceps muscles on
both sides. Analogously, multiple linear regression analyses were performed to determine
significant correlations of the measured parameters and MVICFLEX. For each regression,
independent variables were sex, side, age, BMI, and one of the following twelve parameters:
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mean PDFFFLEX and texture features of the ischiocrural muscles on both sides. Adjusted
R2 (R2

adj) was calculated for each model.
Stepwise multivariate linear regression models were used to determine significant

predictors of extension and flexion strength. Independent variables were sex, side, age,
BMI, as well as PDFFEXT and the eleven texture features for EXT (prediction of extension
strength) or PDFFFLEX and the eleven texture features for FLEX (prediction of extension
strength). This resulted in 26 potential predicting variables, respectively. Inclusion (p < 0.05)
and exclusion (p > 0.10) of independent variables in the linear regression models were based
on the p-values of the F-test. Adjusted coefficient of determination (R2

adj) was calculated
for each model.

3. Results

Mean PDFF in the left and right quadriceps muscles was higher in males than females
(left: 3.46% ± 1.51% vs. 3.15% 1.28%, right: 2.48% ± 1.68% vs. 2.31% ± 1.17%). Mean
PDFF in the left and right ischiocrural muscles was lower in males than females (left:
3.44% ± 1.64% vs. 4.53% ± 1.71%, right: 3.16% ± 1.78% vs. 4.71% ± 2.43%). However,
the differences were not significant (p > 0.05). There were no sex-dependent significant
differences in age (males: 30.5 ± 4.9 years, females: 29.9 ± 7.0 years, p = 0.789) or BMI
(males: 27.9 ± 3.1 kg/m2, females: 26.4 ± 1.8 kg/m2, p = 0.113).

Of the analyzed texture features, males showed significantly higher values than fe-
males for Variance(global) of the quadriceps muscles (left: 336.34 ± 45.26 vs. 284.61 ± 36.74,
p = 0.002; right: 339.57 ± 44.02 vs. 289.64 ± 31.94, p = 0.001) as well as Variance(global) of the
ischiocrural muscles (left: 151.20 ± 25.97 vs. 131.30 ± 23.86, p = 0.037; right: 152.61 ± 24.38
vs. 131.73 ± 23.91, p = 0.025). Males showed significantly lower values than females for
Skewness(global) of the ischiocrural muscles (left: −0.73 ± 0.80 vs. −0.04 ± 0.72, p = 0.021;
right: −0.54 ± 0.69 vs. 0.06 ± 0.89, p = 0.049).

On the left and right side, respectively, males showed significantly higher MVIC val-
ues than females for both extension (left: 236.92 ± 50.95 Nm vs. 146.57 ± 24.35 Nm,
p < 0.001; right: 245.36 ± 36.75 Nm vs. 157.65 ± 27.73 Nm, p < 0.001) and flexion
(left: 111.51 ± 19.15 Nm vs. 74.65 ± 12.28 Nm, p < 0.001; right: 113.71 ± 19.01 Nm vs.
69.54 ± 13.44 Nm, p < 0.001; Supplementary Table S1).

In the multiple linear regressions, adjusted for sex, side, age, and BMI, Variance(global)EXT
(p < 0.001, R2

adj = 0.712) and VarianceEXT (p = 0.038, R2
adj = 0.660) showed significant corre-

lations with MVICEXT. PDFFFLEX (p = 0.009, R2
adj = 0.664), Skewness(global)FLEX (p = 0.028,

R2
adj = 0.652), and CorrelationFLEX (p = 0.016, R2

adj = 0.658) showed significant correlations
with MVICFLEX (Table 1). To visualize the association of strength measurements with
PDFF as well as the texture features with the highest R2

adj, scatter plots of PDFFEXT and
Variance(global)EXT vs. MVICEXT, respectively, as well as PDFFFLEX and CorrelationFLEX
vs. MVICFLEX are shown in Figure 3.

