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Abstract: Efficient segmentation of Magnetic Resonance (MR) brain tumor images is of the utmost
value for the diagnosis of tumor region. In recent years, advancement in the field of neural networks
has been used to refine the segmentation performance of brain tumor sub-regions. The brain tumor
segmentation has proven to be a complicated task even for neural networks, due to the small-scale
tumor regions. These small-scale tumor regions are unable to be identified, the reason being their tiny
size and the huge difference between area occupancy by different tumor classes. In previous state-of-
the-art neural network models, the biggest problem was that the location information along with
spatial details gets lost in deeper layers. To address these problems, we have proposed an encoder–
decoder based model named BrainSeg-Net. The Feature Enhancer (FE) block is incorporated into
the BrainSeg-Net architecture which extracts the middle-level features from low-level features from
the shallow layers and shares them with the dense layers. This feature aggregation helps to achieve
better performance of tumor identification. To address the problem associated with imbalance class,
we have used a custom-designed loss function. For evaluation of BrainSeg-Net architecture, three
benchmark datasets are utilized: BraTS2017, BraTS 2018, and BraTS 2019. Segmentation of Enhancing
Core (EC), Whole Tumor (WT), and Tumor Core (TC) is carried out. The proposed architecture have
exhibited good improvement when compared with existing baseline and state-of-the-art techniques.
The MR brain tumor segmentation by BrainSeg-Net uses enhanced location and spatial features,
which performs better than the existing plethora of brain MR image segmentation approaches.

Keywords: medical imaging; semantic segmentation; brain tumor; diagnostics; Feature Enhancer (FE);
Magnetic Resonance (MR) Images

1. Introduction

In modern society, diseases related to the brain are emerging as a big problem espe-
cially malignant brain tumors which are greatly influencing human lives [1]. Gliomas are
the most-occurring malignant brain tumor, they are caused by abnormal cell transforma-
tion, and are largely classified into High-Grade Gliomas (HGG) and Low-Grade Gliomas
(LGG) [2]. HGG are malignant tumors that have already grown; their progress has consid-
erably deteriorated and surgery is essential. LGG is less advanced than HGG, and life ex-
pectancy can be extended through treatment [3]. There are different methods to distinguish
these tumor lesions: Computed Tomography (CT), X-ray, Single-Photon Emission Com-
puted Tomography (SPECT), Ultrasound, Magnetic Resonance Imaging (MRI), Positron
Emission Tomography (PET), Magnetic Brain Wave Graph (MEG), and Electroencephalo-
gram (EEG) [4]. However, among all medical imaging techniques, MRI is considered to be
the most comprehensive method which can help to to determine the exact size and volume
of the malignant tumor [5]. The images generated by MRI are used to measure and analyze
the location and size of the tumor, and can be divided according to the characteristics of the
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tumor, which can be improved with an optimal diagnostic process and treatment method.
Because of the high quality of MRI, effective segmentation of brain tumors has become one
of the most important research problems in the field of medical imaging [6].

MRI segments a brain tumor through four visualized images with different charac-
teristics. These imaging methods areT1-weighted (T1w), T1w contrast-enhanced (CE),
T2-weighted (T2w), and Fluid-Attenuated Inversion Recovery (FLAIR). The T1 image is
used to differentiate healthy tissue, and T2 is used to describe the edema area that produces
a bright signal. The T1ce can be distinguished by a bright signal from the contrast agent,
which has accumulated in the tumor boundary and the active cell area of the tumor tissue.
Flair differentiates between edema and cerebrospinal fluid by inhibiting the signals of
water molecules [1]. Based on this, tumors can be subdivided into tumor nuclei, rein-
forced tumors, and whole tumors. Some tumors, such as meningiomas, segment easily,
but gliomas and glioblastoma cells spread well and are difficult to segment because these
are not contrasted [7]. Besides, it is not easy to segment because it can occur at any location
and varies in size.

The brain tumor segmentation models are generally divided into 2D data and 3D
data-based models. Several researches [8–11] have demonstrated that 3D architectures
perform better than 2D architectures. However, 3D architectures have limitations as they
use more parameters and are computational complex [12]. Specifically, the dataset utilized
for applying the 3D model is often reduced to half the size of the existing training data.

In this research, we put forward a model named BrainSeg-Net. BrainSeg-Net uses a
FE block, which is added to enhance the features of shallow layers before adding them to
deep layers, contributing towards the classification and segmentation process. Moreover,
the feature maps extracted by FE block are upsampled and concatenated with the result of
the higher-level encoder–decoder connection. This increases the valid receptive field of the
network which helps to locate the small-scale tumors.

