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Abstract: The aim of the present study was to test an individualised dose without compromising
the ease of analysing data when performing equilibrium radionuclide angiography (ERNA) using
cadmium–zinc–telluride (CZT) SPECT. From March 2018 to January 2019, 1650 patients referred
for ERNA received either an individualised dose of 99mTc-labeled human serum albumin (HSA)
according to their age, sex, height, and weight (n = 1567), or a standard dose of 550 MBq (n = 83).
The target count rate (CRT) was reduced every two months from 2.7 to 1.0 kcps. A final test with
a CRT of 1.7 kcps was run for three months to test whether an agreement within 2% points for the
determination of LVEF, on the basis of only two analyses, was obtainable in at least 95% of acquisitions.
All the included ERNAs were performed on a dedicated cardiac CZT SPECT camera. When using the
algorithm for an individualised dose, we found that agreement between the measured and predicted
count rate was 80%. With a CRT of 1.7 kcps, the need for more than two analyses to obtain sufficient
agreement for LVEF was 4.9%. Furthermore, this resulted in a mean dose reduction from 550 to
258 MBq. Patients’ weight, height, sex, and age can, therefore, be used for individualising a tracer
dose while reducing the mean dose.

Keywords: personalised medicine; RNA; CZT SPECT; gated SPECT

1. Introduction

Technological advances in cancer treatment and screening procedures have resulted
in an increase in long-term cancer survivors [1–3]. This has led to an increased need for
managing the potential long-term side effects of chemotherapy and radiotherapy, among
which, cardiovascular complications are frequent [2,3]. Therefore, accurate monitoring of
cardiac function during potentially cardiotoxic chemotherapy is of importance. Patients
undergoing potentially cardiotoxic chemotherapy are often monitored by quantifying left
ventricular ejection fraction (LVEF). Several consecutive measurements are used when
monitoring for cardiotoxic effects and for subsequent therapeutic decisions.

Chemotherapy-induced cardiac damage may be caused by a direct toxic effect or as
an accelerated development of cardiovascular disease and appears up to years after the
initiation of treatment [4,5].

Several techniques are currently available for this monitoring of LVEF [3,6]. Equi-
librium radionuclide angiography (ERNA) is a well-validated non-invasive test [7], and
in particular, cadmium–zinc–telluride single-photon emission tomography (CZT SPECT)
radionuclide angiography ranks high, due to practicability, operator independency, and
reproducibility [8–10].

Since radionuclide angiography was implemented for clinical use in the 1980s, de-
velopment has moved toward shorter acquisition times and lower doses of tracer. In
2016, Duvall et al. reported that an injected dose of tracer may be reduced by up to 50%
without compromising the image quality [9]. The new dedicated cardiac cameras with CZT
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detectors and individualising the activity administered to each patient should, therefore,
enable a reduction in radiation exposure even further [8–15].

Previous studies have already evaluated the possibility of using personalised models
when planning doses for a radionuclide-based assessment of cardiac function. These
studies have primarily focused on myocardial perfusion imaging [11–13,16,17], but one
study has evaluated planar ERNA where the dose was based upon the patient’s physical
variables according to a chart and not a formula, which was declared to be a weakness of
the method [18].

When performing CZT SPECT-gated radionuclide angiography, it has previously been
shown that the patients’ height, weight, sex, and age may explain up to 75% of the variation
in the count rate [19,20]. The next step, as suggested in an editorial by Joris D. van Dijk [21],
is to test this information in a clinical setting. Subsequently, the aim of this study was to test
dose planning in an everyday setting [19,20] with the goal of reducing radiation exposure
without compromising the ease of processing data.

2. Materials and Methods
2.1. Population

From March 2018 to January 2019, a total of 1696 patients were referred for routine
assessments of LVEF. Patients received either an individualised dose according to their
weight, height, sex, and age, or a standard dosage of 550 MBq if data on weight and
height were insufficient upon referral. Patient flow is illustrated in Figure 1, and detailed
information on target count rate groups is shown in Table 1.