Table 1. Results of the linear correlation analyses (adjusted for sex, side, age and BMI) of proton
density fat fraction (PDFF) as well as the analyzed texture features versus maximum voluntary
isometric contraction (MVIC) in extension and flexion, respectively. Significant correlations are
marked in bold and significant correlations after Bonferroni correction are marked with *. R2

adj,
adjusted coefficient of determination; p, p-value of the respective parameter based on the F-test.

Parameter
Extension Flexion

R2
adj p R2

adj p

PDFF 0.636 0.405 0.664 0.009
Variance(global) 0.712 <0.001 * 0.627 0.277
Skewness(global) 0.635 0.489 0.652 0.028
Kurtosis(global) 0.634 0.518 0.633 0.159

Energy 0.634 0.508 0.622 0.528
Contrast 0.649 0.103 0.623 0.432
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Table 1. Cont.

Parameter
Extension Flexion

R2
adj p R2

adj p

Entropy 0.642 0.212 0.630 0.223
Homogeneity 0.640 0.264 0.630 0.214

Correlation 0.634 0.501 0.658 0.016
SumAverage 0.632 0.754 0.636 0.121

Variance 0.660 0.038 0.630 0.209
Dissimilarity 0.649 0.109 0.622 0.517Diagnostics 2021, 11, x 8 of 14 
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with the highest R2adj in the multiple adjusted linear regression analyses (Variance(global)EXT, CorrelationFLEX) vs. MVICEXT 
(b) and MVICFLEX (d). Linear regression lines are displayed for significant correlations. (PDFFEXT/FLEX, proton density fat 
fraction of quadriceps/ischiocrural muscles; MVICEXT/FLEX maximum voluntary isometric contraction of quadriceps/ischi-
ocrural muscles). 
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predictors (R2adj = 0.709; p < 0.001). In the multivariate linear regression analysis regarding 
flexion strength (independent variables: sex, side, age, BMI, PDFFFLEX, and the eleven tex-
ture features of FLEX), sex (p < 0.001), BMI (p = 0.001), and PDFFFLEX (p = 0.008) were iden-
tified as statistically significant predictors (R2adj = 0.674; p < 0.001). Age was not identified 
as a statistically significant confounder in any of the models. 
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Figure 3. Scatter plots of PDFFEXT vs. MVICEXT (a) and PDFFFLEX vs. MVICFLEX (c). Scatter plots of the texture
parameters with the highest R2

adj in the multiple adjusted linear regression analyses (Variance(global)EXT, CorrelationFLEX)
vs. MVICEXT (b) and MVICFLEX (d). Linear regression lines are displayed for significant correlations. (PDFFEXT/FLEX,
proton density fat fraction of quadriceps/ischiocrural muscles; MVICEXT/FLEX maximum voluntary isometric contraction of
quadriceps/ischiocrural muscles).
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In the multivariate linear regression analysis regarding extension strength (indepen-
dent variables: sex, side, age, BMI, PDFFEXT, and the eleven texture features of EXT), sex
(p < 0.001) and Variance(global)EXT (p < 0.001) were identified as statistically significant
predictors (R2

adj = 0.709; p < 0.001). In the multivariate linear regression analysis regarding
flexion strength (independent variables: sex, side, age, BMI, PDFFFLEX, and the eleven
texture features of FLEX), sex (p < 0.001), BMI (p = 0.001), and PDFFFLEX (p = 0.008) were
identified as statistically significant predictors (R2

adj = 0.674; p < 0.001). Age was not
identified as a statistically significant confounder in any of the models.

4. Discussion

In our study, we showed that thigh muscle texture features, extracted from CSE-MRI-
derived PDFF maps, significantly correlated with strength measurements of quadriceps
and ischiocrural muscles. Compared to mean PDFF alone, texture features improved the
prediction of muscle strength of the quadriceps but not of the ischiocrural muscles.

