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Abstract: Measurement procedures are not error-free. Potential users of a measurement procedure
need to know the expected magnitude of the measurement error in order to justify its use, in particular
in health care settings. Gold standard procedures providing exact measurements for comparisons
are often lacking. Consequently, scientific investigations of the measurement error are often based
on using replicates. However, a standardized terminology (and partially also methodology) for
such investigations is lacking. In this paper, we explain the basic conceptual approach of such
investigations with minimal reference to existing terminology and describe the link to the existing
general statistical methodology. This way, some of the key measures used in such investigations
can be explained in a simple manner and some light can be shed on existing terminology. We
encourage clearly conceptually distinguishing between investigations of the measurement error of a
single measurement procedure and the comparison between different measurement procedures or
observers. We also identify an unused potential for more advanced statistical analyses in scientific

investigations of the measurement error.
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1. Introduction

When a subject is contacting the health care system, it expects optimal advice or
treatment. Healthcare providers can provide this only if they have a clear picture about
the status of the current physical, physiological, psychological, mental and social status of
the subject. Hence health care providers apply a wide range of measurement procedures
to obtain numbers containing corresponding information—and to an increasing degree,
subjects use such procedures to assess their state by themselves. These procedures can range
from single questions directly addressed to the subject over questionnaires, structured
interviews, simple measurements of physical and physiological parameters (such as blood
pressure, body temperature, or height and weight) to advanced methods, such as laboratory
tests, imaging procedures, or automated decision tools based on artificial intelligence. All
these measurement procedures have one feature in common: they are not error-free.

How can health care providers (or other users) trust the use of a measurement proce-
dure, if this procedure is not error-free? In an ideal world, this requires one to ensure that
the measurement error is of negligible magnitude or at least to inform the potential users
of a procedure about the magnitude, such that they can take this knowledge into account
in the subsequent decision-making process. In any case, this requires knowledge about the
magnitude of the measurement error.

This knowledge can be generated by scientific investigations performing a systematic
assessment of the measurement error of a procedure. Whereas the measurement error of a
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single measurement is a unique, single number (the difference between the measured value
and the true value), the measurement error of a measurement procedure is a (statistical)
distribution, describing the distribution of the individual measurement errors when apply-
ing the procedure in many subjects. Scientific investigations of the measurement error are
hence nearly always based on applying the procedure of interest in a relevant sample of
subjects and to study the distribution of the individual measurement errors. There are two
different approaches to determine the individual measurement errors in such studies: if a
gold standard measurement procedure is available, i.e., a method allowing us to measure
the true value of the quantity of interest in an error-free manner, the individual measure-
ment error can be observed directly. If this is not the case, we can apply the measurement
procedure repeatedly and try to approximate the true value from the replicates.

In the context of such investigations, a variety of conceptual terms, such as repro-
ducibility, reliability, agreement, accuracy or precision, are in common use, although their
use is often inconsistent [1,2]. This has raised some confusion, which is exaggerated by
a variety of statistical approaches and methods used in these investigations [3-6] which
makes it particularly challenging to develop reporting guidelines [7]. Consequently, in
this paper we try to explain the basic rationale (and the link to standard statistical tech-
niques) used in this type of investigation with minimal reference to such terms. We take
the simple starting point that the aim of such investigations is to inform potential users of
a measurement procedure about the measurement error of this procedure, and that it is
rather clear what we mean with this if a gold standard method to measure the true value is
available. A step-by-step approach is chosen to depict the way from a simple study using
a gold standard measurement procedure to studies using replicates, as well as potential
strategies for analyzing such studies and informing potential users. The difference between
measurement error and repetition error will play a central role. Each step is devoted to a
separate issue, but also the relation between different issues is described.

2. Choice of Populations and Observers

Irrespective of using a gold standard measurement procedure or using replicates, a
sample of subjects to which the procedure is applied has to be studied, because statements
about the negligible magnitude of the measurement error are not statements about the
actual discrepancy between the measured value and the true one in a single subject, but
about the magnitude we can expect in a single subject based on the knowledge about the
distribution we can observe in many subjects, similar to the subject of interest. Hence
the generation of such a sample is one basic step in any scientific investigation on the
measurement error.

Generating such a sample can be a challenging and crucial task, as the measurement
error of a procedure may differ between different groups of subjects. For example, an
accelerometer may give a rather realistic pattern about the daily steps of a subject, if
the subject is young and moving with high energy, but it might fail in an old subject
moving around slowly after hip surgery. It is hence essential to choose (preferably random)
samples from populations that are relevant to inform potential users. Often, these will be
populations approaching the health care system in a specific situation, in which a specific
procedure is typically used. For example, parents of a newborn child may be interested to
understand the measurement error of a bilirubin assessment performed on their child to
make a decision about phototherapy. They are not interested in knowing the measurement
error of the same procedure when used to detect liver damage in adults. Similarly it makes
little sense to inform a geriatrician about the measurement error of an accelerometer based
on a study in adolescents.

However, choosing subjects is only one aspect. The measurement error of a procedure
is also often depending on the subject performing the procedure, reading of the result(s)
or interpreting them. In the following such a person is called an “observer”—a term
widely used in the literature, even if the role of this subject is not necessarily to make
an observation. Observers (often also called “raters”) may vary in experience, education,
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training or profession, and this can have a substantial impact on the measurement error
of the procedure they use. The measurement error may also depend on observer char-
acteristics, such as gender or body proportions: some measurement procedures may be
easier to perform if you have thin fingers. Since the potential user is usually lacking a
precise knowledge about the relevant personal characteristics of the observer involved in
the procedure, it is essential to inform the user with respect to a relevant population of
observers. For example, if radiological images are interpreted in a hospital by lab assistants,
it is not useful to inform patients about the measurement error based on a study using
senior physicians as observers.

