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Abstract: Pseudomonas aeruginosa (PA) is a common bacterial pathogen in chronic wounds known
for its propensity to form biofilms and evade conventional treatment methods. Early detection of
PA in wounds is critical to the mitigation of more severe wound outcomes. Point-of-care bacterial
fluorescence imaging illuminates wounds with safe, violet light, triggering the production of cyan
fluorescence from PA. A prospective single blind clinical study was conducted to determine the
positive predictive value (PPV) of cyan fluorescence for the detection of PA in wounds. Bacterial
fluorescence using the MolecuLight i:X imaging device revealed cyan fluorescence signal in 28 chronic
wounds, including venous leg ulcers, surgical wounds, diabetic foot ulcers and other wound types.
To correlate the cyan signal to the presence of PA, wound regions positive for cyan fluorescence
were sampled via curettage. A semi-quantitative culture analysis of curettage samples confirmed
the presence of PA in 26/28 wounds, resulting in a PPV of 92.9%. The bacterial load of PA from
cyan-positive regions ranged from light to heavy. Less than 20% of wounds that were positive for
PA exhibited the classic symptoms of PA infection. These findings suggest that cyan detected on
fluorescence images can be used to reliably predict bacteria, specifically PA at the point-of-care.

Keywords: bacteria; fluorescence imaging device; Pseudomonas aeruginosa; chronic wounds

1. Introduction

It is well established that bacterial proliferation in wounds contributes to infection
and delayed wound healing [1–4]. The chronic wound microenvironment is ideal for
bioburden and usually contains multiple bacterial species [5]. Among the most com-
mon bacterial species observed in chronic wounds is the gram-negative opportunistic
pathogen Pseudomonas aeruginosa (PA) [6,7]. This non-fermenting aerobic rod bacterial
species is a common pathogen in nosocomial infections, particularly in chronic and burn
wounds [8–10]. Immunocompromised patients and those with comorbidities such as vas-
cular diseases and diabetes are particularly susceptible to developing PA infections [11]. In
a multicenter retrospective analysis of 970 venous leg ulcers, PA was detected in one third
of patients [12], while another study reports the prevalence of PA in more than half of the
chronic leg ulcers evaluated [9]. The presence of PA in wounds is associated with more
severe wound outcomes. Wounds containing PA are often larger in size and experience
prolonged duration compared to wounds that do not contain PA [5,7,13–15]. The presence
of PA in burn wounds results in more rapid deterioration [16] and higher rates of sepsis
leading to death [17]. Similarly, in leg ulcers, the presence of PA was associated with larger
size, delayed healing [13] and a higher rate of skin graft failure [4]. The pathogenicity of PA
is mediated, in part, by its capacity to produce a variety of virulence factors that mitigate
the impact of environmental stressors and xenobiotic agents [18]. PA is notorious for its
intrinsic resistance to many antibiotics and ability to form biofilm matrices that evade
conventional antibiotics [19–22]. Due to the limited treatment options available and the
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potential for this pathogen to develop antibiotic resistance, it has been identified by the
World Health Organization as a critical research priority for the development of novel
therapies [23].

Currently, point-of-care identification of wounds infected with PA is typically through
evaluation of clinical signs and symptoms. Wounds grossly colonized or infected with PA
may present with a malodorous, greenish crust, a greenish tinge on removed dressings
or may emit a characteristic sweet odor [24,25]. These characteristics are attributed in
part to the production of pyocyanin, a blue–green pigment that causes oxidative stress
in the host [26]. However, in many wounds with PA infection, these symptoms are not
observed [27]. Moreover, high bacterial loads may not mount these symptoms, thus
delaying detection and onset of treatment. In most cases, PA infection in wounds is
confirmed by culture-dependent microbiological analysis. These results often arrive 24–48
h after sampling, delaying application of necessary treatments to reduce the PA burden.
New approaches to rapidly detect PA infection in wounds are needed to mitigate the
challenges associated with treating PA infection.

