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Abstract: (1) Purpose: this study proposes a method of prediction of cardiovascular diseases (CVDs)
that can develop within ten years in patients with sleep-disordered breathing (SDB). (2) Methods:
For the design and evaluation of the algorithm, the Sleep Heart Health Study (SHHS) data from
the 3367 participants were divided into a training set, validation set, and test set in the ratio of
5:3:2. From the data during a baseline period when patients did not have any CVD, we extracted
18 features from electrography (ECG) based on signal processing methods, 30 ECG features based on
artificial intelligence (AI), ten clinical risk factors for CVD. We trained the model and evaluated it
by using CVD outcomes result, monitored in follow-ups. The optimal feature vectors were selected
through statistical analysis and support vector machine recursive feature elimination (SVM-RFE)
of the extracted feature vectors. Features based on AI, a novel proposal from this study, showed
excellent performance out of all selected feature vectors. In addition, new parameters based on AI
were possibly meaningful predictors for CVD, when used in addition to the predictors for CVD that
are already known. The selected features were used as inputs to the prediction model based on SVM
for CVD, determining the development of CVD-free, coronary heart disease (CHD), heart failure
(HF), or stroke within ten years. (3) Results: As a result, the respective recall and precision values
were 82.9% and 87.5% for CVD-free; 71.9% and 63.8% for CVD; 57.2% and 55.4% for CHD; 52.6%
and 40.8% for HF; 52.4% and 44.6% for stroke. The F1-score between CVD and CVD-free was 76.5%,
and it was 59.1% in class four. (4) Conclusion: In conclusion, our results confirm the excellence of the
prediction model for CVD in patients with SDB and verify the possibility of prediction within ten
years of the CVDs that may occur in patients with SDB.

Keywords: sleep-disordered breathing (SDB); cardiovascular disease (CVD); artificial intelligence
(AI); electrocardiogram (ECG); CVD risk factor

1. Introduction

Partial or total obstruction of the upper airway during sleep in sleep-disordered
breathing (SDB) incurs respiration issues such as apnea or hypopnea as Figure S1 [1]. Ap-
proximately 2–4% of the world population suffer from SDB [2]. SDB is very common, with
3.2–4.5% of the people suffering from the disease [3]. An understanding of sleep apnea and
hypopnea, although relatively common, has been poor in the past. However, it is getting
a lot of attention nowadays because the prevalence of sleep apnea/hypopnea is rapidly
increasing, associated with a recent increase in the obese population, and the complications
are known to increase mortality rate [4]. The severity of sleep apnea-hypopnea syndrome
is categorized by the apnea-hypopnea index (AHI) [5].
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Recurrent sleep apnea or hypopnea acts as an acute stress factor in the cardiovascular
system by inducing hypoxemia, reoxygenation, sudden pleural pressure changes, and
awakenings of the central nervous system as Figure S2 [6]. Thus, SDB, untreated for a long
time, increases the chance of development of CVDs such as hypertension, heart failure
(HF), coronary heart disease (CHD), arrhythmias, and stroke, leading to mortality risk
increase [7–9].

Figure 1 shows the pathophysiology of SDB and CVD. In sleep apnea-hypopnea syn-
drome, the recurrent upper airway obstructions during sleep cause hypoxemia, reoxygena-
tion, sudden pleural pressure changes, and the awakening of the central nervous system,
which work as an abrupt cardiovascular stress factor [6]. Additionally, the sympathetic
nervous system hyperactivity, selective activation of inflammatory pathways, vascular
endothelial dysfunction, and metabolic dysregulation work as connection mechanisms for
CVD [10].
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The National Heart Lung and Blood Institute conducted a multi-center cohort study
named the Sleep Heart Health Study (SHHS) to investigate the relationship between SDB
and CVDs [11]. Participating in SHHS, Gottlieb et al. conducted prospective research
to examine the relationship of SDB with CHD and arrhythmias. They found that the
probabilities of the occurrence of CVD and arrhythmias were 68% and 58%, respectively, in
patients with SDB, which are higher than those in healthy participants [12]. On the other
hand, Redline et al. conducted a prospective study of SHHS to learn about the relationship
between SDB and stroke. Patients with mild to severe SDB had a high affinity for develop-
ing ischemic stroke [13]. Other previous studies were concerning the predictors for CVDs,
e.g., cholesterol, blood pressure, obesity, smoking, and electrocardiogram (ECG) [14–16].
Auer et al. found that ECG waves were related to CVD so that ECG abnormalities could be
used as a predictor for CVD [16]. However, previous studies have investigated only for
single disease target, or used group-wise analysis only such as morbidity and mortality
rates. Additionally, the efficacy of the CVD predictors has not been evaluated for how well
they can make actual predictions for the future development of CVD.