So, in general, a good scientific investigation of the measurement error is characterized
by randomly selecting both subjects from a relevant subject population and observers from
a relevant population of observers. In addition, observers should be matched to subjects
in a random or controlled manner as there may be subtle interactions between observers
and subjects. For example, some observers may be well-suited to interrogating subjects
with low level of education, but fail in subjects with high education, and in others it may
be the other way round. In some instances, observers may not even be human beings, but
technical devices.

3. Informing about the Magnitude of a Measurement Error If a Gold Standard
Measurement Procedure Is Available

If a gold standard measurement procedure is available, in a relevant sample both the
measurement procedure and the gold standard method can be applied. We denote in the
following the value obtained by the measurement procedure with subject i with y; and
the value obtained by the gold standard method with y7, i.e., the latter is a gold standard
measurement and hence identical to the true value of the quantity of interest. In this case,
the individual measurement error

e =Yyi—Yy;

can directly be observed in each subject. Consequently, we can directly analyze the (theo-
retical) distribution of the measurement error based on the empirical distribution observed
in our sample. For example, we can present the empirical distribution by a histogram and
can mark certain characteristics of this distribution, as shown for an artificial example in
Figure 1. In describing this distribution, two aspects can be distinguished. First, we can look
at location measures, such as the mean, the median or the mode of the distribution. These
numbers inform us about the systematic bias of the measurement procedure, i.e., whether
there is a tendency of the method to produce “on average” values above or below the true
value. Second, we can investigate the spread of the distribution, informing us about how
far single measurements can deviate from the true value. One very useful approach is
to report the upper and lower 2.5% percentile, as a range covering 95% of all individual
measurement errors is obtained in this way. The interpretation of such an interval is very
similar to that of normal intervals or normal ranges, which many health care providers are
familiar with.

However, to obtain precise estimates of these two percentiles, rather large sample
sizes are required [8,9]. Hence often the computation of the percentiles is based on the
assumption of a normal distribution, allowing us to obtain more precise estimates of the
percentiles based on the estimated mean ji and the estimated standard deviation ¢ using
the famous formula i & 1.960. A histogram (or better a normal probability plot) can be
helpful to judge the assumption of normality.

It should be emphasized that the essential property of the distribution of the measure-
ment error is the spread, and not the (systematic) bias. If a measurement error is biased,
we can estimate the bias based on a sufficiently large sample and then correct for this bias
by subtracting it from the single measurements. However, there is no way to correct for the
spread, even if the percentiles or the standard deviation are known.
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Figure 1. A histogram of the observed distribution of the measurement error in a study with
gold standard measurements. The 2.5% percentile, the mode, the median, the mean, and the 97.5%
percentile are marked by red lines.

4. Judging the Relevance of the Magnitude of a Measurement Error

As mentioned in the introduction, the aim of scientific investigations on the measure-
ment error is to inform potential users whether the measurement error is of negligible or
at least acceptable magnitude. The numbers mentioned in the previous section do not
provide this directly. They have to be checked for their (clinical) relevance. One way would
be to compare them with predefined relevance limits.

However, even if the specification of such limits is widely recommended (cf. [10]),
such relevance limits are rarely specified in scientific investigations of the measurement
error. Typically, it is assumed that the users can judge the numerical information about the
magnitude of the measurement error based on their familiarity with the quantity of interest
in their use in routine practice. For example, it is assumed that a physician can relate a
95% range of [—0.25, 0.37] for the measurement error of a procedure to assess a patient’s
body temperature (in °C) to his or her daily work, as the physician has an idea about how
often a measurement error of this magnitude will lead to a difference in the management
of the patient.

If the influence of a measured quantity on the management can be reduced to a
classification based on exact thresholds (e.g., the WHO-classification of the body mass index
in Europe, https:/ /www.euro.who.int/en/health-topics/disease-prevention/nutrition/a-
healthy-lifestyle /body-mass-index-bmi), it might be argued that such thresholds (or more
precisely the difference between the thresholds) can be used to judge the magnitude of the
measurement error. However, in such a case, a user will probably be more interested in the
measurement error of the derived classification.

A special case appears if a measurement procedure is used repeatedly in a subject to
assess a change over time, in particular, after an intervention. For many quantities, there
have been attempts to assess a so-called minimal important difference (MID), i.e., a value
aiming to describe a change that is relevant for subjects in some sense. Then it can be
argued that the measurement error should be small enough to allow with high probability
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to detect a change at least in the magnitude of the MID. However, this special case is also
special with respect to other aspects. We will come back to this later in Section 16.1.

5. Replacing a Gold Standard Measurement by Replicates

If a gold standard measurement procedure to measure the true value is not available,
it is a rather straightforward idea to repeat the procedure of interest several times and to
take the average value of these repeated measurements in order to obtain an approximation
of the true value. There are two basic approaches to generate such replicates. The first one
is the repetition in time, i.e., the same observers repeat the whole measurement procedure
after some time. The second one is the repetition by different observers, which is often
the more attractive approach, in particular if several observers are already involved in the
study. Using different observers makes it easier to ensure some degree of independence
between the replicates, as the observers can be blinded for each other. If the same observers
are used over time, there is some danger that they can remember the results of the previous
application of the procedure in a subject.

