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Abstract: COVID-19 is a fast-growing disease all over the world, but facilities in the hospitals
are restricted. Due to unavailability of an appropriate vaccine or medicine, early identification of
patients suspected to have COVID-19 plays an important role in limiting the extent of disease. Lung
computed tomography (CT) imaging is an alternative to the RT-PCR test for diagnosing COVID-19.
Manual segmentation of lung CT images is time consuming and has several challenges, such as the
high disparities in texture, size, and location of infections. Patchy ground-glass and consolidations,
along with pathological changes, limit the accuracy of the existing deep learning-based CT slices
segmentation methods. To cope with these issues, in this paper we propose a fully automated and
efficient deep learning-based method, called LungINFseg, to segment the COVID-19 infections in
lung CT images. Specifically, we propose the receptive-field-aware (RFA) module that can enlarge
the receptive field of the segmentation models and increase the learning ability of the model without
information loss. RFA includes convolution layers to extract COVID-19 features, dilated convolution
consolidated with learnable parallel-group convolution to enlarge the receptive field, frequency
domain features obtained by discrete wavelet transform, which also enlarges the receptive field,
and an attention mechanism to promote COVID-19-related features. Large receptive fields could
help deep learning models to learn contextual information and COVID-19 infection-related features
that yield accurate segmentation results. In our experiments, we used a total of 1800+ annotated CT
slices to build and test LungINFseg. We also compared LungINFseg with 13 state-of-the-art deep
learning-based segmentation methods to demonstrate its effectiveness. LungINFseg achieved a dice
score of 80.34% and an intersection-over-union (IoU) score of 68.77%—higher than the ones of the
other 13 segmentation methods. Specifically, the dice and IoU scores of LungINFseg were 10% better
than those of the popular biomedical segmentation method U-Net.

Keywords: COVID-19; CT slices; deep learning; image segmentation

1. Introduction

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2), which is still threatening humans
worldwide. The World Health Organization (WHO) declared that COVID-19 (the novel
coronavirus disease) is a global pandemic on the 11 March 2020 [1]. Due to unavailability
of an appropriate vaccine or medicine, the early diagnosis of COVID-19 disease is very
crucial to saving many people’s lives and protecting frontline workers. One of the gold
standard COVID-19 detection methods is RT-PCR (reverse transcription-polymerase chain
reaction); note that the RT-PCR test is time-consuming and has low sensitivity [2]. Besides,
RT-PCR testing capacity is not enough in all countries and the required material is limited
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in hospitals considering the number of possible infections. It should be noted that chest
CT imaging, which is a non-invasive, routine diagnostic tool for pneumonia, has been
used to supplement RT-PCR testing to detect COVID-19 [3]. The study of [4] concluded
that chest CT images reveal some noted imaging features of COVID-19, including ground-
glass opacification (GGO) and consolidative opacities overlaid on GGO, which can be
found mainly in the lower lobes. These features can help detect COVID-19 early before
noticing the clinical symptoms. Additional features of COVID-19, such as pleural/septal
thickening, subpleural involvement, and bronchiectasis, can be noticed in the later stages of
the disease. It is worth noting that some related works, such as [5,6], suggest the use of chest
radiographs (CXR) due to their widespread availability and portability, non-invasiveness,
and faster acquisition and visual analysis. However, CTs have higher accuracy than CXR
and allow diminishing the false negative errors from repeated swab analysis [7].

Considering the massive number of daily infections, radiologists encounter difficulties
in visually inspecting all CT images to identify the salient imaging features of COVID-19.
Hence, there is a requirement to develop accurate automated tools to segment COVID-19
infection in the chest CT images at the lung level. Figure 1 shows four examples of COVID-
19 existing in the chest CT images. Radiologists can notice regions of patchy ground-glass
and consolidations in COVID-19 CT images. These artefacts, and pathological changes, can
limit the accuracy of automated lobe segmentation methods. Computer-aided diagnosis
(CAD) systems can support the radiologist in identifying the COVID-19 infection from
lung CT images. Since COVID-19 is a new disease, therefore CAD systems are helpful to
instruct less experienced radiologists. The main aim of the CAD systems is to provide a
precise segmentation of the infected region from lung CT.

Figure 1. Four examples of COVID-19 existing in chest CT images (COVID-19 infection is highlighted by red boxes).

A growing number of research groups across the globe have shown that medical image
segmentation algorithms based on deep learning have a tremendous capacity that can help
detect and segment COVID-19 infections from lung CT ges. In [8], a deep learning-based
method is suggested to segment COVID-19 infection by aggregating residual transforma-
tions and employing soft attention techniques to learn significant feature representations
from lung CT images. In [9], an encoder–decoder network with feature variation and pro-
gressive atrous spatial pyramid pooling blocks is proposed to segment the infected region.
A total of 21,658 annotated chest CT images (861 confirmed COVID-19 patients) were used
to train the segmentation model. With CT images of 130 patients, a dice score of 72.60% was
achieved. The authors of [10] investigated the effectiveness of deep learning models for seg-
menting pneumonia infected area in CT images for the detection of COVID-19. Specifically,
they studied the efficacy of U-Net and a fully convolutional neural network (FCN) with CT
images. With a dataset of 10 axial volumetric CT scans of confirmed COVID-19 pneumonia
patients, the FCN model achieved an F1-score (dice score) of 57% approximately.