One way to detect PA more rapidly in wounds is by taking advantage of its intrinsic
fluorescence properties. Studies have shown that Pseudomonas spp. produce a unique cyan
fluorescent signature under violet light illumination [28–30], attributed to the endogenous
production of pyoverdine, a fluorescent siderophore [31,32]. Pyoverdine is unique to the
Pseudomonad family and acts primarily as an iron-scavenging molecule in PA [33]. It is
one of several virulence factors produced by PA that is also involved in regulating the
production of several secreted toxins [34]. Pyoverdine plays an essential role in establishing
infection and biofilm formation [35], and its production is directly linked to PA proliferation
and virulence against mammalian and invertebrate hosts [36–39]. Additional studies have
shown that the accumulation of pyoverdine correlates with virulence of PA, attributed in
part to resistance to multiple antimicrobials [40]. As PA is the most common Pseudomonad
detected in wounds [5,27], the fluorescent properties of pyoverdine may be exploited in
the clinical context to serve as a key biomarker of PA infection.

Evidence for Cyan Fluorescence Detected from Pseudomonas aeruginosa

Preclinical and clinical studies have consistently reported detection of cyan fluores-
cence correlating with the presence of PA when imaged with violet light (MolecuLight
i:X, Toronto, ON Canada). Compelling in vitro data have reported the detection of cyan
fluorescence from PA (ATCC 9027) as early as 24 h after being incubated in blood agar
plate media [41] (Figure 1a). Similarly, in mouse wounds inoculated with PA, strong cyan
fluorescence was detected as early as 1 day after inoculation, and this fluorescence signature
persisted up to 8 days after inoculation [42] (Figure 1b). In an egg-based infection model,
real-time fluorescence imaging detected cyan fluorescence indicative of PA, and this was
used to assess the efficacy of antimicrobial treatments against PA [43].

In line with preclinical studies, numerous observational studies and clinical trials have
detected cyan fluorescence in wounds positive for PA (Figure 1c,d) [27,44–51]. Wound
biopsies [27,46], curettage samples [45] or swabs [47–51] were collected for microbiological
analysis to confirm the presence and amount of PA detected from cyan positive regions. In
multiple instances, cyan fluorescence indicative of PA was detected in wounds otherwise
lacking the typical signs of PA infection [27,44,46]. Venous leg ulcers and surgical sites
were among the most common chronic wounds where cyan fluorescence has been detected
(Figure 1c,d), consistent with the known high prevalence of PA in leg ulcers [5]. In one
study examining fluorescence detection from chronic wounds in an outpatient plastic
surgery center, the presence of PA was reported in all wounds where cyan fluorescence was
detected, resulting in a sensitivity and specificity of 100% [49]. These results contrast with
those of Pjipe et al. who used fluorescence imaging in a population of burn wounds: nine
of which were deemed positive for cyan fluorescence [47]. In this study, cyan fluorescence
resulted in a sensitivity of 100% for detection of PA, yet positive predictive value (PPV)
was only 44% [47]. This discrepancy was attributed to inaccurate sampling methods and
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challenges in distinguishing between cyan fluorescence and green fluorescence from tissue,
a challenge which may be lessened with experience and training on image interpretation
as with any imaging modality [47]. Given the relatively small sample size in both studies,
and the variable sampling methods, additional studies are needed to determine the PPV
of cyan fluorescence detected under violet light illumination. Therefore, the purpose of
the current study was to (1) evaluate the positive predictive value of cyan fluorescence
observed on fluorescence images to predict the presence of Pseudomonas aeruginosa in
chronic wounds and (2) determine the range of bacterial loads detected from cyan-positive
regions of the wound.
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17-011, August 2017). All patients 18 years or older who present with a chronic wound (>4 

Figure 1. Detection of cyan fluorescence in preclinical and clinical studies using fluorescence imaging.
Standard (top panel) and fluorescence (bottom panel) images were captured of preclinical and clinical
cases of cyan fluorescence from Pseudomonas aeruginosa (PA). Cyan fluorescence was detected 24 h after
inoculating blood agar plates with PA (a), and 24 h after NCr mouse wounds were inoculated with PA
(b). Cyan fluorescence has also been observed from chronic wounds positive for PA (c,d), confirmed
by microbiological analysis (clinicaltrials.gov (accessed on 1 February 2021): NCT03540004). White
arrows denote regions of cyan fluorescence.