Taking the average over such replicates is a very well known scientific procedure to
reduce the magnitude of an individual measurement error (e.g., in experimental research),
as the stochastic uncertainty of an average is always smaller than that of the single measure-
ment. However, in our context this is not sufficient, which is explained in the sequel. Let
yir denote the measurement of replicate » in subject i. The basic idea is to use the average
;. over the replicates in subject i as a substitute for the true value y;. This requires that
this average gets close to the true value y7, i.e., there are many replicates such that the
stochastic uncertainty becomes negligible. Formally, we can introduce the symbol y; to
denote the expected value of y;, (which can be also imagined as the value we should obtain
when averaging over an infinite number of replicates). So, the basic assumption made
when using replicates is simply

wi =i -

When can this property be expected to hold? It requires that the replicates do not
replicate (in part) the error. Let us look at a simple example. In cancer patients, it is rather
common to use PET/CT for measuring the size of the active part of a tumor—for example,
after radiation therapy. This requires that the observer marks the region of interest and a
machine (e.g., a scanner) can then compute the size of the active region. If the tumor is now
surrounded by an inflammation, this looks very similar to the active tumor, and neither
the observer nor the machine can distinguish this, and the tumor size is overestimated to a
substantial degree. Additionally, this part of the error will be made by any replicate, even
if it is performed by another observer.

Statistically speaking, the essential property of replicates is that they are uncorrelated,
given the true value. This means that the differences between the measured values of the
replicates and the true value, i.e., the measurement errors

_ *
Cir = VYir — Y;

of the different repetitions are uncorrelated within an individual. In particular the direction
of the error of the first replicate may not inform us about the direction of the error of the
subsequent replicates. Actually, there are many situations where this might be the case,
in particular if the error is related to characteristics of the subject that do not change over
the replicates. If a measurement procedure overestimates the true value in female, old or
highly educated subjects and underestimates it in male, young or less educated subjects,
respectively, such issues are never detected in a study based on replicates. Additionally,
many of these issues cannot be avoided by a careful design of the replication procedure,
such as blinding. This applies only to correlations between replicates due to remembering
or knowing other replicates.

In the following sections, we use the term “perfect replicates” if they are uncorrelated,
given the true value. If replicates are not perfect, they are typically positively correlated, and
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this implies that the variation in the true measurement error distribution is underestimated
(when the methods outlined in the subsequent sections are used). So, in general, the
measurement error studies, based on replicates, always pose a risk of underestimating the
measurement error of a measurement procedure, as replicates are often imperfect. This is a
property we should always have in mind when interpreting the results of a measurement
error study based on replicates.

6. A Short Reflection about Perfect Replicates and the Absence of a Truth

Taking the difficulties to generate perfect replicates into consideration, it might be
surprising that there are so many studies using replicates and so few using gold standard
measurements. A simple reason is the lack of gold standard methods. However, this often
reflects a somewhat deeper problem: it is often difficult or impossible to define or even
imagine the “true value” (at least as a specific number). This is very obvious for most
psychometric instruments trying to measure constructs, such as quality of life or pain
intensity. However, even for many physiological parameters, such as body temperature or
blood pressure, it is not easy to define a true value due to biological variation within the
body or within rather short time periods. Additionally, a quantity such as “tumor size” is
more a construct than a true value, as it would require exactly defining the border surface
of the tumor.

Consequently, in many fields, the only practical way to “define” the true value may be
to regard the average over (perfect) replicates as the true value. Such a pragmatic approach
can be also found explicitly in the literature, as discussed in [2]. However, we do not follow
this approach here, as it has a conceptual drawback. The values y; do not only depend
on the measurement procedure and the population of observers, but also on the way we
generate the replicates. For example, if we fail to blind observers from each other, there is
a risk that all subsequent observers try to reproduce the values of the first observer. This
means that y; tends to get close to y;1, i.e., the value produced by the first observer. If
the observers are blinded, y; will be different and not particular close to the value of one
observer. This type of “mistake” cannot be described if we just regard y; as the true values.
Or, in other words, we can have different true values depending on how the replicates
are generated.

Consequently, we avoid equating y; with the true value y;. Instead, we explicitly
consider the (unobservable) quantities

€ir = Yir — Hi,

i.e., the “measurement error” of each replicate. We refer to the latter as the individual
repetition error and to its distribution as the repetition error (assuming for the moment
that all subjects have the same distribution). However, we have just seen that there can
be different y; depending on how the replicates are generated; hence, we should keep in
mind that the repetition error is a property of the measurement procedure and the way
to generate replicates. In particular, generating replicates over time results in a different
repetition error than using different observers. This distinction is, for example, implied
by terms such as intra- and inter-observer variability. This first term refers to replicates
over time within one observer, and the latter to replicates using different observers. Test—
retest variability also refers to a specific way to generate replicates in time, namely to
re-administer a procedure after a specific time. However, all these terms reflect only the
intention of generating replicates, but do not define a unique repetition error distribution.
It still depends on the details of how to generate replicates, e.g., on the degree blinding
could be ensured or on the distance in time chosen.

7. Estimating Characteristics of the Repetition Error Distribution Based on Replicates

In order to get insights into the repetition error distribution, the differences
dir = Yir — Ui, should not be used directly as approximation of the individual repeti-
tion error, as they tend to have within each subject a lower spread than the values €;,. This
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is a well known phenomenon due to using the observations both with respect to estimating
the true mean y; as well as to describing the deviation from the true mean. (The most
prominent consequence is the fact that, in estimating a population standard deviation from
a sample of size 1, we divide by n — 1 instead of n in order to obtain an unbiased estimate.)

A standard approach to solve this problem is to use a simple repetition error model,
which reads

Yir = i + €, withr=1,...,R >2,E¢;, = 0and Var ¢;, = 02 (1)

such that o, denotes the standard deviation of the repetition error. The standard statistical
technique to fit the model (1) is the ordinary least squares principle. Statistical software
for both one-way ANOVA and regression (with the subject as categorical covariate) can be
used. The estimate for o, is typically reported as the RMSE (root mean squared error).