In [11], a COVID-19 pneumonia lesion segmentation network, called COPLE-Net, was
proposed to handle the lesions with various scales and appearances. In this model, a noise-
robust dice loss (a generalization of dice loss) is introduced. This segmentation model has
been trained and evaluated on images of 558 COVID-19 patients collected from 10 different
hospitals, achieving a dice score of 80.29%. Fan et al. [12] employed a parallel partial
decoder to aggregate features from high-level layers to generate coarse representations.
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Then, they used recurrent reverse attention and edge attention guidance approaches to
model the boundaries of infected areas. In [12], Fan et al. also proposed a semi-supervised
segmentation framework, Semi-Inf-Net, based on a randomly selected propagation strategy
that needs a few labeled pieces of data for training. The Semi-Inf-Net model achieved a
dice score of 59.70% with nine real CT volumes with 638 slices. Muller et al. [13] used
different preprocessing methods and on-the-fly data augmentation techniques for training
the 3D U-Net architecture using a small CT image dataset. They achieved a dice score of
76.10% with 20 CT volumes.

As mentioned above, patchy ground-glass and consolidations, and pathological
changes, limit the accuracy of the existing segmentation methods. Receptive field (field-of-
view), a region of neurons in a particular layer that affects a neuron in the next layer, is a
vital concept in designing CNN. Large receptive fields could help deep learning models to
learn contextual information and COVID-19 infection-related features that yield accurate
segmentation results. The most common ways to enlarge the receptive field of a CNN is to
increase the depth of the network, use pooling operations, and enlarge of sizes of filters.
The increase of network depth or enlargement of sizes of filters significantly increases the
computational cost, and pooling operations yield information loss. Dilated convolution [14]
is also employed to enlarge the receptive fields of CNNs by inserting zeros in the filters,
which has no computational cost.

In an attempt to address the problems stated above, we propose a fully automated
and efficient deep learning-based method called LungINFseg, to segment the COVID-19
infection in lung CT images. Specifically, we propose the receptive-field-aware (RFA)
module that can enlarge the receptive field of a segmentation models and increase the
learning ability of the model without information loss. RFA comprises convolution layers
to extract COVID-19 features, dilated convolution consolidated with learnable parallel-
group convolution to enlarge the receptive field, frequency domain features obtained by
discrete wavelet transform (DWT), which also enlarge the receptive field, and an attention
mechanism to promote COVID-19-related features. We compared LungINFseg with 13
state-of-the-art deep learning-based segmentation methods to demonstrate its effectiveness.
The main contributions of this article are listed below:

1. We propose a fully automated and efficient deep learning based method to segment
the COVID-19 infection in lung CT images.

2. We propose the RFA module that can enlarge the receptive field of the segmentation
models and increase the learning ability of the model without information loss.

3. We present a comprehensive comparison with 13 state-of-the-art segmentation models,
namely, FCN [15], UNet [16], SegNet [17], FSSNet [18], SQNet [19], ContextNet [20],
EDANet [21], CGNet [22], ERFNet [23], ESNet [24], DABNet [25], Inf-Net [12], and
MIScnn [26].

4. Extensive experiments were performed to provide ablation studies that add a thor-
ough analysis of the proposed LungINFSeg (e.g., the effect of resolution size and
variation of the loss function). To reproduce the results, the source code of the pro-
posed model is publicly available at https://github.com/vivek231/LungINFseg.

This article is structured as follows: Section 2 explains the proposed LungINFseg
model. Section 3 presents experimental results with an ablation study about the features of
the proposed model. Finally, Section 4 concludes the article.

2. Methodology

Figure 2 presents the framework of the proposed LungINFseg model, which includes
encoder and decoder networks. LungINFseg receives CT images as input and produces
binary masks highlighting the infected regions. The features of each encoder block are
bypassed to the corresponding decoder block to preserve the spatial feature information.
In the following sections, we explain each part in detail.

https://github.com/vivek231/LungINFseg
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Encoder Decoder

Skip connection CT input Output

Figure 2. Framework of proposed LungINFseg.

2.1. Encoder

Figure 3 shows the encoder network that comprises four RFA blocks. As one can see,
the CT images are fed into the main DWT is to obtain multi-band multi-scale decomposition
of input lung CT images. The resulting DWT representations of CT images serve as an
inputs to RFA blocks.

RFA1
D = 4

DWT

RFA2
D = 8

RFA3
D = 16

RFA4
D = 32

Σ

L1 L2 L3 L4

Loss

Out
CT image

DWT: Discrete wavelet transform RFA: Receptive field aware module D: Downsample

Encoder network

Figure 3. The encoder network. L1, L2, L3, L4 represent the block-wise losses. D refers to the down-
sampling rate. Out represents the output features generated by the Encoder network. RFA refers to
the receptive field aware module. DWT refers to the discrete wavelet transform.

2.1.1. Increasing the Receptive Fields Using Discrete Wavelet Transform (DWT)

As the human visual system has unequal sensitivity to frequency components, insert-
ing frequency information oto the deep learning-based COVID-19 infection segmentation
models can significantly improve their performance. In this study, DWT was utilized to
extract COVID-19 infection-relevant contextual information, enlarge the receptive field,
and preserve image contextual and spatial information. The use of DWT can enlarge the re-
ceptive field of CNNs and also increase the amount of data, which enhances the training pro-
cess. DWT uses filter banks for recognizing both time and frequency resolutions at the same
time [27]. In this work, we use 2D DWT with four Haar filters, namely, fLL = [1 1; 1 1]T ,
fLH = [−1 − 1; 1 1]T , fHL = [−1 1;−1 1]T , and fHH = [1 − 1;−1 1]T , to de-
compose a particular lung CT image x into four sub-bands, i.e., xLL, xLH , xHL, and xHH ,
as shown in Figure 4. The decomposition process can be expressed as follows [28]:

xLL(i, j) = x(2i− 1, 2j− 1) + x(2i− 1, 2j) + x(2i, 2j− 1) + x(2i, 2j)
xLH(i, j) = −x(2i− 1, 2j− 1)− x(2i− 1, 2j) + x(2i, 2j− 1) + x(2i, 2j)
xHL(i, j) = −x(2i− 1, 2j− 1) + x(2i− 1, 2j)− x(2i, 2j− 1) + x(2i, 2j)
xHH(i, j) = x(2i− 1, 2j− 1)− x(2i− 1, 2j)− x(2i, 2j− 1) + x(2i, 2j)