Table 1. Detailed information on patient flow with regard to target count rate and cameras used for ERNA.

Target Count Rate (cps) 1.0 1.5 1.7 2.0 2.7 Total

Equations used 1 and 2 1 and 2 1 and 2 1 and 2 1
Patients referred for ERNA 328 303 444 323 298 1696

Injection of FDG prior to ERNA 0 0 0 0 1 1
NaI SPECT 4 0 2 2 1 9
NaI planar 4 6 5 3 0 18 *

Dose other than scheduled 2 5 3 3 5 18 **
550 MBq due to missing data on

height and weight 4 6 2 30 41 83

Received scheduled dose and
CZT ERNA 314 286 432 285 250 1567

Minimum dose of 150 MBq 0 15 0 1 19 35
Minimum dose of 100 MBq 36 0 0 0 0 36

* Fourteen because of inability to raise left arm, one had to be seated upright because of dyspnoea, two were claustrophobic, and one
because of sternectomy causing edge detection algorithms for SPECT to fail. ** Ten were given an extra dose of tracer due to suspicion of
a partially paravenous administration of tracer due to far lower count rates than expected, five cases were due to visual suspicion of a
paravenous tracer injection, one case was due to the tracer being spilt, one case was due to an obvious mismatch between information on
height and weight and patient appearance, and one case was due to the patient arriving 3 h later than scheduled.

Sex, age, blood pressure, heart rate, body weight, and body height were registered, and
information on anthropometric data, cardiac variables, dosage information, and frequency
of need for more than two analyses is provided in Table 2. The study was conducted
according to the guidelines of the Declaration of Helsinki and approved by the Institutional
Review Board (Herlev Gentofte Hospital Directional Board, 26 February 2021, WorkZone
number: 20076870).
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Table 2. Anthropometric data, cardiac variables, dosage information, and frequency of need for more than two analyses depending on target count rate.

Target Count Rate Group 1.0 1.5 1.7 2.0 2.7 Standard Dose
(550 MBq) All

Time Period Sep–Oct 2018 Jul–Aug 2018 Nov 2018–Jan 2019 May–Jun 2018 Mar–Apr 2018 Mar 2018–Jan 2019 Mar 2018–Jan 2019

n (Female/%) * 314 215 68.5% 286 190 66.4% 432 301 69.7% 285 187 65.6% 250 163 65.2% 83 54 65.1% 1650 1110 67.3%

Row Variable Mean SD SEE Mean SD SEE Mean SD SEE Mean SD SEE Mean SD SEE Mean SD SEE Mean SD SEE

1 Age (years) * 59.6 15.1 0.9 61.0 14.5 0.9 61.0 14.2 0.9 60.6 14.8 0.9 61.4 13.9 0.9 61.2 14.3 1.6 60.7 14.5 0.4
2 Height (cm) * 168.9 8.9 0.5 169.2 8.6 0.5 168.5 8.7 0.4 169.5 8.6 0.5 169.2 8.9 0.6 170.0 9.2 1.0 169.0 8.8 0.2
3 Weight (cm) * 74.8 16.0 0.9 74.7 16.8 1.0 73.5 14.9 0.7 75.7 16.6 1.0 75.1 17.2 1.1 74.3 14.9 1.6 74.6 16.1 0.4
4 Heart rate (s−1) * 73.2 13.5 0.8 73.3 14.0 0.8 73.9 13.1 0.8 73.4 13.1 0.8 72.9 12.4 0.8 71.9 12.9 1.4 73.3 13.4 0.3
5 Systolic blood pressure (mmHg) * 124.4 18.2 1.0 124.5 18.2 1.1 126.0 18.2 0.9 123.7 18.3 1.1 124.9 17.7 1.1 125.9 16.9 1.9 124.9 18.1 0.4
6 Diastolic blood pressure (mmHg) * 73.8 10.4 0.6 74.0 9.6 0.6 75.6 10.3 0.5 73.7 10.4 0.6 74.2 10.6 0.7 75.0 9.2 1.0 74.4 10.3 0.3
7 End diastolic volume (mL) ** 88.2 25.9 1.5 90.3 25.2 1.5 88.8 26.1 1.3 92.0 25.1 1.5 93.1 25.7 1.6 96.5 28.3 3.1 90.6 25.8 0.6
8 End systolic volume (mL) ** 30.9 17.4 1.0 32.0 15.9 0.9 32.5 16.8 0.8 34.2 15.5 0.9 34.9 17.8 1.1 33.9 18.9 2.1 32.8 16.8 0.4
9 LVEF (%) ** 66.5 11.8 0.7 65.8 10.7 0.6 64.8 11.4 0.6 63.9 10.9 0.6 64.0 11.5 0.7 66.9 12.8 1.4 65.1 11.4 0.3
10 Target dose (MBq) 182.6 91.2 5.0 249.4 103.2 6.1 258.1 93.0 4.5 309.8 107.0 6.3 371.4 140.0 8.8 536.2 24.9 2.7 282.3 132.1 3.3