The remaining paper is structured as follows. Section 2 discusses the related work,
Section 3 gives the details regarding datasets used to evaluate the model, Section 4 explains
the proposed model, Section 5 presents the results achieved by BrainSeg-Net, and Section 6
concludes the paper.

2. Related Work

In the past few years, various deep learning models for computer vision tasks have
been proposed, such as VGGNet [13], ResNet [14], and DenseNet [15]. Deep Neural Net-
works have the strong ability to automatically extract the discriminant features; therefore,
they are widely used in the field of medical imaging and bioinformatics [16–20]. Similarly,
the use of deep learning for computer-aided diagnosis of brain tumor has gathered exten-
sive attention. In recent years, Medical Image Computing and Computer-Assisted Inven-
tion (MICCAI) and Brain Tumor Segmentation (BraTS) challenge have greatly contributed
towards the development of neural network-based architectures for brain tumor diagnosis.

Broadly, the methods for image segmentation based on deep learning can be of two
types which are Convolutional Neural Network (CNN) and Full Convolution Network
(FCN). CNN based methods use small patch classification technique for tumor segmen-
tation. Havaei et al. applied a segmentation method using CNN architecture to segment
brain tumor regions from 2D MRI images and used convolutional kernels of various sizes
to extract important contextual features [7]. Another CNN-based technique was proposed
by Pereira et al. which is an automated segmentation architecture based on VGG-Net.
However, the CNN architecture is a patch-based method, which requires large storage
space and lacks spatial continuity, resulting in poor efficiency. On other hand, FCN tech-
niques perform calculation pixel by pixel based on the Encoder–Decoder concept, this
not only increases the brain tumor segmentation efficiency but also the spatial continuity
problem gets solved [21].

Based on the FCN concept, Ronneberger et al. [22] proposed a U-Net architecture
applied to various medical segmentation problems. U-Net is based on the conception
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of encoding and decoding paths, where encoding path extracts the contextual features
while decoding path keeps an accurate track of the location. The concatenation of en-
coder and decoder features in U-Net architecture greatly improves the medical image
segmentation performance. U-Net architecture is widely used by researchers for brain
tumor segmentation. Dong et al. proposed a 2D segmentation network based on U-Net
along with which they performed real-time data augmentation to increase the performance
of brain tumor segmentation [23]. Kong et al. added the feature pyramid module in
U-Net architecture to increase the accuracy by integrating location details and multi-scale
semantic [24]. Extensive work has been carried out to improve the performance of U-Net
for image segmentation like using dilated convolution, introducing up skip connection,
using dense block and embedding MultiRes block in base U-Net architecture [25–28].
For further improvement in U-Net architecture, the Attention Gates (AGs) were integrated
into the architecture [29]. The addition of Squeeze-and-Excitation (SE) blocks [30] was
made in [31,32] for prostate zonal segmentation on MR images. Vasileios et al. propose
a skull stripping technique which classifies skull-free images to give better segmentation
performance. McKinley et al. developed a network by applying the extended convolution
structure [33]. Wang et al. proved that the brain segmentation performance improves
when convolution neural networks are applied with Test Time Augmentation technique
(TTA) [34].

Undoubtedly, U-Net has shown great success in the medical field and therefore
presently it is mainstream of segmentation architectures for brain tumor MRI. However,
the encoder side of the U-Net architecture performs downsampling which reduces the
image size, resulting in low performance as small-scale tumors are unable to be identified.
To solve this problem, a mechanism needs to be adopted that enhances the local features
and help the decoder to locate the tumor efficiently.

3. Datasets

For the evaluation of proposed model, three benchmark databases are taken into
consideration: BraTS 2017, Brats 2018, and BraTS 2019. These are publicly available
benchmark databases used to train and evaluate the model. The BraTS2017 dataset is
a collection of data from 285 glioma patients, consisting of 210 HGG and 75 LGG cases.
The validation data set additionally includes images of 46 patients having an unknown
grade. Unlike training data, validation data are not labeled, and results can only be
generated using the online web of BraTS challenge. The dataset includes all four modalities
for every patient as can be seen in Figure 1, where three data of three different patients
is exhibited.

There are four labels in the dataset:

• Necrosis and Non-enhancing Tumor
• Enhancing Tumor
• Healthy Tissue
• Edema

The training dataset of BraTS 2018 is similar to BraTS2017 but validation dataset is
different. The validation dataset of BraTS 2018 has more cases than BraTS 2017 which are
66. There is a different training dataset of BraTS 2019 which have more number of cases
than previous databases. BraTS 2019 comprises of 335 glioma cases, where 259 belongs to
HGG and remaining 76 belongs to LGG. Further, BraTS 2019 has an expanded validation
dataset which carried 125 cases.
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Figure 1. Presenting three MRI cases (a–c) of brain tumor with four modalities and a label plots. From left to right are
Flair, T1, T1ce, T2, and Label. In ground truth image each color represents different tumor class. Red for necrosis and
non-enhancing, green for edema, and yellow for enhancing tumor.