8. Improved Informing by Translating the Standard Deviation

There are mathematical and historical reasons why standard statistical techniques to
fit the simple repetition error model (1) provide an estimate of the standard deviation of
the measurement error distribution and not of other characteristics of interest. In any case,
the standard deviation was not among the parameters we mentioned above in describing
the measurement error distribution; it only appeared as an auxiliary quantity to compute
a 95% range. This is due to the simple fact that standard deviations themselves have no
directly appealing interpretation, at least if compared with other quantities, such as the
95% range.

Indeed, there are different approaches to transform the standard deviation of the
repetition error into numbers that are easier to interpret for a potential user of the mea-
surement procedure. All these approaches are based on an additional assumption, namely
that the repetition error is normally distributed. One approach is again to compute a
95% range. Another approach is to consider the distribution of the absolute deviation
from the true value and to report characteristics such as the mean, the median, or other
percentiles. Percentiles of this distribution are, however, directly related to the percentiles
of the measurement error distribution itself—for example, the upper 5% percentile of the
absolute deviation is identical to the upper bound of the 95% range. The left side of Table 1
summarizes the rules to compute some of these numbers.

Table 1. Distributional characteristics of the repetition error and the difference between replicates
expressed as a function of the standard deviation o. of the repetition error. u, denotes the a-quantile
of a standard normal distribution. For concrete computations, the following approximate values
can be used: V2 = 1.4142, ug o5 = —1.96, uggys = 1.96, uggo5v/2 = —2.7718, ugg75V/2 = 2.7718,
\/% = 0.7978, ﬁ = 1.1284, 11y 75 = 0.6745, 10.75v/2 = 0.9539. *: When the standard deviation of the
repetition error is reported, often the term Standard Error of Measurement (SEM) is used. **: The half
width of this interval is often reported as the repeatability coefficient when using two replicates over
time [11].

Variable Considered
Distributional Characteristic Repetition Error Difference between Replicates
standard deviation e * V20,
95%-range [10.0250¢, 10,9750 ] [140.025 V20, 10,975 V/20¢] **
mean absolute value %ge % Oe
median absolute value UQ.750¢ .75V 20

Further approaches are based on the idea to consider the (theoretical) distribution of
the difference between two replicates. This distribution may be easier to interpret for a
user of a measurement procedure than the repetition error distribution itself. The latter
refers to the abstract concept of a true mean, whereas the first refers to a distribution
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with a real counterpart, namely the differences we would observe if we replicate the
measurement procedure in practice. Moreover, the distribution of these differences is
completely determined by the distribution of the measurement error; in particular, the
standard deviation of the differences is just given by v/20¢. Consequently, the characteristics
we could compute with respect to the distribution of the repetition error can be computed
in an analogous manner for the distribution of the differences, as shown on the right hand
side of Table 1.

There is also a theoretical advantage in moving from the repetition error to the dif-
ference between replicates: differences tend to be closer to a normal distribution than raw
measurements. This is illustrated in Figure 2. It can be observed that, even if the repetition
error distribution deviates substantially from a normal distribution, the difference between
replicates is much closer to a normal distribution, in particular with respect to the 2.5% and
97.5% percentiles.

A final approach to translate o, to a number easier to interpret is to ask the question
of how far two values ji; < pyp for two different subjects have to be apart, such that the
probability to observe, for the second subject, a larger measured value than for the first
subject is 95%. This number is equal to 195 V20., with 1995v/2 = 2.327. This number
is often referred to as Smallest Detectable Difference, Minimal Detectable Difference, or Min-
imal Detectable Change. It should not be confused with the Minimal Important Difference
(MID) [12,13].

repetition error differences
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Figure 2. The density and cumulative distribution functions of three non-normal repetition error distributions and the

corresponding functions for the distribution of the difference between two replicates. All distributions are standardized to a

standard deviation of 1. The red dashed lines indicate the corresponding functions for a standard normal distribution as

assumed when transforming the estimated standard deviations.
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9. Relating the Repetition Error to the Population Variation

In Section 4, we have pointed out that it is necessary to relate any quantification of the
measurement error to the magnitude the user may accept in the context of the application
of the procedure. However, this requires the familiarity of the user with the quantity to
be measured by the procedure. Obviously, this cannot be the case if a procedure provides
access to a new quantity for the first time. For example, this situation is typical for a new
psychometric instrument.

In this case, it is common to take the population variation of the quantity of interest
into account and to relate the standard deviation of the repetition error to this variation.
The rationale behind this is rather simple: measurement procedures are used to distinguish
between subjects with different true values, and the smaller the measurement error relative
to the population variation, the better we can discriminate between subjects with different
true values.

There are at least two different ways to quantify the population variation. We can
consider the population variation of measurements of this quantity, or the variation in
the true mean values y; (which may coincide with the true values in the optimal case).
The latter can be estimated by adding the assumption y; ~ N(u,0p) to the simple repe-
tition error model (1). Such a model is then called a random effects model or a variance
component model, and the restricted maximum likelihood (REML) method allows us to
obtain estimates of both ¢, and ¢e. The standard deviation of the population variation of

the measured quantity is then given by /0,2 + 0c?. Hence, we can relate the standard
deviation of the repetition error to the population variation by considering the ratios

O¢ (%
G1:= (701‘52 =
p \/Op2 + 02

However, the most popular way is given by the so called intraclass correlation coeffi-
cient (ICC), defined as

which is equal to 1 — (&)?. Consequently, the ICC behaves differently compared to
the numbers shown in Table 1 and the ratio ¢;. Those numbers are all proportional to
e, i.e., if the measurement error increases by a factor of two, these numbers are all also
doubled. In contrast, the ICC decreases with increasing measurement error, and the relation
is non-linear.