11 Dose adjusted for time of injection
(MBq) 182.4 91.0 5.1 250.2 105.2 6.2 257.9 93.5 4.5 308.7 107.0 6.3 370.8 139.4 8.8 532.7 32.0 3.5 281.9 132.0 3.3

12 Predicted count rate adjusted for
time of injection (s−1) 1.20 0.26 0.01 1.68 0.24 0.01 1.78 0.23 0.01 2.07 0.26 0.02 2.49 0.49 0.03 4.00 1.01 0.11 1.92 0.72 0.02

13 Measured count rate (s−1) 1.20 0.33 0.02 1.64 0.39 0.02 1.84 0.42 0.02 2.13 0.41 0.02 2.60 0.68 0.04 4.01 1.16 0.13 1.96 0.82 0.02
14 Need for more than two analyses 27 8.6% 22 7.7% 21 4.9% 8 2.8% 9 3.6% 2 2.4% 89 5.4%

* No differences between groups; ** no difference between groups after Bonferroni correction.
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Anonymised data used in the current study are available from the corresponding author.

2.2. Image Acquisition and Processing

All the acquisitions were performed at the Department of Nuclear Medicine at Herlev-
Gentofte Hospital. ERNAs were performed on a dedicated cardiac CZT SPECT gamma
camera, GE Discovery 530c (GE Healthcare, Milwaukee, WI, USA). Each subject was either
given an individualised dose (see below) of 99mTc-labeled human serum albumin (HSA)
intravenously on the basis of the algorithm below, or 550 MBq if data on patient height
and body weight were unavailable, as noted above. An acquisition protocol for multigated
acquisition, using 16 bins per R-R interval, requesting 600 accepted beats, and a 20% energy
window centred on 140 keV, was carried out.

Count rate was read from the work screen during acquisition and calculated as the
mean of three readings (one at the beginning, middle, and end).

For image analyses, we used a Xeleris 3 Imaging workstation reorientation software
(GE Healthcare, Milwaukee, WI, USA, version no. 3.0562) and Cedars-Sinai QBS processing
software (Cedars-Sinai, Los Angeles, CA, USA, revision 2009.0).

Each acquisition was analysed by two experienced technologists independently of
one another, and mean values of the cardiac variables were calculated. If the calculated
LVEF varied by more than 2 percentage points, further analyses were performed until a
sufficient agreement was obtained. Depending on the workflow circumstances, subsequent
analyses were performed either by one of the two first technologist, a third technologist, or
if necessary a physician. Apart from LVEF, data on left ventricular end diastolic and systolic
volumes (EDV and ESV, respectively) were also recorded. Tracer dose was registered, and
an adjustment was performed for differences between the scheduled and actual time of
injection to the nearest 5 min.