2. Materials and Methods
2.1. Patient Population

Participants were recruited from the Scarborough Health Network (Centenary site,
Toronto, ON, Canada) as part of a non-randomized, single-center evaluation. Ethical
approval was granted by the Scarborough and Rouge Hospital Research Ethics Board
(SUR-17-011, August 2017). All patients 18 years or older who present with a chronic
wound (>4 weeks duration), were able to provide consent and were receiving standard
treatment, were eligible to participate. Patients were excluded if they had any known
contraindications to routine wound care, had received treatment with an investigational
drug within the previous month or were unable to provide consent. All patients provided
written consent for participation and medical photography release.

2.2. Fluorescence Imaging

The fluorescence imaging procedure was performed as part of routine wound assess-
ment. The procedure was explained to all patients before imaging. All wound dressings
were removed, and initial cleaning and debridement was performed to remove surface
contaminants. Both standard and fluorescence images were acquired for each wound. The
imaging was performed as follows: First, a standard image was taken with the imaging
device under ambient lighting. The room lights were then turned off or a DarkDrape
(MolecuLight Inc., Toronto, ON, Canada) was used to create the darkened environment
required to capture a fluorescence image. The 405 nm excitation light emitting diodes
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(LEDs) were then turned on, the device was placed 8–10 cm away from the wound (guided
by the device rangefinder) and a fluorescence image was captured. Specialized optical
filters on the device ensure that only relevant fluorescence from tissue and bacteria are
captured and the violet excitation light is filtered out. Under violet light illumination,
background tissues appear various shades of green, while bacteria at loads >104 CFU/g
appear red or cyan [27,52,53]. The study clinician was trained to interpret images and
detect the presence of cyan fluorescence using criteria listed in Table 1.

Table 1. Questions used to aid in identification of cyan fluorescence in images.

Question Example Image

Does the fluorescent signature have a glowing white center
with a blue/green border?

Dashed circle outlines regions of glowing cyan/white in
the wound.
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at a 90% confidence level. The sample size calculation is based on asymptotic normal
approximation, which is given by:

n =

(( zα
2
))

2 p(1 − p))
ME2

(1)

where 1 − α is the confidence level, ME is the margin of error, p is the planned estimate
of positive predictive value, and zα/2 is the 100(1 − α/2) percentile of the standard
normal distribution.

A curettage scraping obtained from a cyan fluorescence positive area, as indicated by
fluorescence imaging, resulting in a microbiology finding confirming the presence of PA
(light growth or higher) was considered a true positive (TP). A biopsy or curettage scraping
obtained from a cyan fluorescence positive area, as indicated by the imaging, resulting
in a microbiology report negative for the presence of PA or with scant growth only was
considered a false positive (FP). The positive predictive value—the probability that a region
of cyan fluorescence within or around a wound will contain PA—was calculated as follows:

PPV =
TP

(TP + FP)
(2)

3. Results

A total of 28 patients (Fitzpatrick skin type 1 to 6) with at least one wound emitting
cyan on the fluorescence image were recruited into the study (Table 2). Most study par-
ticipants were male (57.1%), and most wounds were on the lower extremities. Venous leg
ulcers (VLUs) were the most common wound type (60.7%).

Table 2. Patient demographics.