However, there is a slight conceptual issue with the idea of taking the population
variation into account. ¢, obviously depends on the population chosen for the study. We
argued above that the study population of a measurement error study should represent
a certain relevant subject population, and if this advice is followed, we also have a clear
interpretation of 0. However, there may be subtle differences. In designing a measurement
error study, we aim to be representative with respect to the magnitude of measurement
error. This may imply that we do not care a lot about subject characteristics we believe
are unrelated to this magnitude. For example, if we consider a procedure to measure a
physiological parameter in clinical populations, it might be acceptable to use patients from
one single hospital. However, the distribution of the physiological parameter may depend
on whether the hospital is located in a rural or an urban area.

In any case, using the population variation ¢, in order to facilitate the interpretation
of the repetition error increases the need for a careful and responsible choice of the study
population: Increasing the heterogeneity of the population makes the relation between o
and o) to look more favorable.
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10. Analyzing Pairwise Differences

In view of the advantages of differences between replicates mentioned above, it might
be argued that we should avoid any analysis of the raw measurements and directly use the
differences between replicates. Indeed, this is a very popular approach in studies with only
two replicates, and we will come back to this specific situation later in Section 14.

However, this approach is also applicable in the case of more than two replicates. We
can just build all pairwise differences between replicates, i.e., the differences

6i7172 - ]/irz - ]/irl

over all subjects i and all pairs (r1,72) of replicates with r; # rp. (Note that any pair will
enter twice, with opposite roles of the two replicates.) Indeed, the empirical distribution
observed in these values is a perfect approximation for the true theoretic distribution of
the differences. In particular, it allows us to determine the percentiles of this distribution
without any normality assumption in a rather efficient manner. It can, hence, present a
valuable alternative—at least for this specific purpose.

11. Informing about the Shape of the Repetition Error Distribution

When considering the case of having access to a gold standard method in Section 3,
we pointed out that information about the shape of the measurement error distribution
can be essential for the user. For example, a skewed error distribution will tell the user
about the risk to observe large deviations in particular in one direction. The inspection of
the distribution of residuals from a regression model is a well known general statistical
technique to study the shape of the error distribution, but this technique has to be handled
with care when considering the simple repetition error model (1). Since we estimate, for
each subject, its own mean value and the residuals are defined as the differences from this
mean value, the distribution of the residuals does not approximate the error distribution,
even in large samples. This does only hold if we have a sufficient number of replicates.
In particular if there are only two replicates, the distribution of the residuals is always
symmetric and we cannot expect to detect a skewed repetition error distribution. However,
as soon as there are three or more replicates, we can detect essential characteristics of the
shape in the distribution of the residuals, as illustrated in Figure 3.
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Figure 3. Four repetition error distributions and the corresponding distributions of residuals based
on R replicates. Residuals were rescaled by multiplication with the factor %

12. Learning about the Repetition Error by Modeling

The simple repetition error model (1) is the perfect basis for estimating the standard
deviation of the repetition error. However, it can be extended in several directions, allowing
us to get more insights into the behavior of the repetition error.

We already discussed, in Section 2, that the magnitude of the measurement error
may depend on patient characteristics. Hence it is a straightforward idea to allow o¢ to
depend on subject characteristics. For example, if we are interested in investigating the
relation of the magnitude of the repetition error to gender, we may fit the model separately
for males and females. More generally, we can allow the repetition error o, to vary from
subject to subject, i.e., we replace ge with o¢; in (1) and try to link these individual values
to subject-specific characteristics. For example, if we are interested in the relation of the
magnitude of the repetition error to age and gender, we can formulate a corresponding
linear model for the standard deviation of the log scale, i.e.,

logoe; = Bo + ﬁageagei + ,Bgenderge”deri .



Diagnostics 2021, 11, 162

12 of 19

This way, it becomes feasible to give more specific information to the users of the
measurement procedure.

We also discussed, in Section 2, that the magnitude of the measurement error may
depend on the observer. There may be systematic differences between observers (i.e., some
observers tend to produce, on average, higher values than others) as well as differences in
the magnitude of the standard deviation. This suggests considering models in which each
observer has her or his own mean «, and own standard deviation o, of the repetition error.
Such a model may read

Yir = Wi + & + €;, withEe;, = 0and Var ¢;, = 0.2

The inspection of the estimates of &, and 0., may inform us about the single observers r,
but typically it is of interest to relate these values to specific characteristics of the observers.
This can be again approached by formulating corresponding linear models for &, or log o,
This information may be also relevant for the user of the measurement procedure, if the
choice of the observer can be influenced in a daily routine—for example, by ensuring
sufficient experience.

Learning about the influence of characteristics of the observers this way requires
a sufficient variation in observer characteristics and hence a rather substantial number
of different observers. With a limited number of observers, we can still ask the more
simple question of whether there are any differences between the observers. This requires
only modeling &, or 0., as random effects. In particular, the first choice allows us to
decompose the repetition error into two components: the variation in mean values between
the observers and the additional variation that cannot be explained this way. If there is
substantial variation in mean values, we can hope to reduce the repetition error in the long
run by teaching observers to reduce these differences, i.e., we have to convince them to
calibrate each other.

The same approach can be used in the case of repetitions over time: &, and ¢; can be
modeled as a function of time. Establishing an effect of time indicates a deviation from
perfect replicates. If, in addition, there are also different observers, even the interaction
between observer and time can be investigated, i.e., to which degree different observers
change differently over time.

A final issue we can investigate is a potential relation between the magnitude of the
measurement themselves and the standard deviation of the repetition error. Such a relation
is often present, but the degree is often unclear. In particular it would be of interest whether
the standard deviation of the repetition error o; is approximately proportional to y;. In
this case, it would be useful to inform the user about the proportionality factor instead of
an overall standard deviation. This question can be approached by modeling log o; as a
linear function of y; and to study the intercept and the slope.