4. Methodology

This section discusses the preprocessing process carried out on the input images along
with architecture details of BrainSeg-Net. Further, the BrainSeg-Net also discusses the FE
block and custom-designed loss function.

4.1. Image Preprocessing

Deep Learning models are undoubtedly high-performing models, but still, they have
a few weaknesses. One of them is that these models are prone to noise, which makes the
image preprocessing an important task to be carried out on every input image. Therefore
we also have preprocessed all the images and for that we adopted N4ITK algorithm [35],
a bias correction technique which makes dataset images homogeneous. With further
processing, the top 1% and bottom 1% intensities are abandoned as done in [7]. Finally, all
the images are normalized with the mean value of 0 and the variance value of 1.

4.2. Proposed BrainSeg-Net

The brain tumor segmentation is a complex task, and the biggest challenge in it to
segment small scale tumors. Stronger contextual features are extracted at the deeper stage of
the encoder; however, at this stage spatial and location, information is lost due to nonlinear
transformations and continuous convolutions. By addressing this issue, an efficient model
for brain image segmentation can be developed which can identify small-scale tumors
as well. For this purpose, we have developed BrainSeg-Net which uses FE block which
propagates spatial and location information during the process of upsampling (decoder
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side). Figure 2 shows the overall proposed architecture of BrainSeg-Net, and details
regarding the BrainSeg-Net architecture are as follows.

Figure 2. Architecture of the proposed BrainSeg-Net for MRI brain image segmentation.

As can be seen in Figure 2, the proposed BrainSeg-Net architecture is an encoder–
decoder-based technique. The left side of the figure shows the encoder, which is a contract-
ing path, while the right side of the figure shows the decoder, which is an expanding path.
The input preprocessed image is of size 256× 256 where there are four input channels.
The encoder and decoder have four blocks with a single transition at bottom of the archi-
tecture. Every block of the encoder side consists of two convolution layers while three of
the blocks also carry single max-pooling layer. The blocks of decoder consist of a dropout
layer and two convolution layers, while the last decoder block contains an additional
convolution layer with the filter size of 1× 1. The transition block contains a max-pooling
layer along with two convolution layers. The output of every encoder block is given to
the next encoder block and the FE block. The output of the last block of the encoder is
given to transition block while its output is given to the first decoder block. The sequence
of decoder blocks starts from the bottom, while the output is taken from the last block of
the decoder. The output of every decoder block undergoes Conv2DTranspose. A bridge
connection between between every encoder block and its associated decoder block contains
FE block. The output of the FE block is concatenated with the output of all the deeper stage
FE blocks. Finally, the generated output is concatenated with the output of corresponding
Conv2DTranspose layer of the decoder block and dropout is applied on the result, followed
by convolution process carried out by two convolution layers of the decoder block.

The information collected by deeper FE blocks is upgraded and is shared with all
available higher level decoder blocks. The upsampling operations performed in BrainSeg-
Net are done using bilinear interpolation. The convolution layers used in BrainSeg-Net
perform convolution with padding which allows achieving similar-sized output as of
input. While the baseline architecture does not have this characteristic. The dropout
ratio in BrainSeg-Net is kept at 0.3. All convolution layers of BrainSeg-Net contains Batch
normalization and Rectified Linear Unit (ReLU) activation function excluding the last
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convolution layer which utilizes sigmoid activation function. The mathematical expression
of ReLU and sigmoid activation function are given as

ReLU(p) =

{
0, for p ≤ 0
p, for p > 0

(1)

Sigmoid(p) =
1

1 + e−p (2)

The BrainSeg-Net uses Adam optimizer along with the custom-designed loss func-
tion. The details regarding FE block and custom-designed loss function are discussed in
following sub-sections.

4.2.1. Feature Enhancer (FE)

The FE block helps to propagate the important location information along with spatial
details. Sharing these features with all the higher level decoder blocks makes a significant
improvement in segmentation performance. One of the most important contributions of the
FE block is that it enhances the effective receptive field of the features maps. This increase
in the effective receptive field will help in detecting larger regions by reading a more
global feature hierarchy. While sharing important location details and spatial information,
FE helps the architecture to identify small regions. Moreover, the skip connection of the FE
block allows recovering the fine-grained details which got lost during the downsampling
process. The architecture of the FE block is discussed as follows.