2.3. Optimum Target Count Rate Identification and Equation Selection

The following two equations for calculating patient tailored dose of 99mTc-labeled
HSA were developed (DP = planned dose, XW = weight, XH = height, XG = sex, XA = age,
CRT = target count rate):

Equation (1) [20]:

DP = 550MBq − (EXP(1.8 − 0.028XW + 0.00005XW
2 + 0.0087XH + 0.06XG

−0.0021XA)− CRT)/0.00756
(1)

Equation (2) [19]:

DP = 550MBq × CRT/EXP(1.621 − 0.020XW + 0.008XH + 0.06XG − 0.002XA) (2)

Both equations were derived on the basis of previous examinations of a large patient
group who all received a fixed dose of tracer (550 MBq 99mTc-labeled HSA) [19,20]. The
main difference between the two equations is the insertion of an extra element in equation
1 with body weight squared.

Equation (1) was tested on the first group of patients, aiming at a target count rate of
2.7 kcps for a period of 2 months running through March and April 2018. However, this
equation alone often suggests negative doses for patients with the lowest body weights,
as illustrated in Figure 2, where the suggested patient doses for each equation is plotted
against patient weight. In such cases, a minimum dose of 150 MBq was used (see below).
On the other hand, Equation (2) suggests high doses in patients with a high body weight
(Figure 2). In the large group of patients with a more average body weight, there were
only minor differences between the two equations with regard to the suggested dose. As a
consequence, the two equations were combined in to one algorithm that was used from
May 2018 onwards, using Equation (1) in patients with a body weight ≥ 73 kg and Equation
(2) for those with a body weight < 73 kg.
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Different target count rates were each tested for two months at a time, moving gradu-
ally downwards from 2.7 to 1.0 kcps (see Figure 1 and Table 2). This was performed in order
to identify a level for the target count rate, where the frequency of two analyses of the same
acquisition reaching an agreement of LVEF within 2 percent points was approximately 95%.
Hereafter, target count rate was set to 1.7 kcps to test if this was appropriate to meet the
requested frequency of sufficient agreement between analyses.

Patients were injected with a minimum dose of 150 MBq when aiming at count rates of
2.7 (19 (7.6%)) and 1.5 kcps (15 (5.2%)), and 100 MBq when aiming at a count rate of 1.0 kcps
(36 (11.5%)) (Table 1). This was in order to stay above the minimum activity recommended
for children with a 20% safety margin according to EANM dose recommendations [7]—a
necessary precaution to avoid low, and also occasionally negative, doses suggested when
using Equation (1) alone (target count rate 2.7) and in order to avoid the need for frequent
re-injections when aiming at count rates of 1.5 and 1.0 kcps. Accordingly, the need to
use the minimum dose was 0 (0%) and 1 (0.004%) for target count rate groups 1.7 and
2.0, respectively.

2.4. Subgroup Analyses

In 122 of the assessments (32 with target count rate of 1.0 kcps and 90 with target
count rate 1.7 kcps), the remaining activity in needles and syringes was measured after
injection of tracer in order to evaluate how much of the scheduled tracer activity was left
in these utensils, in order to evaluate the subsequent potential influence on count rate.

2.5. Statistical Analyses

All statistical analyses were conducted with IBM Corp. Released 2017. IBM SPSS
Statistics for Windows, Version 25.0. Armonk, NY, USA: IBM Corp.

Scatter plots were made in RStudio, RStudio Team (2019). RStudio: Integrated Devel-
opment for R. RStudio, Inc., Boston, MA, USA, available on http://www.rstudio.com/pr
oducts/rstudio/download/#download (accessed on 9 September 2020).

Group comparison was performed with ANOVA and Bonferroni correction for multi-
ple comparisons and a t-test for comparisons between two groups.

http://www.rstudio.com/products/rstudio/download/#download
http://www.rstudio.com/products/rstudio/download/#download
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Linear regression analysis (Pearson correlation coefficient) was used to quantify the
degree of association between measured and predicted count rate in all included patients.

Level of significance was set at a 5% level.

3. Results
3.1. Population

A total of 1567 patients received individualised activity protocol, and 83 received a
standard activity of 550 MBq due to insufficient data on their height and weight upon
referral. In 27 cases, acquisitions were excluded because NaI detector SPECT or planar
was performed instead, 18 cases were excluded if the patient received another dose than
scheduled, and 1 case was excluded due to an injection of 18-F-FDG prior to ERNA.