Standard software for mixed models (such as PROC MIXED in SAS or the mixed
command in Stata) allows us to fit many of these models—as long as the standard deviation
is modeled only as a function of one categorical variable. More complex modeling of the
standard deviation requires us to use specific software, such as the R-package gamlss [14]
or use flexible programs for Bayesian model fitting.

It should be noted that the use of any of these models does not imply that model (1) is
incorrect. Model (1) still provides an estimate of the standard deviation of the repetition
error for a randomly chosen subject and a randomly chosen observer or time point. All
the other models answer questions about the measurement error of a subject, observer or
timepoint with a specific characteristic.

13. Splitting Up the Measurement Error

Some measurement procedures consist of several steps, which can be replicated
separately. For example, in taking an image, the patient has to be positioned correctly,
an image has to be taken, the image has to be presented to an observer, the observer has
to mark a region of interest, and finally an algorithm computes a number. Each step can
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be replicated, i.e., the patient can be positioned twice, the image can be taken twice, a
randomly chosen set of observers is looking independently at the images, the observers are
marking the region of interest twice, and the algorithm is applied twice. Each step has then
its own repetition error, and this can be estimated by extending the simple repetition error
model (1), in a way writing the error term as a sum of step-specific error terms (variance
components). Again, standard statistical software for fitting random effect models can be
used to obtain estimates for the standard deviation of the repetition error in each step. It
is essential that it is not necessary to replicate each step in each subject. It is sufficient to
repeat in each subject one or a few (randomly or pre-specified) selected steps, such that, at
the end, there is a sufficient overall number of replicates for each step to reliably estimate
the relevant variance components.

14. Studies with Two Observers

The vast majority of scientific investigations about the measurement error are based
on only two replicates. This is not an issue when we use replicates in time, but it is an
issue if we select only two observers. If we select two observers, it is rather unlikely
that we can regard this as a random sample form a relevant population of observers. A
typical set-up you can find in many investigations of new measurement procedures is to
choose as observers the inventor of this new procedure and his or her closest collaborator.
Obviously, if in such an investigation a low repetition error is observed, this will not inform
potential users about the repetition error they can expect in the future in daily routine.
They provide another type of information, which can be useful, too—for example, if we
investigate whether a clinician and a radiologist can come to the same judgment based on
a radiological image.

Studies with “replicates” based on two observers can be seen as a special case of
method comparison studies. In method comparison studies, two different measurement
procedures are applied in each subject, and the aim is to inform potential users about the
difference they have to expect between the two procedures. There is little danger that a
method comparison study is interpreted as an attempt to investigate the measurement
error of each procedure. Hence, by regarding the two observers as two different methods,
it becomes more obvious that studies with two observers do not aim at informing about
the measurement error of the measurement procedure used.

Comparisons of two observers—or method comparison studies—require a different
analytical approach compared to studies using replicates: it makes now sense to investigate
whether there is a systematic difference between the two observers or methods, respectively.
Consequently, the statistical repertoire now includes methods such as a t-test-based confi-
dence interval for the difference in mean values. The very popular approach of the Limits of
Agreement, introduced by Bland and Altman [15] is just a generalization of the 95%-range
mentioned on the right side of Table 1, taking the systematic difference into account. In
general, the methodology for analyzing such studies is both similar but also different to
studies using replicates. It is beyond the scope of this paper to go into detail here.

Additionally, if more than two methods or more than two purposeful selected ob-
servers are compared, we do not approach investigations based on replicates. These studies
should be seen as pairwise comparisons. However, it can be very useful to add replicates in
the design of a method comparison study, as then it becomes possible to study the repetition
error of each measurement procedure and to relate the observed differences between the
methods to the repetition error. In particular, it allows us to judge whether the differences
can be purely explained by the repetition error. Bland and Altman [15] presented this
proposal in 1986, but regretfully, by 2003, their proposal had not been adopted widely [3].

15. Using Replicates in Studies with a Gold Standard Measurement

Even if a gold standard measurement procedure is available, it can be of interest to
generate in addition replicates for the measurement procedure of interest, following some
standard principles, such as using several observers or several time points. First, we can
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now also estimate the characteristics of the repetition error, allowing comparisons with
other investigations reporting such values. Second, we can check whether the principle
is able to generate perfect replicates. However, imperfect replicates are often not due to
an imperfect way of generating replicates, but due to the (undue) influence of subject
characteristics on the measurement procedure. We discussed, in Section 5, potential
correlations of the measurement error with factors such as age, gender or education, which
we will never detect using only replicates. If a gold standard measurement is available,
we can detect this by separately analyzing the bias in males and females. More generally,
we can relate the individual measurement error ¢; to subject characteristics, similar to the
approaches outlined in Section 12. However, this obviously does not require the use of
replicates. The advantage of using replicates is that we can now split up the individual
measurement error ¢; = y; — y; into the two components y; — y; and p; — y7, i.e., into
the repetition error and a “systematic” component, and only the latter is affected by
subject characteristics. Actuallly, using replicates allows us to estimate this systematic
component with much higher precision, compared to the situation of a single measurement
in each subject. Hence, we gain substantial power in investigating the relation to subject
characteristics, in particular if the spread of the repetition error is large compared to the
inter-individual variation in the systematic component. Thus, replicates are used here to
decrease the stochastic uncertainty.