(1)
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Figure 4. Illustration of decomposing a CT image into sub-band using DWT.

As shown in Figure 4, the input CT is convoluted with low-pass and high-pass filters.
While the output of each filter contains half the frequency content, it has the same size as
the input CT image. Therefore, the outputs of the low and high branches together comprise
the same frequency content as the input CT image; however, the amount of data is doubled,
which improves the training process of the proposed model (a kind of data augmentation).
Figure 5 shows a zoom-in visualization of the decomposition for a CT image into four
sub-bands using DWT. It should be noted that DWT is related to the pooling operation and
dilated filtering [29]. Assume that we make an average pooling with a factor 2 on input im-
age x; we get xpooling(i, j) = (x(2i− 1, 2j− 1) + x(2i− 1, 2j) + x(2i, 2j− 1) + x(2i, 2j))/4.
As one can see in Equation (1), DWT decomposition is connected to the average pooling: for
example, the only difference between xLL and xpooling is the fixed coefficient 1/4. In turn,
the decomposition of an image into sub-images using DWT is relatively connected to
dilated filtering.

A H V D

Figure 5. Illustration of a zoom-in visualization of decomposing a CT image into four sub-bands using DWT. A, H, V and D
refer to Approximation, Horizontal Detail, Vertical Detail and Diagonal Detail, respectively.

2.1.2. Receptive-Field-Aware (RFA) Module

Figure 6 shows the structure of the RFA module, which includes convolutional layers
obtained from ResNet-18 pre-trained on ImageNet [30], a learnable parallel dilated group
convolutional block (LPDGC), and a feature attention module (FAM). RFA encoding layers
can learn low-level features from lung CT images, such as spatial information (e.g., shape,
edge, intensity, and texture) in the training phase. As one can see in Figure 6, the RFA block
receives two inputs. Input1 represents the features extracted in the previous layers (except
in the first RFA block, input1 represents the input CT images). Input2 represents the DWT
decompositions of the input CT image. Input1 is fed into a convolution layer with a kernel
of size 3× 3 and a stride of 1. The resulting features are summed with input2 and then
fed into LPDGC and FAM modules. Note that the DWT features are resized to the size of
Input1 using bilinear interpolation before the summation process.
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Σ

D

Out
Input1

Input2

Conv

LPDGC FAM

Downsample

Summation

Figure 6. Proposed RFA module. Conv refers to convolution layers. D refers to the down-sampling
rate. Out represents the output features generated by the RFA module. LPDGC refers to the learnable
parallel dilated group convolutional block. FAM refers to the feature attention module.

Learnable Parallel Dilated Group Convolutional (LPDGC) Block

Figure 7 illustrates how receptive fields with varying dilation rates can capture the
small and relevant regions in CT images. In this work, we propose the use of the LPDGC
block, in which the conventional convolutional filters employed in the parallel dilated
group convolutional (PDGC) block are replaced by a fully learnable group convolution
mechanism [31]. Figure 8 shows the architecture of the LPDGC block, which comprises
four group convolution (G-conv) layers with different dilation rates (1, 2, 3, and 4) followed
by an exponential linear unit (ELU) activation function. The kernel size of each G-conv
layer is 3× 3.

(a) (b)

Figure 7. Illustration of receptive fields. (a) Receptive fields in the same layer with the same size
kernel that capture more background pixels, and (b) receptive fields with varying dilation rates
(shown in four different colored boxes) which capture the small and relevant regions.

The main goal of learnable group convolution methods is to design a dynamic and
efficient mechanism for group convolution, in which input channels and filters in each
group are learned during the training phase. In general, the grouping structure can be
expressed as two binary selection matrices for channels (Sk) and filters (Tk), as follows:

Sk =


s11 s12 · · · s1G
s21 s22 · · · s2G
...

...
. . .

...
sC1 sC2 · · · sCG


C×G

(2)
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Tk =


t11 t12 · · · t1G
t21 t22 · · · t2G
...

...
. . .

...
tN1 tN2 · · · tNG


N×G

(3)

ELU

ELU

ELU

ELU

Input
	Feature	Map

Output
Feature	Map

G-conv	(3	x	3)
p	=	1,	d	=	1

G-conv	(3	x	3)
p	=	2,	d	=	2

G-conv	(3	x	3)
p	=	3,	d	=	3

G-conv	(3	x	3)
p	=	4,	d	=	4

LPDGC	Layers

Σ
Summation

Figure 8. Illustration of the LPDGC block. Here, p and d refer to the padding and dilation
rates respectively. ELU refers to the exponential linear unit activation function.