Several of the extracted texture features demonstrated significant sex-dependent
differences: Variance(global) was higher in males than females in both quadriceps and
ischiocrural muscles, and Skewness(global) was lower in males than females in the is-
chiocrural muscles. Inhuber et al. investigated sex-dependent differences of thigh muscle
PDFF and CSA. In their study, females showed significantly higher mean PDFF of ischiocru-
ral muscles on the right side, and males showed significantly higher CSA of quadriceps
muscles on both sides and significantly higher CSA of ischiocrural muscles on the left
side [18]. However, to date, no comparable studies have reported on the sex-dependence
of MRI-based texture features of thigh muscles and future studies are needed to confirm
our initial results in a broader age range.

In the last years, the application of texture features for advanced quantitative analysis
of medical imaging has been growing, with an emphasis on oncology [45–47]. In a study
with 41 female subjects, Burian et al. demonstrated that PDFF-based TA of vertebral bone
marrow is feasible and can differentiate pre- and postmenopausal women [30]. To the best
of our knowledge, CSE-MRI-based TA of thigh muscles has not been performed previously.
Yet, the relationship between MRI-based measurements of muscle composition and isoki-
netic strength measurements has been investigated before. For thigh muscles, previous
work shows that mean PDFF inversely correlates with isokinetic strength and improves
the prediction of isokinetic strength beyond CSA [16,18]. This improved predictive power
of mean PDFF was also demonstrated in paraspinal muscles [19]. The mentioned studies
inspire the hypothesis that muscle composition is at least as important as pure muscle
volume as a determinator of muscle function, and the two parameters CSA and mean PDFF
may complement each other with respect to the prediction of muscle strength. Furthermore,
in patients with neuromuscular disorders, an inverse relationship of thigh muscle PDFF
and strength was shown [11,48]. The multivariate linear regression analyses performed in
the present study revealed different results for the two analyzed thigh muscle groups. Sex
and Variance(global)EXT, but not PDFF, were identified as significant predictors of extension
strength, while sex, BMI, and PDFFFLEX, but none of the analyzed texture features, were
identified as significant predictors of flexion strength. Hence, texture features improve
the prediction of muscle strength beyond mean PDFF in the extensor compartment of the
thigh. Based on the hypothesis that TA of muscle tissue derived from PDFF maps can
quantify the distribution of muscle fat, this may be explained by a different pattern of MFI
of the two muscular compartments, de facto meaning that TA can potentially differentiate
quadriceps muscles with the same mean fat fraction but different pattern of fat infiltration,
i.e., homogeneous vs. heterogeneous (e.g., in the form of fat streaks). However, we could
not find a significant improvement of muscle strength prediction for the flexor muscles,
which could have various explanations. In this context, differences between the two com-
partments regarding anatomy, such as number of involved joints (quadriceps: one joint vs.
ischiocrural muscles: two joints), muscle volume and concomitant partial volume effects
(quadriceps: high vs. ischiocrural: low volume; Figure 1), as well as physiology, such as
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neuromuscular activation (quadriceps: one peripheral nerve (N. femoralis) vs. ischiocrural:
two peripheral nerves (N. tibialis, N. fibularis communis)) should be considered. The
relatively small sample size of the study, potentially resulting in insufficient statistical
power to demonstrate a significant effect for the flexor muscles, has to be acknowledged
as well.

In the present study, TA of thigh muscles was performed based on quantitative PDFF
maps. These maps were derived from CSE-MRI, which delivers sequences with fast
acquisition and good reproducibility that can easily be added to routine imaging protocols
of the thigh region [19]. Felisaz et al. applied TA in thigh musculature on non-quantitative
T2-weighted spin-echo images for the purpose of machine-learning-aided prediction of
water T2 and fat fraction [28]. However, TA has not been performed before on CSE-MRI-
derived PDFF maps. For the analysis of tissue composition, CSE-MRI-derived PDFF maps
have the advantage of higher inter- and intra-individual comparability as well as higher
reliability, as compared to the analysis of non-quantitative MRI.

To the best of our knowledge, the present work is the first one applying TA based
on qMRI of thigh muscles. We demonstrated an improved prediction of quadriceps
muscle strength, as compared to mean PDFF. This is an encouraging finding, potentially
implying that muscle quality, reflected by the pattern of muscular fat distribution, has a
significant impact on extensor muscle function. Hence, the combination of TA and CSE-
MRI, representing state-of-the-art qMRI acquisition and postprocessing methods, could
help to discover novel insights into quality and function of thigh muscles.

