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Background 

1. Definition of sleep-disordered breathing

Detection of SDB follows the standards by the American Academy of Sleep Medicine (AASM) that are displayed in 

Figure S1 [1,2]. Sleep apnea is the state of airflow obstruction for >10 seconds, while sleep hypopnea is defined as > 

30% decrease in nasal pressure, 3% decrease in SpO2, or the occurrence of awakening [1]. Sleep apnea is categorized 

as obstructive sleep apnea (OSA) and central sleep apnea (CSA) depending on the mechanism of development [3]. In 

OSA, there is still a willingness for breathing, but in CSA, there is a lack of willingness for breathing [4]. 

An understanding of sleep apnea and hypopnea, although relatively common, has been poor in the past. However, it 

is getting a lot of attention nowadays because the prevalence of sleep apnea/hypopnea is rapidly increasing, associated 

with a recent increase in the obese population, and the complications are known to increase mortality rate [1]. 

The severity of sleep apnea–hypopnea syndrome is categorized by the apnea–hypopnea index (AHI) [5]. 

Apnea–hypopnea index (AHI): a total count of apnea or hypopnea per hour. 

AHI [1/hour]  =  
Total number of apneas or hypopneas

Total sleep time [hour]
(1) 

- Mild : 5 ≤ AHI < 15

- Moderate : 15 ≤ AHI < 30

- Severe : AHI ≥ 30 

Figure S1 Definition of sleep-disordered breathing [18]. 
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(A) electroencephalography (EEG), (b) airflow, (c) respiratory effort (chest), (d) respiratory effort (abdomen),

and (e) oxygen saturation. 

2. Pathogenesis of sleep-disordered breathing

Out of all mammals, sleep apnea–hypopnea syndrome is a disease appearing only in humans [6]. Anatomical changes 

in the human supralaryngeal vocal tract enabled the humans to speak languages, however, which, the structure was 

changed to collapse easily. Thus, it became predisposed to developing sleep apnea–hypopnea syndrome [6].  

Notably, patients with sleep apnea–hypopnea syndrome, due to various predisposing factors, tend to show a narrower 

upper airway than those without, as shown in Figure S2 [7]. These structural characteristics increase airway closures, 

causing sleep apnea–hypopnea [7]. 

The goal of respiration is to maintain a constant concentration of blood gases, which is automatically regulated by the 

respiratory center located in medulla oblongata [8]. 

During sleep, activities in the respiratory center reduce, breathing patterns change, and responses to various external 

stimuli decrease [8]. Therefore, the respiratory center operates regularly, maintaining arterial blood gases at constants 

during awakening. Still, during sleep, hypoxia and hypercapnia can be induced by upper airway stenosis, decreased lung 

capacity, and decreased ventilation [7,9]. Such respiratory changes during sleep worsen in patients with airway 

obstruction and contribute to the mechanism of development of apnea or hypopnea repeatedly occurring during sleep in 

patients with SBD [9]. 

Sleep apnea or hypopnea is a phenomenon occurring only during sleep and is characterized as repeatedly occurring 

[10]. Figure S2 shows the mechanism of repeated awakening during sleep due to apnea and recurrent apnea development 

due to the awakening [7,9]. OSA develops due to anatomical factors in upper airway obstruction and decreased activity 

in the respiratory center during sleep. When apnea occurs, oxygen concentration decreases, and carbon dioxide increases 

in the blood. Awakening during sleep occurs if this state continues. Simultaneously with the awakening, the closed 

upper airway will open, and hyperventilation occurs to maintain normal concentration levels of blood gases. However, 

hyperventilation beyond the need will lead to the fall of blood carbon dioxide level below the standard, which will 

reduce the activity level in the respiratory center. Falling asleep in this state may lead to the occurrence of OSA or CSA. 

This malicious cycle becomes the causative factor of repetitions of sleep-awakening and respiration-apnea. 
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Figure S2 Pathogenesis of sleep -disordered breathing [18]. 