The patients who received an individualised dose or standard dose (n = 1650) for
ERNA received treatment for breast cancer, 697 (42.2%); leukaemia, 24 (1.4%); lymphoma,
245 (14.9%); sarcoma, 225 (13.6%); renal cancer, 108 (6.6%); hepatocellular carcinoma, 47
(2.9%); ovarian cancer, 53 (3.2%); malignant melanoma, 174 (10.6%); and other cancers or
more than one type of cancer, 77 (4.7%).

There were no significant differences with regard to sex frequency, age, height, weight,
heart rate at rest, and blood pressure between the patients in the five different target group
periods (Table 2, rows 1 to 6).

Although the analysis of variance (ANOVA) between the target group periods indi-
cated significant differences for end diastolic volume (EDV) and LVEF (p = 0.028 * for EDV,
p = 0.053 for end systolic volume (ESV), p = 0.017 * for LVEF), there were no significant
differences between group analyses after the Bonferroni correction, indicating the risk
of a possible error due to multiple comparisons. Despite this, the apparently increasing
volumes for both EDV and ESV with the increasing mean dose could indicate some degree
of partial volume effect. Nevertheless, there is no similar indication of changes in LVEF
with the changes in the target count rate (Table 2, rows 7 to 9).

3.2. Test of Patient Tailored Algorithm

When plotting all the measured count rates against the predicted count rates (n = 1650),
we found an excellent prediction of the count rate, as illustrated in Figure 3. Linear
regression showed a slope coefficient of 1.012 and an intercept of 0.007 kcps. The algorithm
based on information on patient weight, height, sex, and age explained 80% (R2 = 0.80) of
the variation in the observed count rate, which is an improvement from the expected 75%.

When using the combination of Equations (1) and (2) as described, we were able
to obtain a mean predicted count rate very close to the measured count rate (0 to 4.4%)
throughout the range of target count rates from 1.0 to 2.7 kcps while reducing the mean
dose as the target count rate was lowered (Table 2, rows 10 to 13).

The gradual reduction in the target count rate led to a frequency of disagreement
of more than 2 percent points between the LVEF analyses of an ERNA above 5% when
aiming at count rates of 1.5 and 1.0 kcps. This led to the decision to run the final test period
from November 2018 to the end of January 2019, aiming at a count rate of 1.7 kcps. With
this target count rate, a sufficiently low frequency of disagreement between the two first
analyses of LVEF was obtained (21 out of 432 or 4.9%) (Table 2, row 14).

An individualised dose reduced the overall mean dose by 53% (from 550 to 258 MBq)
when aiming at a count rate of 1.7 kcps, as compared to our standard dose of 550 MBq
(Table 2, rows 10 and 11).
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The mean absolute (numerical) time between the scheduled and actual tracer injection
was 9 min, ranging from 0 to 140. This gave rise to a mean absolute difference between the
scheduled dose and the actual dose at injection of 5 MBq (2%), ranging from 0 to 114 MBq,
or up to 29%.

3.3. Subgroup Analyses

In the injection utensils used for target count rates of 1.0 and 1.7 kcps, there was no
difference in the remaining activity (9.6 ± 4.4 vs. 10.4 ± 5.4 MBq, respectively, p = 0.43 for
t-test with unequal variance). However, the relative remaining activity was higher in the
utensils used for a target count rate of 1.0 than those used for a target count rate of 1.7 kcps
(5.5 ± 3.1% vs. 4.3 ± 2.7%, respectively, p = 0.0083 for t-test with unequal variance). The
maximum remaining amount of tracer in the injection utensils was 16.5%.

4. Discussion

This study successfully tested a combination of two equations for individualised
dose planning in CZT ERNA, allowing for a reduction in the mean dose of at least 50%
(to a mean effective dose of 1.6 mSv (range: 0.6 to 3.6 mSv)), without compromising the
ability to produce reproducible analyses of LVEF. The average dose using a target count
rate of 1.7 kcps is approximately half of the current recommendation for planar nuclear
angiography [7,22], and as suggested possible by Duvall et al. [9].