The size of Sk is C× G, and the size of Tk is N × G, where, C, N, and G refer to the
numbers of channels, filters, and groups respectively. It should be noted that the elements
of Sk and Tk are set as 1 or 0 during the training process, where sk(i, j) = 1 indicates that the
ith channel is set to the jth group. Similarly, tk(i, j) = 1 indicates that the ith filter is set to the
jth group. The elements of Sk and Tk are learned during the training process of the CNNs.
As shown in Figure 8, the outputs of the four dilated convolutions are aggregated through
an element-wise sum operation. Consequently, the size of receptive-field is increased and
multi-scale spatial dependencies are considered without resorting to fully connected layers,
which would be computationally infeasible. The LPDGC block helps capture the global
context in CT images without reducing the resolution of the segmentation map.

Feature Attention Module (FAM)

Feature attention modules (FAMs) [32] were recently used to encourage CNNs to
learn and focus on task-relevant information instead of learning non-useful information
(background, non-desired objects, etc.). As one can see in Figure 9, FAM computes the
final feature of each channel as a weighted a sum of the features of all channels and
original features, which helps boost COVID-19-relevant information and learn semantic
dependencies between all feature maps. It should be noted that R(.) refers to reshaping Y
to RC×N . As shown in Figure 9 (the lower branch), the input feature vector Y ∈ RC×H×W

is multiplied by its transposed YT , and the resulting vector is fed into a softmax layer to
get the channel attention map X ∈ RC×C. The final output O is obtained as follows:

O = β
C

∑
i=1

xjiYi ⊕Yj (4)

where β is the weight factor, and ⊕ refers to element-wise sum operation.
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MultiplicationReshape

Reshape

Reshape

Reshape

Figure 9. Diagram of our feature attention module (FAM).

2.2. Decoder Network

Figure 10 shows the architecture of the decoder network, which consists of four main
decoding blocks. The fully-convolutional approach proposed in [15] is employed. This
first convolutional layer decreases the overall computational cost by adding a 1× 1 kernel.
Upsampling layers with a factor *2 are used to upsample the resulting features, and then
they are added to the features coming from the corresponding encoder layers via skip
connections (as shown in Figure 2). A threshold of 0.5 is employed to convert the output to
binary masks. The segmented binary mask has the same size as that of the input image.
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Figure 10. Illustration of the decoder network.

2.3. Architecture of LungINFseg

Table 1 describes the architecture of LungINFseg. We present the layers of the encoder
and decoder, including the input and output feature maps with the number of strides,
kernel size, and padding. It should be noted that the input of each encoder block is bypassed
to the output of its identical decoder block to recover the spatial feature information [33].

Table 1. Architecture details of LungINFseg. Skip connection is used to connects the encoder layers with the corresponding
decoder layers to preserve the spatial information.

Layer Type Input Feature Size Stride Kernel Size Padding Output Feature Size

ENCODER

1 Initial block with DWT n × 1 × 256 × 256 1 7 3 n × 64 × 128 × 128
2 RFA Block 1 n × 64 × 128 × 128 1 3 1 n × 64 × 64 × 64
3 RFA Block 2 n × 64 × 64 × 64 2 3 1 n × 128 × 32 × 32
4 RFA Block 3 n × 128 × 32 × 32 2 3 1 n × 256 × 16 × 16
5 RFA Block 4 n × 256 × 16 × 16 2 3 1 n × 512 × 8 × 8

DECODER

6 Block 1 n × 512 × 8 × 8 2 3 1 n × 256 × 16 × 16
7 Block 2 n × 256 × 16 × 16 2 3 1 n × 128 × 32 × 32
8 Block 3 n × 128 × 32 × 32 2 3 1 n × 64 × 64 × 64
9 Block 4 n × 64 × 64 × 64 1 3 1 n × 64 × 64 × 64
9 ConvTranspose n × 64 × 64 × 64 2 3 1 n × 32 × 128 × 128
9 Convolution n × 32 × 128 × 128 1 3 1 n × 32 × 128 × 128
10 ConvTranspose (Output) n × 32 × 128 × 128 2 2 0 n × classes (1) × 256 × 256
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2.4. Loss Functions

In this work, we used block-wise loss (BWL) and total loss (TL) functions. In the case
of the BWL function, we used dice loss function to compare the features extracted by each
RFA block. The BWL function can be formulated as follows:

LBWL(y, ŷ) =
N

∑
i=1

H

∑
c=1

1− dice(yci, ŷci), (5)

where N is the number of RFA blocks, H is the number of channels generated by RFA block
i, y represents the ground-truth, yci represents the corresponding feature maps, ŷ is the
predicted mask, ŷci represents the feature maps generated by the RFA blocks, and dice is
the Dice coefficient that can be expressed as follows:

Ldice(y, ŷ) = 1− dice(y, ŷ) = 1− 2|y|.|ŷ|
|y|2 + |ŷ|2 , (6)

Regarding the TL function, we calculated the loss of the whole network as follows:

LTL(y, ŷ) = −(ylog(ŷ) + (1− y)log(1− ŷ)) + Ldice(y, ŷ) (7)

The overall loss (OL) function used for training the proposed model is formulated as:

LOL = LBWL(y, ŷ) + LTL(y, ŷ) (8)

2.5. Evaluation Metrics

To assess the performances of the segmentation models, five evaluation metrics were
used: accuracy (ACC), dice coefficient (DSC), intersection over union (IoU), sensitivity
(SEN), and specificity (SPE). The formulations of these metrics are given in Table 2.

Table 2. Metric used to evaluate the segmentation methods.