There are limitations to the present study. First, the study cohort comprises only a
rather small number of young and healthy subjects featuring a relatively low mean and
narrow distribution of PDFF values. Regardless of the low variation in muscle fat content,
we observed significant correlations of texture features and strength measurements in
both thigh muscle compartments. This leaves room for the interpretation that even small
changes in muscle composition are reflected by structural changes, which exert a relevant
effect on the biomechanical function of the muscle. As a next step, future studies covering
a broader age spectrum and relevant patient cohorts (e.g., neuromuscular, musculoskeletal,
or metabolic disorders) are needed to (i) confirm our initial results, and (ii) further investi-
gate the potential of CSE-MRI-based muscle TA in disease, thus deepening the knowledge
of thigh muscle quality and (dys-)function. This could translate into improved detection of
pathologic muscle alterations and MFI at an early stage of disease. Second, TA performed
in the present study included only a limited number of texture features. Extending the TA
through the inclusion of additional texture operators, such as rotationally invariant local
binary patterns, could reveal even more information on muscle structure [49]. Third, the
muscle ROIs were segmented as a whole, which means that both intra- and intermuscu-
lar adipose tissue (intraMAT, interMAT) contribute to the PDFF distribution and could
consequentially affect the TA results. However, given the resolution and image quality
of the acquired images (Figure 1), an accurate segmentation of the single components
of the quadriceps and ischiocrural muscles and subsequent exclusion of intraMAT was
not practical. As far as feasible with regard to signal-to-noise ratio and acquisition time,
adjusting the MRI sequence parameters should be considered in future studies, to enable
more detailed muscle segmentation excluding interMAT.

5. Conclusions

We demonstrated the feasibility of TA based on CSE-MRI-derived PDFF maps in
thigh muscles. Our initial results show improved prediction of muscle strength beyond
mean PDFF in the quadriceps muscle, possibly indicating an interaction between muscle
function and fat distribution. Hence, PDFF-based TA may have the potential to distinguish
quadriceps muscles based on the pattern of MFI and improve the detection and monitoring
of muscular alterations.
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Abbreviations

BMI body mass index
CSA cross-sectional area
CSE-MRI chemical shift encoding-based MRI
EXT quadriceps muscles, extensors
FLEX ischiocrural muscles, flexors
FOV field of view
GLCM gray level co-occurrence matrix
intraMAT intramuscular adipose tissue
interMAT intermuscular adipose tissue
IPACQ-SF International Physical Activity Questionnaire Short-Form
L/R left-right direction
MFI muscle fat infiltration
MITK Medical Imaging Interaction Toolkit
MRS magnetic resonance spectroscopy
MVIC maximum voluntary isometric contraction
MVICEXT MVIC of quadriceps muscle
MVICFLEX MVIC of ischiocrural muscles
Nm newton meter
NMD neuromuscular disease
PDFF proton density fat fraction
PDFFEXT,left PDFF of left quadriceps muscle
PDFFEXT,right PDFF of right quadriceps muscle
PDFFFLEX,left PDFF of left ischiocrural muscles
PDFFFLEX,right PDFF of right ischiocrural muscles
qMRI quantitative magnetic resonance imaging
ROI region of interest
R2 coefficient of determination
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R2
adj adjusted R2

SENSE sensitivity encoding
T Tesla
T1 longitudinal relaxation time
T2 transverse relaxation time
T2* effective transverse relaxation time
TA texture analysis
TR time of repetition
TE echo time
TEmin minimal echo time
∆TE echo time step
3D three-dimensional
Texture features of the quadriceps muscle are abbreviated using the subscript ‘EXT’, e.g.,

CorrelationEXT. Texture features of the ischiocrural muscles are abbreviated using the subscript

‘FLEX’, e.g., CorrelationFLEX.
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