OSA = obstructive sleep apnea; CSA = central sleep apnea; UA: upper airway. 

 

3. Convolutional neural network (CNN) 

 

Convolution layer: A convolutional layer applies sliding filters to the input. To be specific, the layer convolves the 

input by moving the filters along the input vertically and horizontally and computing the dot product of the weights and 

the input and then adding a bias to them. The input to a convolutional layer is an m  m  r data where m is the height 

and width of the input data, and r is the number of channels. The convolutional layer will have k filters of size n  n  

q, where n is smaller than the dimension of the input data and q, can either be the same as the number of channels r or 

smaller and may vary for each kernel. The size of the filters gives rise to the locally connected structure which is each 

convolved with the input data to produce k feature maps of size m−n+1.There are three main advantages of the 

convolution operation: the weight sharing, local connectivity, and invariance to the location [11]. 
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Pooling layer: The pooling layer follows a convolutional layer and can be used to reduce the dimensions of feature 

maps and network parameters. The pooling layers are also in charge of down−sampling the spatial dimensions of the 

input. Max pooling is the most commonly used strategy, which divides the input data into a set of non-overlapping 

rectangles and outputs the maximum value of each such subsets [12]. 

Fully-connected layer: Fully-connected layers convert the feature maps into a 1D feature vector for further feature 

representation. Final discrimination of the input data is conducted at the fully-connected layer. At this stage, all the 

neurons are fully-connected, and the learning process is performed through feedforward and backpropagation algorithms 

[11]. Fully-connected layers perform like a traditional neural network and contain about 90% of the parameters in a 

CNN [13]. It enables us to feed forward the neural network into a vector with a predefined length. 

Dropout: Dropout is a technique where randomly selected neurons are temporarily removed from the network, along 

with all its incoming and outgoing connections, during training. This technique has been shown to help in avoiding 

overfitting and preserve a network’s ability to generalize [14]. 

Loss function: The loss function returns a value representing a penalty for incorrect classification. The goal then is to 

minimize the loss function when training. Mean square error (MSE) is a commonly used loss function in neural networks 

where equal value is placed on the error for each class. The calculation of MSE is defined in Equation 2.  

𝑀𝑆𝐸 =
1

2𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)2

𝑖    (2) 

where iŷ is the output of neural network, and iy is label of target class. 

4. Support vector machine (SVM)

SVM classifier aims at maximizing generalizing capability. It uses representative feature vectors of each class to 

search for the optimized decision hyperplane that has maximal margin between categories [15]. To find the optimal 

decision hyperplane that classifies each category, the distance from the separation boundary to the nearest point to 

(support vector) gets maximized, and the linear separation boundary can be defined as in Equation 3 [15]. Furthermore, 

the distance between the support vector and f(x) is 1/‖ω‖, and the object function having the optimal hyperplane that 

this distance becomes the greatest can be expressed as in Equation 5 under the condition in Equation 4 [15], where 

1/2‖ω‖2 is the term corresponding to the margin between the support vector and f(x); 𝜉 is a slack variable allowing

cognition error partially when linear separation is impossible, and; 𝐶  determines the weight for a slack variable. 

Applying the Lagrange multiplier to Equation 5, one can define the optimal hyperplane function in specific space as in 

Equation 6 [15], where 𝛼𝑖
∗ is the Lagrange multiplier; (𝑥, 𝑥𝑖) is Kernel function; 𝑦𝑖 is the label of learning data; 𝑥

is input data, and; 𝑥𝑖 is a support vector. 