16. Discussion
16.1. How Well Do We Inform Potential Users?

Our considerations suggest that it is relatively simple to inform potential users of a
measurement procedure about the measurement error using replicates. Always having
in mind that the spread of the repetition error distribution tends to underestimate the
spread of the measurement error distribution, information on the standard deviation of the
repetition error can be provided and it can be transformed into quantities supporting the
interpretation of the magnitude of the repetition error in the context of the application of
the procedure by the user.

If it is so simple, why was it necessary to write this paper? One simple answer
is that the simple repetition error model (1) is rarely presented in papers discussing the
methodology of scientific investigations of the measurement error—although it is, of course,
always present in the background. This may make it difficult to explain quantities derived
from this model in a simple manner. There are many historical and conceptual reasons
for this. For example, for decades, the ICC played a very prominent role in the analysis of
measurement error studies [16-18], and hence many papers take this as a starting point—in
our consideration the ICC is the measure most apart from the standard deviation. On the
other hand, the Standard Error of Measurement is often only presented as one of many
measures that are computable, masking its fundamental conceptual role as the origin of all
other quantities. Moreover, the focus is often on how to compute one measure from each
other—reflecting a practical need—which gives a natural focus on technicalities.

There are, of course, also conceptual issues, which we have also touched upon. The
thinking in differences between replicates is rather attractive from a pedagogical point
of view, as the measurement or repetition error is a rather abstract quantity, involving
the concept of true values or the expected value of replicates, respectively. Even from
a statistical point of view, an analysis based on differences can have advantages. If the
intended use of a measurement procedure is the assessment of a change over time (e.g.,
after an intervention), then a potential user would probably expect to be informed by a
difference approach using a study based on replicates mimicking the relevant time frame.
Indeed, in such a situation, considering the measurement error from a study based on a
gold standard measurement can be misleading.

In the following sections, we comment in more detail on some of the issues involved
in explaining the discrepancy between the existence of a rather clear and simple framework
as outlined in this paper and the somewhat confusing situation with respect to explaining
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and reporting the methodology of scientific investigations on the measurement error of
a procedure.

16.2. A First Step towards Terminology

We mentioned, in the introduction, the confusion about terminology with respect to
scientific investigations of the measurement error. Can the considerations presented in this
paper be helpful in this context? Roughly speaking, terminology should assist inter-human
communication by ensuring that the same things have the same name and different things
have different names. So, a first step should be to reflect about which distinctions are
relevant. Based on the considerations presented in this paper, we identified four issues
where a distinction might be useful and relevant. Table 2 presents the corresponding topics,
the categories to be distinguished, and the reasons why we regard these distinctions as
relevant—they have distinctly different consequences.

Table 2. Four relevant distinctions in communication about systematic investigations of the measurement error of a

measurement procedure.

Topic

Categories Relevant Consequences

existence of true values

- question about existence of gold standard measurement

true values are imaginable procedure is reasonable
- concept of “perfect replicates” is clearly defined

- no reason to look for gold standard method
true values are not imaginable - distinction between measurement error and repetition
error conceptually challenging

study design

gold standard measurement procedure applied ~ measurement error can be analysed

- only repetition error can be analysed, which can be

replicates used smaller than the measurement error

- both can be analysed and relation to subject

both characteristics can be studied with higher power

type of error analysed

- systematic bias can be analysed

measurement error - numbers reported can take systematic bias into account

- systematic bias cannot be analysed
repetition error - numbers reported all assume a systematic bias of 0
- depends on choice of the manner to generate replicates

reporting characteristics of
repetition error

only depending on repetition error choice of measures: SEM or transformations

also depending on population variation choice of measures: ICC or related measures

16.3. The Relation to Existing Terminology

Having identified four relevant distinctions, it is natural to ask whether existing termi-
nology is (already) related to these distinctions. We are not aware of terms reflecting the
imaginability of true values. However, this distinction coincides roughly with two different
user domains, namely those who measure physiological or other “real” parameters and
those using psychometric instruments and/or patient reported outcomes and experience
measures. With respect to study designs, we can imagine that many people using the
terms “reproducibility study” or “repeatability study” actual refer to studies based on
using replicates, whereas studies involving a gold standard measurement procedure may
be typically called “accuracy study” or “measurement error study”. Since the type of error
analyzed matches nearly 1:1 with the study design, these terms may be also interpreted in
relation to this type. In scientific fields with imaginable true values, the term “precision”
often refers to the repetition error, and “accuracy” to the measurement error.

The distinction between the two possibilities to report characteristics of the repetition
error has attracted some attention in the literature. It is mainly reflected in the distinction
between “agreement measures” and “reliability measures” [7,19]. We are not very happy
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about the use of the term “agreement” to characterize the reporting of the characteristics
of the repetition error. The term “agreement” typically refers, in common language, to a
specific relation between two people or two parties. So, when talking about “agreement”,
it is rather natural to think in differences, and hence the term contributes to the lack of
popularity in thinking in terms of the repetition error. In our opinion, it would be useful
to use the term “agreement” only with respect to studies with the purposeful selection
of single observers or measurement procedures, as here the task is indeed to investigate
pairwise agreement. This applies, in particular, if the term “agreement” is not just used in
connection with the term “measure”, but in connection with the term “study”. The contrast
to “agreement studies” may then be characterized by the terms “reproducibility study” or
“repeatability study”, emphasizing the intention to generate perfect replicates.

Whether the term “reliability measure” is adequate or not to characterize measures,
also depending on the population variation, cannot be judged based on our considerations.
We touch on measures, such as the ICC, only from one specific perspective, namely how to
inform users about the repetition error in the case of lacking familiarity with the quantity
of interest. In the literature, the relation between the repetition error and the population
variation is often seen as a scientific question of its own interest [20], related to the distinc-
tion between the evaluative and the discriminative use of measurement procedures [21].
To which degree these distinctions and terms are useful cannot be addressed within the
scope of this paper.