Patient Demographics No. (% of Total)

Sex (male) 16 (57.1)
Wound Type

VLU 17 (60.7%)
DFU 4 (14.3%)

Surgical site 2 (7.1%)
Pressure ulcer 1 (3.6%)
Lymphedema 1 (3.6%)

Rheumatoid wound 1 (3.6%)
Other 2 (7.1%)

3.1. Positive Predictive Value and Bacterial Loads of Cyan Fluorescence

All wounds included in the study fulfilled the criteria for cyan fluorescence outlined
in Table 1. Bright white/cyan fluorescence was detected from various wound types that
were positive for cyan fluorescence (Figure 2). Under standard light conditions, only one
wound portrayed the greenish crust, attributed to pyocyanin, that is commonly associated
with presence of PA [26]. Most study wounds demonstrated few “classic” symptoms of PA.
Semi-quantitative analysis of curettage samples taken from the region of cyan fluorescence
confirmed presence of PA in 26 wounds (true positives); two false positives were detected.
This resulted in a positive predictive value (PPV) of 92.9% for cyan fluorescence indicating
presence of PA.

Bacterial load of curettage scrapings taken from cyan-positive regions of the wound and
analyzed by semiquantitative analysis ranged from scant to heavy growth but were predom-
inantly moderate-to-heavy. Culture analysis confirmed presence of PA in 26/28 wounds. PA
was the only Pseudomonad detected in all culture reports. Eighteen (64.3%) wounds had
heavy growth of PA, corresponding to cyan-positive regions, while in six (21.4%) wounds,
moderate growth of PA corresponding to cyan fluorescence was observed (Figure 3). In
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two wounds, light growth of PA was observed, while in two wounds semi quantitative
analysis revealed scant or no growth of PA from the cyan-positive curettage sample.
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Figure 2. Example standard and fluorescence images of eight patients. Wound types included DFUs
(a,b,h), VLUs (c,d,f,g) or other (e). Among the examples listed, only one wound (a) displayed the
classic greenish tinge on bandages associated with presence of PA. Each wound had discrete locations
of cyan fluorescence. A curettage sample was collected from the region(s) denoted by a dashed
white circle in each wound image. Bacterial species and load were identified using semi-quantitative
culture analysis. In all images shown here, regions of cyan fluorescence corresponded with presence
of PA. Tissue appears green on fluorescence images.

3.2. Other Microbiological Findings

Consistent with previous studies [5,7,55], PA occurred polymicrobially in 92.3%
(24/28) of wounds; in 69% of these wounds, faint red fluorescence indicative of porphyrin-
producing bacteria was also observed. The most prevalent species detected in wounds
positive for PA include: Enterococcus faecalis (34.6% of wounds), Staphylococcus aureus
(19.2%) and Escherichia coli (15.4%). Culture analysis of wound samples revealed antibiotic
resistant PA present in three patients, one of which had multi-drug resistant PA.

3.3. Assessment of “Classic” Pseudomonas spp. Symptoms

The presence of the “classic” Pseudomonas spp. symptoms (i.e., greenish tinge exudate,
sweet smell) in these wounds was surprisingly rare. The study clinician found these
symptoms could not be used as a preliminary screening tool to determine which wounds
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should be imaged for potential study inclusion. Notably, the greenish tinge on the bandage
was observed in less than 20% of study wounds, including the example in Figure 2a. A
sweet smell was not observed.
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Figure 3. Total bacteria load quantified via semi-quantitative culture analysis from sampled regions
of cyan fluorescence. Numbers on top of bars indicate number of study wounds in each category.
Wounds where light to heavy bacterial loads were identified were considered true positives. In one
wound, cyan fluorescence was observed but microbiological analysis did not detect bacterial load,
thus it was considered a false positive.

3.4. Cyan Signal Monitored after Mechanical and Antimicrobial Treatments

Though not a pre-defined study outcome, the cyan signal from PA after targeted
treatments was monitored using fluorescence imaging as part of the patients’ standard
of care. In some wounds, once PA presence and location(s) were detected, cleansing and
debridement were able to remove the cyan signal, entirely or in part, during the patient’s
visit. Other wounds had antimicrobial dressings prescribed, and at the next visit a reduction
in cyan signal was typically, but not always, noted.