Metric Formula
Accuracy (ACC) (TP + TN) / (TP + TN + FP + FN)

Dice coefficient (DSC) 2.TP / (2.TP + FP + FN)
Intersection over Union (IoU) TP / (TP + FP + FN)

Sensitivity (SEN) TP/(TP + FN)
Specificity (SPE) TN / (TN + FP)

TP = True Positives; TN = True Negatives; FP = False Positives, FN = False Negatives.

3. Experimental Results and Discussion

In this section, the experimental details, the ablation study, the results of the proposed
model, and the comparisons with state-of-the-art models are provided.

3.1. Experimental Details
3.1.1. COVID-19 Lung CT Dataset

To evaluate the efficacy of the proposed model, we employed the publicly available
dataset provided in [34], which contains 20 labeled COVID-19 CT scans (1800 + annotated
slices). This dataset can be found at https://zenodo.org/record/3757476#.X-T7P3VKhhE.
Left lung, right lung, and infections were marked by two radiologists and confirmed by an
experienced radiologist. The dataset was divided (patient-wise) into three subsets: 70% for
training, 10% for validation, and 20% for testing.

3.1.2. Data Augmentation and Parameter Setting

Data augmentation techniques were applied during the training phase to improve
the performance of the model and robustness. To augment the CT dataset, we conducted
the following procedures: (1) we scaled the images by varying the scaling variable from

https://zenodo.org/record/3757476#.X-T7P3VKhhE.
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0.5 to 2.0 with a step size of 0.25, (2) we employed the gamma correction on the CT slices
by changing the gamma scaling constant from 0.5 to 1.5 with a step size of 0.5, and (3) we
performed the flipping operations (horizontally and vertically) with 0.5 and rotated them
with various angles, such as 15.

Besides, lung CT images were resized to 256× 256 pixels. Finally, we normalized
each wavelet to [0, 1] to get the input of its corresponding binary segmentation network. It
should be noted that LungINFseg processes each CT volume slice by slice. The hyperpa-
rameters of the model were empirically tuned. We examined numerous optimizers, such
as SGD, AdaGrad, Adadelta, RMSProp, and Adam, while changing the learning rate; we
obtained the best outcomes with the Adam optimizer with β1 = 0.5, β2 = 0.999, and learning
rate = 0.0002 with a batch size of four. We trained all segmentation models from scratch for
100 epochs. The experiments were carried out on an NVIDIA GeForce GTX 1070Ti with 8
GB of video RAM. The operating system was Ubuntu 18.04 using a 3.4 GHz Intel Core-i7
with 16 GB of RAM. The main required packages involve Python 3.6, CUDA 9.1, cuDNN
7.0, and PyTorch 0.4.1. To reproduce the results, the source code of the proposed model is
publicly available at https://github.com/vivek231/LungINFseg.

3.2. Ablation Study

To demonstrate the impact of each block on the performance of the proposed model,
an ablation study was done. We firstly trained a baseline model without appending the
discrete wavelet transform (DWT), learnable parallel dilated group convolutional (LPDGC)
block, or feature attention module (FAM). Next, we added DWT to the baseline model
(baseline + DWT). Besides, the LPDGC block was added separately to the baseline model
(baseline + LPDGC). Apart from this, we also added FAM to each encoding layer of the
baseline model (baseline + FAM). Several configurations were investigated, such as baseline
+ DWT + LPDGC and baseline + DWT + FAM. Finally, we studied the performance of the
proposed model with and without data augmentation.

Table 3 presents the results of different configurations of the examined models. The
baseline model yielded DSC and IoU scores of 75.56% and 61.96% respectively. From this
initial check, there is a possibility of improvement in model performance. Alternatively to
adding a gray-scale channel from lung CT images, we substituted the encoder input by
adding DWT to baseline (baseline + DWT); note that DWT produces four channels that
carry multi-scale (multi-bands) features. Baseline + DWT achieved gains of 1% and 1.5% in
DSC and IoU scores, respectively, when compared to the baseline model.

Furthermore, the LPDGC block was added to the baseline model to expand the
receptive field with varying dilation rates, with the various sizes of kernels, allowing
dense feature extraction in the encoder. Figure 11 reveals that the LPDGC block can help
capture some small infected regions from lung CT images. Baseline + LPDGC yielded clear
improvements of 1.5% and 2% in the DSC and IoU scores respectively, when compared to
the baseline model. Baseline + FAM yielded an enhancement in all evaluation matrices,
as it achieved 1.5–2% improvements in DSC, IoU, and SEN scores, meaning the FAM block
helps to improve the feature discriminability between a given COVID-19-infected region
and neighboring healthy pixels.

Table 3. Investigating the performance of different configurations of the proposed method (mean ± standard deviation).
Best results are in bold.

Model ACC (%) DSC (%) IoU (%) SEN (%) SPE (%)

Baseline 0.9844± 0.0098 0.7556± 0.1170 0.6195± 0.1268 0.7762± 0.1479 0.9920± 0.0041
Baseline + DWT 0.9847± 0.0092 0.7641± 0.1134 0.6361± 0.1202 0.7888± 0.1446 0.9927± 0.0040

Baseline + LPDGC 0.9859± 0.0088 0.7696± 0.1117 0.6415± 0.1127 0.7892± 0.1426 0.9934± 0.0036
Baseline + FAM 0.9860± 0.0080 0.7703± 0.1092 0.6389± 0.1164 0.7974± 0.1391 0.9939± 0.0032

Baseline + DWT + LPDGC 0.9865± 0.0074 0.7742± 0.1070 0.6420± 0.1151 0.8062± 0.1403 0.9942± 0.0030
Baseline + DWT + FAM 0.9867± 0.0062 0.7785± 0.1058 0.6510± 0.1142 0.8148± 0.1395 0.9944± 0.0028