As the terms “agreement” and “reliability” may suggest unintended associations, it
might be worth thinking about alternative terms to distinguish these two types of reporting
characteristics of the repetition error. One idea would be the terms “absolute measures” and
“relative measures”. This would also reflect that the absolute measures have a unit identical
to that of the measurements themselves, whereas the relative measures are unit-free ratios.
Indeed, these terms can be also found in the literature [1,20]. In any case, it should always
be emphasized that such terms reflect a distinction, but they do not exclude each other. Any
scientific investigation of the measurement error based on replicates allows for estimating
the magnitude of the repetition error. Even if relative measures are of primary interest in a
specific situation, absolute measures can and should also be reported.

It is not the intention of this paper to introduce a new term for the type of studies
described in this paper. The paper just presents a specific view on a range of existing
studies (or study types), focusing on the common aim to inform potential users about the
measurement error of a single measurement procedure by trying to replace an absent gold
standard method by some type of replicates. This allows for highlighting the similarity
among all studies following this principle with respect to the major conceptual approach,
as well as the statistical analysis and may contribute to a better understanding of some
common issues. It is, of course, always somewhat arbitrary to define the scope of such
a view. For example, we decided to consider both replicates in time as well as replicates
using different observers in our view. This requires a somewhat abstract view, but we
felt that, in our context, the similarities are larger than the dissimilarities. (Although, in
Section 12, one difference becomes obvious: repetitions in time have time as an underlying
continuous scale, which is not present when using observers.) This does not mean that we
should not distinguish between these two settings in general. For example, “repeatability”
may be used to characterize repetitions under similar conditions (i.e., over time), and
“reproducibility” to characterize repetitions under varying conditions (i.e., observers),
cf. [7]. In general, it should be noted that there is no general consensus about which general
aspect of a study should be reflected by terms for study types. Terms such as “case-control
study”, “cohort study” or “randomized trial” reflect basic designs, and terms such as “risk
factor studies” or “diagnostic accuracy study” reflect a specific aim, whereas terms such
as “treatment study” or “epidemiological study” may reflect rather general aims. The
confusion about terminology in the field of measurement error studies is, in our opinion,
partially due to the fact that it is often unclear whether terms such as “agreement study”,
“reliability study” or “reproducibility study” refer to designs or to aims.
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16.4. The Move from Two Replicates to Many Replicates

Studies comparing two observers (or two measurement procedures) have played a
dominant role in the history of measurement error studies, and the statistical approaches
and methods discussed in the literature are hence mainly reflecting this situation. Fortu-
nately, it has been recognized, to an increasing degree, that inter-observer reliability studies
have to be based not only on two but several observers in order to allow a generalization in
a meaningful manner and to inform potential users. However, the analytical thinking used
in presenting results from these studies often still reflects the idea of looking at differences,
e.g., by transforming the standard deviation of the repetition error into quantities related
to the difference between replicates or between two subjects. The simple repetition error
model is rarely mentioned explicitly, and, in this way, researchers and readers are not aware
of the additional possibilities offered by such an approach with respect to getting deeper
insights into the repetition error, as described in Sections 11-13. We hope and expect that
the increasing use of many observers contributes to making the thinking in the simple
repetition error model more popular.

16.5. Using the Simple Repetition Error or the Difference Approach?

This may also contribute to the confusion that there are, indeed, two different statistical
approaches to the analysis of scientific investigations using replicates, amongst which we
cannot say that one prevails over the other. We acknowledge that the difference approach
in the form presented in this paper may not have been widely used for analyzing studies
with more than two replicates. Moreover, for studies with two replicates, the difference
approach is used, typically without the step of considering all pairs in both orders.

We did not present a systematic comparison of the two approaches in this paper.
However, we would like to mention two further properties of the fully pairwise difference
approach. First, there are no standard technical techniques to perform statistical inference,
i.e., to compute confidence intervals. Second, some of the modeling approaches mentioned
in Section 12 can also be easily applied when using the differences, whereas some are
more challenging. The latter happens in particular if there is a need to model the effect of
covariates that are not constant within pairs.

16.6. Neglected Topics

We could not touch all topics that may be relevant in the context of using replicates
to inform potential users of a measurement procedure. In particular, we focused on the
definition of key quantities and their estimation, but did not address the question of
communicating uncertainty of parameter estimates. Indeed, this is partially ignored in
reporting the results of scientific investigations of measurement error studies, i.e., estimates
are presented without standard errors or confidence intervals. This is partially due to the
statistical software used: Programs for ANOVA or regression typically do not report such
values for the RMSE. From this point of view, it is preferable to use software for random
effect models, often providing this information. The statistical validity of estimates and
inference procedures has recently attracted some attention with respect to the analysis of
method comparison studies [22-24]. It is desirable that these investigations are extended
to the estimates based on the simple repetition error model mentioned in this paper. The
same holds for sample size considerations [25,26].

We also only considered the case of measurement procedures, resulting in continuous
numbers. Many measurement procedures finally result in a binary (or categorical) decision,
and the error at this level is of high interest for the user. The considerations of this paper
cannot be transferred directly to the binary case. The average of binary replicates provides
as estimate of a probability, and such a probability cannot be regarded as a substitute for a
true binary value. Moreover, the repetition error is a difference between a binary variable
and a probability, such that the standard deviation may be not a natural way to characterize
this distribution. Hence, alternative perspectives are necessary to explain the value of
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replicates for a binary measurement procedure—for example, the formal relation between
the ICC and the kappa statistic [27,28].
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ANOVA  Analysis of Variance

ICC Intraclass Correlation Coefficient
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RMSE Root Mean Squared Error

SEM Standard Error of Measurement
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