𝑓(𝑥) = ω2𝑥 + 𝑏     (3) 

𝑦𝑖(ωT𝑥 + 𝑏) ≥ 1 − 𝜉𝑖 , 𝜉𝑖 ≥ 0, i = 1,2, ⋯ , 𝑁 (4)
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min 𝐽(ω, 𝜉) =
1

2
‖ω‖2 + 𝐶 ∑ 𝜉𝑖

𝑁
𝑖=1 (5) 

𝑓(𝑥, 𝛼∗) = ∑ 𝛼𝑖
∗𝑦𝑖𝐾(𝑥, 𝑥𝑖)𝑁

𝑖=1 (6) 

5. SVM-Recursive feature elimination (SVM-RFE)

SVM-RFE, a method that selects the optimal feature, measures the discriminatory power using the margin between 

classes that each feature vector possesses. With the assumption of a small margin between classes, the process of 

sequential backward elimination is conducted in descending order of discernment [16]. In other words, at first, 

discernment is measured using all feature vectors, and the feature with the least discernment gets removed. After this, 

using the features that are not removed, the feature removal process gets executed again, and this process repeats until 

only one feature is left. The last feature remaining is the feature with the biggest discernment, so choose the feature that 

shows maximal performance with a minimal number of features through the repeated learning and evaluation while 

combining the features in the order of discernment [17]. 

Figure S3 Procedure of SVM-RFE for feature selection [18]. 

Materials and Methods 

1. Dataset

Table S1 Subject characteristics of the SHHS dataset. 

Training-Validation set Test set Total 

No. of subjects 2,693 674 3,367 

Age (year) 55.1±7.0 56.4±16.7 55.7±12.6 

Gender (F/M) 1,216/1,476 305/370 1,521/1,846 

BMI (kg/m2) 25.1±2.5 25.3±3.3 25±2.5 

Smoking status (n) 

  Current smokers 1257 323 1580 
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  Former smokers 321 389 393 

  Never smokers 1028 363 1391 

AHI (/h) 25.6±16.2 27.6±18.7 26.6±17.2 

Systolic BP (mmHg) 125.2±8.9 126.1±11.4 124.4±10.7 

Diastolic BP (mmHg) 72.4±5.6 72.3±5.2 72.3±5.1 

Cholesterol (mg/dL) 207.1±6.2 205.5±6.0 206.4±6.3 

CHD (n) 376 98 473 

HF (n) 154 38 308 

Stroke (n) 245 63 193 

BMI = body mass index; AHI = apnea–hypopnea index; BP = blood pressure; CHD = coronary heart disease; 

HF = heart failure. 
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Figure S4 Protocol of prospective cohort study. BL = baseline study; FU = follow-up. 

Figure S5 Participating Institutions of SHHS. 
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Results 

1. Description of features

Table S2 Description of 18 signal processing-based ECG features. 

Features Description 

ECG abnormality 

   QTc_mean the mean of corrected QT durations 

QTc_SD the standard deviation of corrected QT durations 

   STTc_mean the mean of corrected ST-T segments 

STTc_SD the standard deviation of corrected ST-T segments 

HRV features 

NN_mean the mean of normal-to-normal interbeat intervals  

   NN_SD the standard deviation normal-to-normal interbeat intervals 

   SDNN_mean the mean of standard deviation of NN 

   SDNN_SD the standard deviation of standard deviation of NN interval 

   RMSSD_mean the mean of root mean square of the successive differences 

   RMSSD_SD the mean of root mean square of the successive differences 

   PVLF_mean the mean of the power in very low frequency band  

PVLF_SD the standard deviation of the power in very low frequency band 

   PLF_mean the mean of the power in low frequency band  

PLF_SD the standard deviation of the power in low frequency band 

   PHF_mean the mean of the power in high frequency band  

PHF_SD the standard deviation of the power in high frequency band 

PLF/PHF_mean the mean of the ratio PLF and PHF  

PLF/PHF_SD the standard deviation of the ratio PLF and PHF 
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Table S3 Description of 30 AI-based ECG features. 

Features Description 

AI1_mean the mean of first node outputs in flatten layer 

AI1_SD the standard deviation of first node outputs in flatten layer 

AI2_mean the mean of second node outputs in flatten layer 

AI2_SD the standard deviation of second node outputs in flatten layer 

AI15_SD the standard deviation of 15th node outputs in flatten layer 

Table S4 Description of 10 clinical CVD risk factors. 