Additionally, we found a level of the target count rate that minimises the need for
a lower dose limit. When doing this, we used the frequency of disagreement of more
than 2 percent points between the two LVEF calculations as a surrogate for image quality.
Nonetheless, this limit is used in daily clinical practice and is subsequently practical in this
context. While using the above-mentioned algorithms in daily practice, there were two
instances in young males where the suggested dose was below the lower limit of 100 MBq.
In response, we altered the weight limit used to decide which of the two equations to use
from 73 to 82 kg (effectuated April 2020). This has been the only alteration that we have
found it necessary to perform.
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There are several benefits to reducing the administered dose of radiopharmaceuticals.
Primarily, optimising the exposure to radiation according to the “as low as reasonably
achievable (ALARA) principles” would reduce the radiation burden to both patients and
staff in accordance with both guidelines [23] and national legislation. Additionally, a more
uniform count rate should improve the uniformity of test results, regardless of the patients’
size, by eliminating the consequences of a partial volume effect caused by higher count
rates in smaller patients versus lower count rates in patients with larger body proportions
as well as the possibility to adapt the dose to the individual patient despite changes in
body weight during therapy [24]. In the present study, however, this partial volume effect
appears to be of minor importance since it has implications on EDV and ESV but not LVEF.
As such, it is also unlikely that individualised tracer dosage has influenced the accuracy of
the CZT SPECT ERNA procedure.

Administering an overall lower dose to each patient will inevitably reduce the costs
of both the tracer and 99mTc without altering the procedure, particularly with regard to
scan time, although this doubles the need for more than two analyses to approximately 5%.
As an example, the number of vials per 100 performed ERNAs was, in our department,
39.8 in 2016, when the standard dose of 550 MBq per acquisition was used, as compared
to 27.3 in 2019, when a patient tailored dose aiming at a target count rate of 1.7 kcps was
used routinely, with an average cost reduction of 31.5%. It is, however, mandatory that
clinicians upon referral for ERNA provide sufficient information on weight and height for
the computed calculation of an individual tracer dose. This has required some adaptation
for the clinicians, which is reflected in Table 1, where the need for the use of the standard
dose of 550 MBq decreased from 41 and 30 in target count rate groups 2.7 and 2.0 kcps,
respectively, to below 10 in the later series.

The individualised planning of doses and the on-the-fly monitoring of count rates
makes it possible to pinpoint cases of a paravenous injection as the examination is running
due to a lower count rate than expected. In this study, this happened in 10 out of 1650 cases.

There is an apparent improvement in the predictability of the count rate from the
expected 75% as previously published to 80%. This may well be attributed to the use
of a combination of the two dose calculation equations instead of only using one, thus
avoiding their respective weaknesses at each end of the spectrum of body weight (Figure 2).
Another factor that may have marginally contributed is the adjustment for the exact tracer
injection time instead of just using the scheduled time. Still, the mean deviation from the
scheduled dose due to differences between the actual and planned injection time was only
4.3 MBq (1.6%).

Variations due to unknown residual activity in injection utensils; differences in thorax
shape; and the effect of varying tissue amounts around the heart due to prior surgery—left
sided mastectomy, in particular—may account for other unexpected major deviations from
the expected count rate [25]. It can be expected that the relative residue of tracer in injection
utensils will increase with lower target doses as long as the same dilution of tracer is used.

5. Conclusions

Patients’ weights, heights, sexes, and ages can be used to individualise the planning
of their tracer doses using a combined algorithm with a target count rate. The benefits
of this approach are numerous—most importantly, the radiation burden to both patients
and staff can be reduced by at least 50% compared to that for the hitherto-used standard
dose of 550 MBq and, subsequently, even further than the current recommendations for
planar nuclear angiography in accordance with ALARA principles. Secondary benefits
include reduced costs in terms of the tracer and technetium; encountering shortages of
technetium; the possibility of identifying a paravenous injection on the fly; and, potentially,
an increased uniformity of test results across patient age, sex, height, and weight as well as
changes, particularly in the latter.
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