LungINFseg (w/o augmentation) 0.9874± 0.0057 0.7853± 0.1050 0.6522± 0.1136 0.8229± 0.1374 0.9948± 0.0025
LungINFseg (with augmentation) 0.9892 ± 0.0054 0.8034 ± 0.1021 0.6877 ± 0.1095 0.8310 ± 0.1323 0.9952 ± 0.0022

https://github.com/vivek231/LungINFseg


Diagnostics 2021, 11, 158 11 of 19

Figure 11. The role of LPDGC in capturing small COVID-19 lung infections from CT images (represented in dark blue).
(a–d) present examples of COVID-19 infection in CT images (left) and the corresponding Heatmaps (right). Here, the red
box presents a zoom-in visualization of the infected region.

Based on the significant enrichment of each block, DWT and LPDGC blocks were
combined with the baseline model, which led to improvements of more than 2% in DSC,
IoU, and SEN scores, and a decrement in the standard deviation by 1%. Besides, we
added DWT and FAM to the baseline model, which allowed us to create descriptive
features to highlight the infected region in poor contrast or fuzzy-boundary CT images.
The experiments revealed that this configuration yields small increases on the evaluation
metrics compared to previous results.

Using the proposed LungINFseg model, we experimented with varying configurations
with and without applying data augmentation during the training procedure. Without im-
plementing data augmentation (w/o augmentation), LungINFseg obtained encouraging
3% improvements in DSC and IoU scores when compared to the baseline model. Finally,
we utilized data augmentation (with augmentation) with LungINFseg. The performance of
LungINFseg was improved by 5–6% in DSC, IoU, and SEN scores. The standard deviation
of LungINFseg was reduced from ±0.12 to ±0.10. These effects reveal that LungINFseg
can present more precise and robust segmentation compared to the baseline model.

3.3. Analysis of the Performance of the Proposed Model

Figure 12 presents four samples of channel attention maps (CAMs) of lung CT COVID-
19 infection images. The CAMs shown in the figure were obtained from the different
encoding layers of LungINFseg. The red refers to a higher probability of the presence of
infection in the lung, while the blue represents a lower probability of the existence of an
infection region. As shown, LungINFseg helps highlight infected regions while supplying
less attention to neighboring pixels.

Table 4 presents the effectiveness of input image resolution on the performance of the
proposed model (512× 512, 384× 384, 256× 256, and 128× 128). With the image resolution
512× 512, a 16× 16 feature map was produced at the final encoding layer, which extracts
infected region features from CT images. However, the use of higher resolution images
keeps some artifacts at the segmented masks, leading to DSC and IoU scores of 78.74%
and 66.48%, respectively. With the image resolution 384× 384, a 12× 12 feature map was
produced at the final encoding layer. This image resolution did not contribute to advancing
the results. In turn, the image size of 256× 256 yielded an 8× 8 feature map at the final
encoding layer. This feature map preserves infected-area-associated features and discards
the irrelevant ones. Lastly, we examined an input size of 128× 128; we found that it yielded
unclear boundary results in the segmented masks.
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(a) (b)

(c) (d)

Figure 12. Different examples of channel attention maps (CAMs) obtained from the LungINF-
seg. (a–d) present examples of COVID-19 infection in CT images (left) and the corresponding
CAMs (right).

Table 4. The performance of the LungINFseg with different image resolutions on the test set (mean ± standard deviation).
Best results are in bold.

Input Size ACC DSC IoU SEN SPE Feature Map Size

512× 512 0.9856± 0.0090 0.7874± 0.1098 0.6648± 0.1167 0.8007± 0.1386 0.9938± 0.0032 16× 16
384× 384 0.9841± 0.0095 0.7623± 0.1143 0.6350± 0.1233 0.7862± 0.1456 0.9830± 0.0037 12× 12
256 × 256 0.9892 ± 0.0054 0.8034 ± 0.1021 0.6877 ± 0.1095 0.8310 ± 0.1323 0.9952 ± 0.0022 8 × 8
128× 128 0.9681± 0.0126 0.7025± 0.1576 0.5864± 0.1940 0.7111± 0.1611 0.9810± 0.0052 4× 4

Table 5 presents the performance of the proposed model with different combina-
tions of loss functions: BCE (i.e., TL without dice loss–Equation (7)), BCE + IoU-binary,
BCE + SSIM [35], BCE + dice loss (i.e., TL–Equation (7)), and TL + BWL (OL–Equation (8)).
As shown, all loss functions achieved a dice score higher than 73%. The IoU-binary and
SSIM loss function did not achieve a promising IoU score (60.22% and 58.18%, respectively).
The convergence of these two loss functions is not significant enough to achieve optimal
performance. The best dice and IoU scores are achieved with OL, and therefore it has been
utilized with the proposed model.

Table 5. The evaluation of the LungINFseg with different loss functions on the test set (mean ± standard deviation ). Best
results are in bold.