Figure 3 illustrates the architecture of the FE block. The input from the encoder block
is taken and given to five parallel connections. One connection acts as a skip connection,
which helps to keep the spatial details from the encoder block unchanged. On the remaining
four connections, two convolution layers are applied. A combination is made for the
convolution layers. The first convolution layer has a filter size of N × 1 while the second
convolution layer has a filter size of 1× N. This combination is used rather than using a
one convolution layer with N × N filter size. Such combination is used so that important
features are extracted without losing location information. The experiments are carried out
to observe the effect of using two cascaded convolutions rather than single convolution
layer as discussed earlier. The cascaded system has depicted good performance when
compared with the single convolution layer. The output of all the connections is summed
together to get a single output. Two convolution layers with a filter size of 3× 3 and 1× 1,
respectively, are applied on the attained output giving us the final result by FE block.

Figure 3. The Architecture of FE Block used in BrainSeg-Net.

The FE block performs enhancement of the features given to it as an input. The FE
block tries to extract features of features by keeping the minimal parameters. For keeping
the parameters low, a special combination of convolution layers is applied. The block is
not highly dense which helps in preserving the location information of the features.
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4.2.2. Custom-Designed Loss Function

The class imbalance is considered to be one of the biggest identified challenges in
brain tumor segmentation. The difference between occupied regions between different
classes can be understood in a better manner by considering Table 1. Table 1 illustrates the
class distribution for BraTS 2017 dataset. In brain tumor MRI, an average occupied region
by healthy tissue is 98.46%. Whereas the region occupied by edema, enhancing tumor, and
non-enhancing tumor occupy 1.02%, 0.29%, and 0.23%, respectively. The large difference
between region occupancy by different classes in brain tumor MRI has a tremendous effect
on its segmentation accuracy.

Table 1. Distribution of area occupancy by different classes in brain tumor MRI.

Class Area Covered in %

Healthy Tissue 98.46
Edema 1.02

Enhancing Tumor 0.29
Non-Enhancing Tumor 0.23

To address the class imbalance issue, BrainSeg-Net adopts a custom-designed loss
function where weight cross-entropy (WCE) and Dice Loss Coefficient (DLC) are summed
up as a single loss function. The numerical representation of these loss functions is

WCE = −
Q

∑
c

wclclol( fc) (3)

DLC = 1− 2 ∑Q
c wclc fc

∑Q
c wc(lc + fc)

(4)

where Q is the total number of labels which in our case is 4 and ′c′ is the label. The fc
represents the forecasted class of the pixel, wc is the allotted weight and lc is ground truth
class of the pixel.

The total loss function can be represented as

Ltotal = WCE + DLC (5)

The loss function consists of two objective functions: WCE and DLC. Where DLC is
responsible of predicting the segmented regions, while WCE performs classification of
tissue cells.

5. Results and Discussion

For carrying out an extensive evaluation of the proposed model, we have done quanti-
tative analysis as well as qualitative analysis. For the qualitative analysis of the proposed
model, the evaluation metric we have used is Dice Score. The previous researches in
literature have used dice score as a figure of merit so this will lead us to better performance
comparison between state-of-the-art techniques and proposed technique. The Dice score is
used to measure the similarity indexed between two sets suppose M & N which can be
formulated as

DiceScore =
2× |M ∩ N|
|M|+ |N| (6)

where |M| and |N| are the cardinalities of sets M and N, respectively.
The proposed model is evaluated on three benchmark datasets: BraTS 2017, BraTS

2018, and BraTS 2019. The details of this dataset are discussed earlier in the paper. First of
all, we evaluated the model on HGG cases of BraTS 2017. Total HGG cases were split into
80% and 20%, where the bigger chunk was used for training and a small chunk was used
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for testing. Table 2 shows the results obtained by BrainSeg-Net and its comparison with
existing state-of-the-art techniques.

Table 2. Results comparison on the BraTS 2017 HGG data.

Network Whole Core Enhancing

CNN [36] 0.824 0.761 0.686
U-Net [23] 0.873 0.824 0.806

Densely CNN [37] 0.785 0.846 0.813
ResU-Net [38] 0.878 0.861 0.832

FCNN [39] 0.844 0.820 0.809

Proposed BrainSeg-Net 0.903 0.872 0.849

For HGG cases of BraTS 2017, the proposed model has exhibited a great increase in
performance compared to the existing baseline and state-of-the-art techniques. The Brain-
SegNet attained a dice score of 0.903, 0.872, and 0.849 for the whole, core, and enhancing
tumor, respectively. A segmentation improvement is observed for all the classes. BrainSeg-
Net outperformed its baseline U-Net with high margin.