The case in Figure 4 provides an example of how detection of cyan fluorescence
impacted clincian decision making. In this case, a 78 year old female patient receiving
home care was referred to the wound care clinic for treatment of a chronic venous leg ulcer
on her left leg. Home care nurses had stopped providing negative pressure wound therapy
and antimicrobials to treat the wound, and it had consequently deterioriated. Upon initial
examination, no overt signs or symptoms of infection were detected. However, fluorescence
images revealed the presence of bright white cyan fluorescence in the periwound region
(Figure 4b); this prompted the clinican to perform additional debridement of the wound.
After debridement, another standard and fluorescence image was captured, revealing cyan
fluorescence and a substantial decrease in bright white/cyan signal previously observed
(Figure 4d). The persistence of cyan fluorescence, particularly in the periwound region,
prompted the clincian to select a silver cream and dressing and provide a larger dressing to
cover the periwound region.
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clearly present (white arrows).

4. Discussion

The need for definitive methods to improve bacterial detection at point-of-care is
indisputable, given that >80% of wounds with high bacterial loads are missed by routine
assessment [27,56]. The pathogenicity of PA and its propensity for biofilm formation [19–22]
make its rapid detection critical. In this study, PA was detected at point-of-care in regions
of cyan fluorescence with a PPV of 93%. The PPV reported here is similar to findings from
Hurley et al. [49], but with a larger sample size and across a greater variety of wound
types in a statistically powered trial. In contrast, the PPV we report here is double that
reported by Pjipe et al. [47]; this is likely due to more targeted sampling to regions of cyan
fluorescence and more appropriate subsurface sampling method employed in our study.
In addition, the quality of clinical observations and image interpretation may have been
higher in our study due to more than 3 years of routine use of the imaging device [45,52,57].
The color red on fluorescence images has been repeatedly shown in clinical trials to have a
PPV > 95% for detecting high bacterial loads [27,49,53]. Consistent with these findings, the
data from this study suggest that cyan on fluorescence images can also be used to reliably
predict bacteria, specifically PA.

In this study, a high variation in the intensity of cyan fluorescence was observed across
wounds, in some cases appearing blue–green and in others, appearing a glowing white. The
case in Figure 4 highlights how, in an individual wound, the glowing white signal reduces
to a pure cyan as debridement or other antimicrobial treatments that presumably lessened
the bacterial load are applied. The ability to monitor this change in cyan fluorescence
immediately after applying treatment enables real-time insight of the effectiveness of
various treatments. Yet, the variation in signal intensity from one wound to another in
this study could not entirely be explained by differences in PA load. Indeed, every wound
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is a unique environment, and it is well established that production of cyan fluorescing
pyoverdine is environment specific [28–30]. Production of pyoverdine is regulated by
a number of environmental factors including iron concentration, biofilm formation and
bacterial cell aggregation [58,59]. Furthermore, the wound microbiome can change over
time [60–62], and PA is opportunistic and tends to colonize wounds where competing
bacteria have recently been eliminated, e.g., through antibiotics [62]. In these instances, the
fluorescence images would likely show a switch from red fluorescing bacteria to cyan.

It was not surprising that PA was the only Pseudomonad detected in this study; larger
clinical trials have shown that PA is the overwhelmingly predominant Pseudomonad
in chronic wounds [5,27]. Pseudomonads, in particular PA, are known producers of
red fluorescing porphyrins [63]; when grown in vitro in conditions that favor porphyrin
production, red fluorescence is readily detected from PA [64], evident in Figure 1a. Yet
clinically we observed that the red fluorescence appears to be dwarfed by the strong cyan
pyoverdine signal. Pyoverdine production is enhanced under hostile conditions (e.g., low
iron) [58,65,66]; for example, an increase in pyoverdine production has been observed
in burn wounds [18]. Wound debridement and application of antimicrobial agents may
further exacerbate this hostile environment, promoting pyoverdine synthesis. Wounds in
our study were chronic in nature and therefore some had been treated previously with
antimicrobials, making them more likely to have this hostile environment triggering high
pyoverdine synthesis. Whether PA would ever express solely porphyrins, not pyoverdines,
in a wound environment has, to our knowledge, not been studied. If this were to occur then
red fluorescence would presumably be used to guide bacterial removal treatments, as it
does for other pathogens [27,45,67]. Given the association between pyoverdine production
and PA virulence [36–39], detection of wounds in which PA is expressing this virulence
factor has large clinical relevance.