Loss Function ACC (%) DSC (%) IoU (%) SEN (%) SPE (%)

BCE 0.9832 ± 0.0087 0.7705 ± 0.1187 0.6441 ± 0.1258 0.7907 ± 0.1594 0.9910 ± 0.0049
BCE + IoU-binary 0.9717 ± 0.0095 0.7450 ± 0.1297 0.6022 ± 0.1377 0.7653 ± 0.1580 0.9862 ± 0.0060

BCE + SSIM 0.9630 ± 0.0099 0.7302 ± 0.1465 0.5818 ± 0.1536 0.7594 ± 0.1748 0.9779 ± 0.0090
TL 0.9865 ± 0.0075 0.7862 ± 0.1067 0.6523 ± 0.1146 0.8004 ± 0.1401 0.9927 ± 0.0031

LungINFseg (OL) 0.9892 ± 0.0054 0.8034 ± 0.1021 0.6877 ± 0.1095 0.8310 ± 0.1323 0.9952 ± 0.0022

3.4. Comparisons with the State-of-the-Art

To segment the COVID-19 infection from lung CT images, LungINFseg is compared
with the state-of-the-art segmentation models, such as FCN [15], UNet [16], SegNet [17],
FSSNet [18], SQNet [19], ContextNet [20], EDANet [21], CGNet [22], ERFNet [23], ES-
Net [24], DABNet [25], Inf-Net [12], and MIScnn [26] models. All these models are assessed
both quantitatively and qualitatively. For the quantitative study, segmentation accuracy
is computed using the ACC, DSC, IoU, SEN, and SPE. For a fair comparison, the train-
able parameters of the individual evaluated model are also provided. In turn, for the
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qualitative study, prediction with their corresponding ground truth binary masks are
compared visually.

As shown in Table 6, LungINFseg achieved the highest DSC of 80.34% and the highest
IoU of 68.77%. As for IoU, LungINFseg was significantly improved from 60.87% to 68.77%
on the test set compared to the best competitor, FCN. Besides, the second-best competitor
DABNet obtained 74.03% and 60.03% DSC and IoU scores respectively; its depth-wise
asymmetric bottleneck module generates a sufficient receptive field and densely utilizes
the contextual information. In comparison with the results of the very popular baseline
biomedical segmentation model called UNet, LungINFseg exceeds it by more than 10%
in both DSC and IoU scores. Additionally, SegNet achieved acutely poor outcomes in all
matrices considering it is inefficient to segment accurately by producing many numbers
of false positives. In turn, FSSNet has very few parameters (0.17 M); it yielded a 67.89%
DSC score and failed to restore the infected region’s spatial information at the output
level. In the same manner, SQNet did not perform properly, but compared to LungINFseg
yielded more than 22% improvements in DSC and IoU scores.

Table 6. Comparing the proposed model with 13 state-of-the-art baseline segmentation methods on the test set (mean ±
standard deviation). Best results are in bold. Dashes-indicate that the information is not reported in the cited references.

Model ACC (%) DSC (%) IoU (%) SEN (%) SPE (%) Parameters (M)

FCN 0.9885± 0.0095 0.7422± 0.1182 0.6087± 0.1290 0.7745± 0.1482 0.9950± 0.0029 135.53
UNet 0.9861± 0.0116 0.7039± 0.1298 0.5565± 0.1366 0.7057± 0.1437 0.9963± 0.0038 14.78

SegNet 0.9741± 0.0107 0.5095± 0.1307 0.3515± 0.1508 0.6900± 0.1902 0.9851± 0.0064 29.44
FSSNet 0.9867± 0.0118 0.6789± 0.1198 0.5246± 0.1302 0.6257± 0.1559 0.9969± 0.0034 0.17
SQNet 0.9555± 0.0632 0.5451± 0.3375 0.4424± 0.2927 0.5624± 0.3446 0.9699± 0.0463 16.23

ContextNet 0.9872± 0.0099 0.7081± 0.1299 0.5617± 0.1366 0.7353± 0.1725 0.9950± 0.0041 0.87
EDANet 0.9861± 0.0095 0.7032± 0.1175 0.5536± 0.1359 0.7718± 0.1590 0.9933± 0.0055 0.68
CGNet 0.9862± 0.0124 0.7121± 0.1339 0.5683± 0.1491 0.7624± 0.2083 0.9946± 0.0046 0.49
ERFNet 0.9882± 0.0111 0.7260± 0.1120 0.5801± 0.1294 0.6913± 0.1358 0.9973± 0.0032 2.06
ESNet 0.9897± 0.0088 0.7381± 0.1251 0.5979± 0.1328 0.7031± 0.1361 0.9970± 0.0034 1.65

DABNet 0.9879± 0.0105 0.7403± 0.1199 0.6003± 0.1339 0.7594± 0.1628 0.9951± 0.0043 0.75
Inf-Net [12] − 0.6820 − 0.6920 0.9430 33.12
MIScnn [26] 0.9880± 0.0102 0.7365± 0.1185 0.6074± 0.1299 0.7719± 0.1491 0.9872± 0.0030 13.60
LungINFseg 0.9892 ± 0.0074 0.8034 ± 0.1021 0.6877 ± 0.1095 0.8310 ± 0.1323 0.9952 ± 0.0022 11.54

Besides, the ContextNet creates a poor result, as it fails to retain the global context
information efficiently, and LungINFseg shows 10% gains in DSC and IoU scores. Never-
theless, EDANet has performed slightly better—70.32%—DSC score because of its dilated
convolution and dense connectivity aid to attain the greater result. Further, CGNet has
shown some advancement due to its learning capability of the joint features of both local
features and neighboring context. However, it misses getting much more global infor-
mation to form effective segmentation. This model yields 71.21% DSC and 56.83% IoU
scores, but LungINFseg has promising increases of 9% and 12% in both DSC and IoU
scores respectively.