CVD risk factors Type CVD risk factors Type 

Age (year) numerical Systolic BP (mmHg) numerical 

Gender (F/M) nominal Diastolic BP (mmHg) numerical 

BMI (kg/m2) numerical Cholesterol (mg/dL) numerical 

Smoking status (F/C/N) nominal HDL cholesterol (mg/dL) numerical 

AHI(/h) numerical ODI(/h) numerical 
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Table S5 The results of feature selection for each classifier. 

Rank SVM_CVD SVM_C-H SVM_C-S SVM_H-S 

1 AI15_mean AI4_mean AI10_mean HDL cholesterol 

2 ST-T_mean HDL cholesterol ST-T_mean AI3_mean 

3 BMI PLF_mean PLF/PHF_mean PLF_SD 

4 Systolic BP AI10_mean Diastolic BP Cholesterol  

5 AHI PLF/PHF_SD HDL cholesterol AHI 

6 AI11_SD AI2_SD PLF_mean AI2_mean 

7 PLF/PHF_mean PLF_mean BMI Systolic BP 

8 ODI AHI PLF/PHF_mean PHF_SD 

9 Smoking status AI4_mean 

10 Age Smoking status 

11 AI12_mean AI6_SD 

12 AI1_mean 

13 AI7_SD 

14 PLF/PHF_SD 

15 ST-T_SD 

16 PLF_mean 

17 AI3_mean 

SVM = support vector machine; CVD = cardiovascular disease; C = coronary heart disease; H: heart failure, S: stroke. 

Bold: selected optimal features. All features have significant difference between groups (p<0.05). 

Table S6 shows the features that showed a statistically significant difference between classes as boxplots (p<0.05). 

The features that showed a significant difference between CVD and CVD-free; CHD and HF; CHD and stroke, and; HF 

and stroke were 17, 8, 8, and 11, respectively. 

The features with a statistical difference were organized in the descending order of the best performance through 

SVM-RFE, as in Table S6. Besides, the repeat experiment was conducted and presented the finally selected feature in 

bold font. 
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2. Comparison performance with other models

Table S6 Comparison with other models. 

Models Input/features 
2
F1 

4
F1 

ANN ECG signals 69.7 53.1 

ANN SP and AI-based ECG features 

CVD risk factors 
74.0 57.7 

CNN ECG signals 70.9 52.3 

CNN SP and AI-based ECG features 

CVD risk factors 

74.8 58.0 

SVM SP-based ECG features 

CVD risk factors 
73.1 57.6 

LDA SP and AI-based ECG features 

CVD risk factors 
69.8 52.8 

[Our study] SP and AI-based ECG features 

CVD risk factors 
76.5 59.1 

ANN = artificial neural network; CNN = convolutional neural network; SVM = support vector machine; LDA = linear 

discriminant analysis; SP = signal processing; AI = artificial intelligence; CVD = cardiovascular disease; ECG = 

electrocardiogram; 2F1 = F1-score for binary prediction (CVD-free | CVD); 4F1 = F1-score for four class prediction 

(CVD-free | CHD | HF | stroke). 

To learn about the difference between our proposed method and the conventional method, we experimented and 

presented the results in Table S6. We evaluated the performances by applying input features and AI models in various 

ways. For the AI model, we utilized the artificial neural network (ANN), convolutional neural network (CNN), support 

vector machine (SVM), linear discriminant analysis (LDA), and k-nearest neighbor (k-NN). We evaluated after dividing 

the input into the one that includes the feature extraction process and the one that does not. As a result, the proposed 

model in this study excelled over the other model in terms of performance. Through this, we developed a prediction 

model of an excellent performance using a small number of features that were acquired through the optimal feature 

selection process. However, this study utilized SVM-RFE for feature selection. This may have resulted from extracting 

the features adequate for the SVM model in the feature selection process. Therefore, there is a need for conducting an 

additional experiment by using various feature selection methods [16]. 
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