The second experiment is carried out by keeping the BraTS 2017 validation dataset as
a test set and the whole BraTS 2017 training set is used to train the model. Two-hundred-
and-eighty-five MR brain images are used to train the model and 57 MR scans are used
to evaluate the performance. Table 3 represents the comparison of performance between
BrainSeg-Net and existing models.

Table 3. Results comparison on the BraTS 2017 validation dataset.

Network Whole Core Enhancing

U-Net [23] 0.870 0.762 0.700
ResU-Net [38] 0.873 0.768 0.716
PSPNet [26] 0.809 0.701 0.554

NovelNet [26] 0.876 0.763 0.642

Proposed BrainSeg-Net 0.898 0.792 0.745

The experiment on BraTS 2017 validation dataset illuminates the high performance by
BrainSeg-Net. The proposed model has improved the performance by 2.2%, 2.4%, and 2.9%
for the whole, core, and enhancing tumor classes, respectively. When compared with the
baseline architecture, BrainSeg-Net shows an improvement of 2.8% for the whole tumor,
3% for the core tumorm and 4.5% for the enhancing tumor. The large improvement in
performance for enhancing tumor segmentation replicates that BrainSeg-Net is successfully
able to resolve the problem regarding small-scale tumor segmentation.

The further experiment is carried out on BraTS 2018 validation dataset. The model is
trained on 285 MRI scans of a training dataset of BraTS 2017, as BraTS 2018 do not have
a separate training dataset. For the testing purposes, the BraTS 2018 validation dataset
carrying 66 MR brain images is used. Table 4 illustrates the comparison between achieved
results from BrainSeg-Net and the results achieved by existing techniques.
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Table 4. Results comparison on the BraTS 2018 validation dataset.

Network Whole Core Enhancing

U-Net [23] 0.860 0.790 0.767
Ensemble Net [40] 0.881 0.777 0.773

MCC [41] 0.882 0.748 0.718
TTA [34] 0.873 0.783 0.754

ResU-Net [38] 0.887 0.803 0.768

Proposed BrainSeg-Net 0.894 0.826 0.773

On the BraTS 2018 validation dataset, the BrainSeg-Net, respectively, achieves Dice
scores of 0.773, 0.826, and 0.894 for enhancing tumor, core tumor, and whole tumor. The ex-
isting state-of-the-art results for this experiment are obtained by ResU-Net. The proposed
model has successfully improved the performance for all the segmentation classes. The im-
provement for enhancing tumor is 0.5%, while for core tumor its 2.3 %. Both scenarios have
small-scale regions that need to be segmented out. These results show that the information
contribution of FE block at every deep layer has contributed towards the betterment of
accurate segmentation.

To validate the generalization of the proposed model, we have evaluated it on the
BraTS 2019 dataset. Where all training data of BraTS 2019 dataset are used to train the model
and the validation data is used for testing. We have used 355 cases for the training purpose
and 125 cases for the testing purpose. As this is the recent database, very limited results are
reported by other works therefore we have compared our model with the baseline models.
Table 5 shows the result comparison of BrainSeg-Net and baseline models.

Table 5. Results comparison on the BraTS 2019 validation dataset.

Network Whole Core Enhancing

U-Net [23] 0.864 0.746 0.696
ResU-Net [38] 0.867 0.760 0.704

Proposed BrainSeg-Net 0.869 0.775 0.708

The proposed BrainSeg-Net has achieved the highest performance for BraTS 2019
validation dataset. It has achieved the dice score of 0.869 for the whole tumor, 0.775 for
the core tumor, and 0.708 for the enhanced tumor. BrainSeg-Net has outperformed its
baseline models due to the effectiveness of the FE block which makes it easy to identify the
small-scale tumor in brain tumor MRI.

For visualizing the qualitative results, we have added Figure 4. The figure carries
eight different cases where the region prediction by BrainSeg-Net is shown along with the
labeled ground truth. By comparing both, we can have an idea about the reliability of the
segmentation results achieved by BrainSeg-Net. The high resemblance between predicted
and ground truth speaks about the high quality of BrainSeg-Net architecture.
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Figure 4. Visualization of segmentation performance by BrainSeg-Net architecture. Three colors in each case represents
different classes. Red for necrosis and non-enhancing, green for edema, and yellow for enhancing tumor.