Limitations

There are several limitations of this study which should be noted. This trial was
designed to test the positive predictive value of cyan on fluorescence images, thus it
does not provide information on negative predictive value, sensitivity or specificity of the
images. These have been assessed by other studies, which demonstrate high sensitivity and
specificity of the images for detecting high bacterial loads [27,44,46,49]. Future work that
examines the presence of PA from wound regions positive or negative for cyan fluorescence
may help to clarify the specificity of cyan for PA. In addition, the semi-quantitative culture
based microbiological confirmation used has inherent limitations, as this method can
underestimate bacterial loads and each semi-quantitative category is associated with a
wide range of CFU/g counts. For example, light growth has been shown to range from
103 to 106 CFU/g in wound samples [68]. Underestimating bacterial loads may have
resulted in a slightly lower reported PPV in this study, as scant growth of PA was detected
in one clearly cyan-positive wound and was considered a false positive in this analysis.
Additional studies utilizing gold standard quantitative or molecular culture-based methods
to analyze wound biopsies may help to clarify the bacterial loads detected from regions
of cyan fluorescence. The fluorescence imaging procedure also has inherent limitations,
namely the need for darkness during imaging and a limited depth of excitation (~1.5 mm)
for detection of subsurface bacteria. However, as PA tends to be a surface or immediately
sub-surface pathogen [69,70], this poses less of a limitation for the detection of PA than it
may be for other pathogens.

Pyoverdine, the virulence factor and source of cyan signal, plays an essential role
in establishing infection and biofilm formation [35]. However, the percentage of study
wounds in which cyan fluorescence was indicative of regions of PA in biofilm could not be
determined due to lack of available methods for this confirmation. Fluorescence signals
can come from bacteria in biofilm or in planktonic form [27,42,64]. PA is notorious for
its propensity to form biofilm [20–22] and, given the known frequency of biofilm in PA-



Diagnostics 2021, 11, 280 10 of 13

positive wounds, it is likely that bacteria in biofilm were a contributing factor to the cyan
signal in many of these wounds.

5. Clinical Implications and Conclusions

PA infection is a common occurrence in chronic wounds [71] and is more fatal than
other bacterial infections if left undetected or inappropriately treated [72]. In this study,
we show that fluorescence imaging can rapidly detect PA in chronic wounds. With a
93% PPV, point-of-care fluorescence imaging provides an opportunity to accurately locate
and detect presence of PA early, before infection potentially spreads. Clinical guidelines
advise against wound culture unless infection is suspected [73], therefore wound clinicians
commonly rely on the classic Pseudomonas spp. symptoms to aid early detection of PA [24].
In practice however, these symptoms may not mount in infected wounds. Indeed, less
than 20% of wounds in this study that were positive for PA exhibited these symptoms.
Furthermore, most wounds with heavy growth of PA on the culture reports did not exhibit
these symptoms. As such, clinicians may be missing the majority of wounds containing
PA; clinician reliance on these symptoms for detection of PA is clearly inadequate.

Treatment of PA continues to be a challenge given the lack of information available at
the point-of-care on the efficacy of treatments used to eradicate PA, propensity for antibiotic
overuse to manage skin and soft tissue infections [74] and the tendency of PA to rapidly
develop resistance to multiple classes of antibiotics [75]. Here we show how point-of-care
fluorescence imaging alongside assessment of clinical signs and symptoms of infection, can
help to overcome these challenges by reliably enhancing detection of PA in wounds and
providing immediate information to wound care clinicians on the efficacy of treatments
targeted to eradicate PA.
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