Two models, ERFNet and ESNet, employed residual 1-D factorized convolutions in
encoding layers to extract important features and support to decrease the computation
cost (2.06 M and 1.65 M of ERFNet and ESNet respectively). Extracted features do not
significantly present a contribution to increasing the feature learnability; and LungINFseg
achieved better results of around 7%, 9%, and 12% in DSC, IoU, and SEN scores respectively.
Moreover, we have compared the results of our model with the Inf-seg model [12]. As one
can see, LungINFseg yields a 12%, significant improvement in the DSC score.

Additionally, we have trained MIScnn [26] from scratch and then compared it with
LungINFseg, finding that our model outperforms the results of MIScnn in terms of all
evaluation metrics. Unlike the models mentioned-above, LungINFseg has a great gener-
alization ability to segment the infection areas from lung CT images, thanks to RFA and
DWT modules that can enlarge the receptive field of the segmentation models and increase
the learning ability of the model without information loss.

To demonstrate the ability of LungINFseg, we present illustrative statistics of Dice and
IoU scores. In Figure 13, we show the boxplots of the Dice and IoU scores of the proposed
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model, FCN, UNet, SegNet, FSSNet, SQNet SQNet, ContextNet, EDANet, CGNet, ERFNet,
ESNet, and DABNet. As shown in Figure 13, among the tested models, the proposed model
has the highest mean DSC and IoU scores and the smallest standard deviation with few
outliers. In turn, other rest models have represented multiple outliers with low mean and
high standard deviation compared to LungINFseg.

FCN UNet SegNet FSSNet SQNet ContextNet EDANet CGNet ERFNet ESNet DABNet Proposed
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Figure 13. Boxplots of Dice coefficient and Intersection over Union (IoU) scores for all test samples of
lung CT infection. Different boxes indicate the score ranges of several methods; the red line inside
each box represents the median value; box limits include interquartile ranges Q2 and Q3 (from 25%
to 75% of samples); upper and lower whiskers are computed as 1.5 times the distance of upper and
lower limits of the box; and all values outside the whiskers are considered as outliers, which are
marked with the (+) symbol.

Figures 14–16 present qualitative segmentation outcomes of COVID-19 infection from
a lung CT image that incorporates a variety of challenging circumstances: illumination
variations, irregular boundary, and shape of the infected areas. We have shown six samples
as examples along with ground truth and the mask generated by each state-of-the-art
method compared to LungINFseg.
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Figure 14. Qualitative comparison of the segmentation results of LungINFseg and five state-of-the-art segmentation
methods (left to right: LungINFseg-SQNet). Here, left and right side numbers on each example refer to dice and IoU
scores, respectively. The colors used to represent the segmentation results are as follows: TP (orange), FP (green), FN (red),
and TN (black).

In Figures 14 and 15, for example, first, third, and sixth rows have confirmed single
infected regions in both sides of the lung and a very small area covered on the left side
of the lung. We clearly recognized that LungINFseg is capable of correctly segmenting
both side’s lungs, and the other model has carried larger false positives to do an inaccurate
segmentation. Furthermore, for example, fourth and fifth rows have a widespread infection
on both sides of the lung. In order to provide promising segmentation, LungINFseg
segmented quite properly; despite that, FCN has created an acceptable segmentation.
However, UNet, FSSNet, ContextNet, EDANet, CGNet, and ESNet generated very poor
predictions due to lacking details contained in the low-level context information. Moreover,
second row predictions present single small areas of infection, where LungINFseg shows
its promising ability to properly segment infected areas, and the other compared methods
produced larger false positive predictions. Figure 16 presents a quantitative comparison of
the segmentation results of LungINFseg, Inf-Net, and MIScnn models. As one can see in
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the examples of the second, third, fourth and sixth columns, LungINFseg can accurately
segment COVID-19 infection and has fewer FP compared to the Inf-Net and MIScnn
models. The proposed model is especially useful for the segmentation of an infection with
an indefinite boundary and small targets.

Figure 15. Qualitative comparison of the segmentation results of LungINFseg and six state-of-the-art segmentation methods
(left to right: ContextNet–DABNet). Here, left and right side numbers on each example refer to dice and IoU scores,
respectively. The colors are used to represent the segmentation results as follows: TP (orange), FP (green), FN (red), and
TN (black).
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Figure 16. Qualitative comparison of the segmentation results of the LungINFseg, Inf-Net, and MIScnn. Here, left and right
side numbers on each example refer to dice and IoU scores, respectively. The colors are used to represent the segmentation
results as follows: TP (orange), FP (green), FN (red), and TN (black).

4. Conclusions

In this article, we have introduced an efficient deep learning-based LungINFseg model
to segment the COVID-19 infection in lung CT images. Specifically, we have proposed the
RFA module that can enlarge the receptive field of the segmentation models and increase
the learning ability of the model without any information loss. We conducted extensive
experiments that used 1800+ annotated CT slices to build and test LungINFseg. Further, we
compared LungINFseg with 13 state-of-the-art deep learning-based segmentation methods
to demonstrate its effectiveness. LungINFseg achieved a dice score of 80.34% and an IoU
score of 68.77%, which are higher than the ones of the other 13 segmentation methods.
Our experiments revealed that the RFA module, which allows enlarging receptive fields
and encourages learning contextual information and COVID-19 infection-related features,
yields accurate segmentation results. We found that LungINFseg can segment infected
regions in CT images accurately and may have promising clinical potential. In future work,
we will integrate our proposed model with a fully automated CAD system for making an
accurate predictions for the severity of COVID-19. Besides, we will apply LungINFseg
to different medical image segmentation problems, such as lung lobe segmentation, skin
lesion segmentation, and breast tumor segmentation in ultrasound images.
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