6. Conclusions

The segmentation of MR brain tumor images is considered a complex task. Multiple
neural network-based models are proposed in the literature for semantic segmentation of
brain tumor MRI. Still, a gap of improvement exists. The biggest challenge is to segment
the small-scale tumor as, due to the constant convolution operation and transformation in
the neural network, an important location and spatial information get lost. Therefore, this
paper proposed BrainSeg-Net, which addresses this issue and improves the semantic seg-
mentation of MR brain tumor images. BrainSeg-Net uses FE block which, at every encoder
stage, gets the feature map and performs the defined operation and tries to preserve the im-
portant information. The FE block converts the low-level features to middle-level features
which minimize the information distortion during feature concatenation. Moreover, the FE
block is responsible for improving the effective receptive field of architecture which again
contributes towards architecture accuracy. The proposed model is evaluated on multiple
benchmark databases. BrainSeg-Net has expressed a viable improvement in the results
when compared with existing state-of-the-art semantic segmentation techniques for MR
brain tumor images. The proposed BrainSeg-Net has also outperformed its baseline U-Net
architecture. In future, we intend to improve this architecture further so that it can prove
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to be beneficial for human lives. The 2D U-Net has the restriction of important information
loss in comparison to 3D U-Net. We have an intention to extend our research to explore
3D-based architecture doe improvement of segmentation performance.
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1. Işın, A.; Direkoğlu, C.; Şah, M. Review of MRI-based brain tumor image segmentation using deep learning methods. Proce-

dia Comput. Sci. 2016, 102, 317–324. [CrossRef]
2. Haris, M.; Gupta, R.K.; Singh, A.; Husain, N.; Husain, M.; Pandey, C.M.; Srivastava, C.; Behari, S.; Rathore, R.K.S. Differentiation

of infective from neoplastic brain lesions by dynamic contrast-enhanced MRI. Neuroradiology 2008, 50, 531. [CrossRef] [PubMed]
3. Saut, O.; Lagaert, J.B.; Colin, T.; Fathallah-Shaykh, H.M. A multilayer grow-or-go model for GBM: effects of invasive cells and

anti-angiogenesis on growth. Bull. Math. Biol. 2014, 76, 2306–2333. [CrossRef] [PubMed]
4. Liu, J.; Li, M.; Wang, J.; Wu, F.; Liu, T.; Pan, Y. A survey of MRI-based brain tumor segmentation methods. Tsinghua Sci. Technol.

2014, 19, 578–595.
5. Gonzalez, R., III. Digital Image Processing, 3rd ed.; Gonzalez, R., Woods, R., Eds.; Peasrson: London, UK, 2008.
6. Menze, B.H.; Jakab, A.; Bauer, S.; Kalpathy-Cramer, J.; Farahani, K.; Kirby, J.; Burren, Y.; Porz, N.; Slotboom, J.; Wiest, R.; et al.

The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 2014, 34, 1993–2024. [CrossRef]
[PubMed]

7. Havaei, M.; Davy, A.; Warde-Farley, D.; Biard, A.; Courville, A.; Bengio, Y.; Pal, C.; Jodoin, P.M.; Larochelle, H. Brain tumor
segmentation with deep neural networks. Med. Image Anal. 2017, 35, 18–31. [CrossRef] [PubMed]

8. Çiçek, Ö.; Abdulkadir, A.; Lienkamp, S.S.; Brox, T.; Ronneberger, O. 3D U-Net: learning dense volumetric segmentation from
sparse annotation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted
Intervention, Athens, Greece, 17–21 October 2016; pp. 424–432.

9. Isensee, F.; Kickingereder, P.; Wick, W.; Bendszus, M.; Maier-Hein, K.H. Brain tumor segmentation and radiomics survival
prediction: Contribution to the brats 2017 challenge. In Proceedings of the International MICCAI Brainlesion Workshop,
Quebec City, QC, Canada, 10–14 September 2017; pp. 287–297.

10. Baid, U.; Talbar, S.; Rane, S.; Gupta, S.; Thakur, M.H.; Moiyadi, A.; Thakur, S.; Mahajan, A. Deep learning radiomics algorithm
for gliomas (drag) model: a novel approach using 3d unet based deep convolutional neural network for predicting survival in
gliomas. In Proceedings of the International MICCAI Brainlesion Workshop, Granada, Spain, 16–20 September 2018; pp. 369–379.

11. Kamnitsas, K.; Ledig, C.; Newcombe, V.F.; Simpson, J.P.; Kane, A.D.; Menon, D.K.; Rueckert, D.; Glocker, B. Efficient multi-scale
3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 2017, 36, 61–78. [CrossRef] [PubMed]

12. Noori, M.; Bahri, A.; Mohammadi, K. Attention-Guided Version of 2D UNet for Automatic Brain Tumor Segmentation.
In Proceedings of the 2019 9th International Conference on Computer and Knowledge Engineering (ICCKE), Mashhad, Iran,
24–25 October 2019; pp. 269–275.

13. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
14. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

http://doi.org/10.1016/j.procs.2016.09.407
http://dx.doi.org/10.1007/s00234-008-0378-6
http://www.ncbi.nlm.nih.gov/pubmed/18379766
http://dx.doi.org/10.1007/s11538-014-0007-y
http://www.ncbi.nlm.nih.gov/pubmed/25149139
http://dx.doi.org/10.1109/TMI.2014.2377694
http://www.ncbi.nlm.nih.gov/pubmed/25494501
http://dx.doi.org/10.1016/j.media.2016.05.004
http://www.ncbi.nlm.nih.gov/pubmed/27310171
http://dx.doi.org/10.1016/j.media.2016.10.004
http://www.ncbi.nlm.nih.gov/pubmed/27865153


Diagnostics 2021, 11, 169 12 of 13

15. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.

16. Abbas, Z.; Tayara, H.; Chong, K.T. SpineNet-6mA: A Novel Deep Learning Tool for Predicting DNA N6-Methyladenine Sites in
Genomes. IEEE Access 2020, 8, 201450–201457. [CrossRef]

17. Rehman, M.U.; Chong, K.T. DNA6mA-MINT: DNA-6mA modification identification neural tool. Genes 2020, 11, 898. [CrossRef]
[PubMed]

18. Alam, W.; Ali, S.D.; Tayara, H.;Chong, K.T. A CNN-based RNA N6-methyladenosine site predictor for multiple species using
heterogeneous features representation. IEEE Access 2020, 8, 138203–138209. [CrossRef]

19. Rehman, M.U.; Khan, S.H.; Rizvi, S.D.; Abbas, Z.; Zafar, A. Classification of skin lesion by interference of segmentation and
convolotion neural network. In Proceedings of the 2018 2nd International Conference on Engineering Innovation (ICEI), Bangkok,
Thailand, 5–6 July 2018; pp. 81–85.

20. Khan, S.H.; Abbas, Z.; Rizvi, S.D. Classification of Diabetic Retinopathy Images Based on Customised CNN Architecture. In
Proceedings of the 2019 Amity International Conference on Artificial Intelligence (AICAI), Dubai, UAE, 4–6 2019; pp. 244–248.

21. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440.

22. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the
International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October
2015; pp. 234–241.

23. Dong, H.; Yang, G.; Liu, F.; Mo, Y.; Guo, Y. Automatic brain tumor detection and segmentation using U-Net based fully
convolutional networks. In Proceedings of the Annual conference on medical image understanding and analysis, Edinburgh, UK,
11–13 July 2017; pp. 506–517.

24. Kong, X.; Sun, G.; Wu, Q.; Liu, J.; Lin, F. Hybrid pyramid u-net model for brain tumor segmentation. In Proceedings of the
International Conference on Intelligent Information Processing, Nanning, China, 19–22 October 2018; pp. 346–355.

25. Liu, D.; Zhang, H.; Zhao, M.; Yu, X.; Yao, S.; Zhou, W. Brain tumor segmention based on dilated convolution refine networks. In
Proceedings of the 2018 IEEE 16th International Conference on Software Engineering Research, Management and Applications
(SERA), Kunming, China, 13–15 June 2018; pp. 113–120.

26. Li, H.; Li, A.; Wang, M. A novel end-to-end brain tumor segmentation method using improved fully convolutional networks.
Comput. Biol. Med. 2019, 108, 150–160. [CrossRef] [PubMed]

27. Shaikh, M.; Anand, G.; Acharya, G.; Amrutkar, A.; Alex, V.; Krishnamurthi, G. Brain tumor segmentation using dense fully
convolutional neural network. In Proceedings of the International MICCAI Brainlesion Workshop, Quebec City, QC, Canada,
14 September 2017; pp. 309–319.

28. Ibtehaz, N.; Rahman, M.S. MultiResUNet: Rethinking the U-Net architecture for multimodal biomedical image segmentation.
Neural Netw. 2020, 121, 74–87. [CrossRef] [PubMed]

29. Schlemper, J.; Oktay, O.; Schaap, M.; Heinrich, M.; Kainz, B.; Glocker, B.; Rueckert, D. Attention gated networks: Learning to
leverage salient regions in medical images. Med. Image Anal. 2019, 53, 197–207. [CrossRef] [PubMed]

30. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Salt Lake City, UT, USA, 19–21 June 2018; pp. 7132–7141.

31. Rundo, L.; Han, C.; Nagano, Y.; Zhang, J.; Hataya, R.; Militello, C.; Tangherloni, A.; Nobile, M.S.; Ferretti, C.; Besozzi, D.; et al.
USE-Net: Incorporating Squeeze-and-Excitation blocks into U-Net for prostate zonal segmentation of multi-institutional MRI
datasets. Neurocomputing 2019, 365, 31–43. [CrossRef]

32. Pezoulas, V.C.; Zervakis, M.; Pologiorgi, I.; Seferlis, S.; Tsalikis, G.M.; Zarifis, G.; Giakos, G.C. A tissue classification approach
for brain tumor segmentation using MRI. In Proceedings of the 2017 IEEE International Conference on Imaging Systems and
Techniques (IST), Beijing, China, 18–20 October 2017; pp. 1–6.

33. McKinley, R.; Meier, R.; Wiest, R. Ensembles of densely-connected CNNs with label-uncertainty for brain tumor segmentation.
In Proceedings of the International MICCAI Brainlesion Workshop, Granada, Spain, 16–20 April 2018; pp. 456–465.

34. Wang, G.; Li, W.; Ourselin, S.; Vercauteren, T. Automatic brain tumor segmentation using convolutional neural networks with
test-time augmentation. In Proceedings of the International MICCAI Brainlesion Workshop, Granada, Spain, 16–20 September
2018; pp. 61–72.

35. Tustison, N.J.; Avants, B.B.; Cook, P.A.; Zheng, Y.; Egan, A.; Yushkevich, P.A.; Gee, J.C. N4ITK: improved N3 bias correction.
IEEE Trans. Med. Imaging 2010, 29, 1310–1320. [CrossRef] [PubMed]

36. Pereira, S.; Pinto, A.; Alves, V.; Silva, C.A. Brain tumor segmentation using convolutional neural networks in MRI images.
IEEE Trans. Med. Imaging 2016, 35, 1240–1251. [CrossRef] [PubMed]

37. Chen, L.; Wu, Y.; DSouza, A.M.; Abidin, A.Z.; Wismüller, A.; Xu, C. MRI tumor segmentation with densely connected 3D CNN.
In Proceedings of the Medical Imaging 2018: Image Processing. International Society for Optics and Photonics, Houston, TX,
USA, 11–13 February 2018; Volume 10574, p. 105741F.

38. Kermi, A.; Mahmoudi, I.; Khadir, M.T. Deep convolutional neural networks using U-Net for automatic brain tumor segmen-
tation in multimodal MRI volumes. In Proceedings of the International MICCAI Brainlesion Workshop, Granada, Spain,
16–20 September 2018; pp. 37–48.

http://dx.doi.org/10.1109/ACCESS.2020.3036090
http://dx.doi.org/10.3390/genes11080898
http://www.ncbi.nlm.nih.gov/pubmed/32764497
http://dx.doi.org/10.1109/ACCESS.2020.3002995
http://dx.doi.org/10.1016/j.compbiomed.2019.03.014
http://www.ncbi.nlm.nih.gov/pubmed/31005007
http://dx.doi.org/10.1016/j.neunet.2019.08.025
http://www.ncbi.nlm.nih.gov/pubmed/31536901
http://dx.doi.org/10.1016/j.media.2019.01.012
http://www.ncbi.nlm.nih.gov/pubmed/30802813
http://dx.doi.org/10.1016/j.neucom.2019.07.006
http://dx.doi.org/10.1109/TMI.2010.2046908
http://www.ncbi.nlm.nih.gov/pubmed/20378467
http://dx.doi.org/10.1109/TMI.2016.2538465
http://www.ncbi.nlm.nih.gov/pubmed/26960222


Diagnostics 2021, 11, 169 13 of 13

39. Zhao, X.; Wu, Y.; Song, G.; Li, Z.; Zhang, Y.; Fan, Y. A deep learning model integrating FCNNs and CRFs for brain tumor
segmentation. Med. Image Anal. 2018, 43, 98–111. [CrossRef] [PubMed]

40. Albiol, A.; Albiol, A.; Albiol, F. Extending 2D deep learning architectures to 3D image segmentation problems. In Proceedings of
the International MICCAI Brainlesion Workshop, Granada, Spain, 16–20 September 2018; pp. 73–82

41. Hu, K.; Gan, Q.; Zhang, Y.; Deng, S.; Xiao, F.; Huang, W.; Cao, C.; Gao, X. Brain tumor segmentation using multi-cascaded
convolutional neural networks and conditional random field. IEEE Access 2019, 7, 92615–92629. [CrossRef]

http://dx.doi.org/10.1016/j.media.2017.10.002
http://www.ncbi.nlm.nih.gov/pubmed/29040911
http://dx.doi.org/10.1109/ACCESS.2019.2927433

	Introduction
	Related Work
	Datasets
	Methodology
	Image Preprocessing
	Proposed BrainSeg-Net
	Feature Enhancer (FE)
	Custom-Designed Loss Function


	Results and Discussion
	Conclusions
	References