Therefore, in this study propose an algorithm based on artificial intelligence (AI) that
can predict the development of CVDs, e.g., CHD, HF, and stroke within ten years, by
using the ECG and common risk factors for CVD in patients with SDB. We believe that the
potential for the prediction of comorbidities in patients with SDB, as verified in this study,
will contribute to the realization of medical services.
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2. Materials and Methods
2.1. Materials

SHHS is a cohort study conducted to investigate the outcomes of cardiovascular and
sleep disorders [11]. It was a study confirming the SBD’s relationship with the risks of
coronary artery disease, arrhythmias, and stroke that large hospitals in the United States
participated in, as in in Figures S4 and S5. This cohort was approved by the Institutional
Review Board in each participating center, and only the persons who signed the consent
form were included as in the study. This study was conducted from 1995 to 2006 from
1 November 1995 to 31 January 1998, (baseline study), 6441 participants completed the
survey about sleeping habits and health and went through polysomnography. Since they,
they were monitored for the occurrence of CVD till April 2006.

Selected data in this study are displayed in Figure 2. For the design and evaluation
of the algorithm, data from the 3367 research participants were divided into a training
set, validation set, and test set in the ratio of 5:3:2. (Table S1). There was no significant
difference in clinical characteristics between the training-validation set and the test set
(p > 0.05).
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2.2. Overview of CVD Prediction Model

Figure 3 shows the model to predict the incident CVD outcomes in patients with SDB
within ten years. To develop a prediction model for incident CVD (CHD, HF, and stroke),
we extracted and selected a total of 23 feature vectors, i.e., 5 signal processing-based ECG
features, 8 AI-based ECG features, and 10 clinical CVD risk factors. The selected features
were used as inputs to the prediction model based on support vector machine (SVM),
determining the development of CVD-free, CHD, HF, or stroke within ten years. First,
when classified as CVD after passing through the SVM (SVM_CVD) that predicts CVD and
CVD-free, the ensemble classifier is gone through to classify CHD, HF, and stroke. In this
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study, to classify three target classes, e.g., CHD, HF, and stroke, we predicted incident CVD
outcomes using three SVM classifiers (SVM_C-H, SVM_C-S, and SVM_H_S).
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2.3. Extraction of ECG Features
2.3.1. Signal Processing-Based Features

For ECG signal, polysomnography data from baseline study were used, and the ECG
signal was analyzed during sleep, from sleep onset to sleep offset. After detection of the
QRS complex and T wave using the adaptive threshold algorithm and morphological
method [17,18], QTc and STTc segments were calculated [19,20].

To calculate heart rate variability (HRV), we removed ectopic beats in the RR se-
ries, and this signal was defined as NN (normal-to-normal RR). For HRV analysis after
interpolating the NN in equidistance, resampled it at 4Hz. The resample signal was
transformed using the fast Fourier transform in 30 s segments, a square of which was
the power spectrum density. Frequency bandwidths that were used to calculate the fre-
quency domain characteristics were: very-low frequency (VLF: 0~0.04 Hz), low frequency
(LF: 0.04~0.15 Hz), and high frequency (HF: 0.15~0.4 Hz). Finally, we extracted 18 signal
processing-based ECG features after calculating the average and standard deviation of
each feature during the whole sleep period (Table S2).

2.3.2. AI-Based Features

Convolutional neural network (CNN) structure consisted of three convolutional layers
with activation functions, each of which was followed by a max-pooling layer. A dropout
technique was applied to the last three convolutional layers to avoid overfitting, as in the
1D CNN algorithm. The fully connected layer was used for final discrimination using a
softmax activation function. Finally, the output was the likelihood that the observed data
was produced by CVD or CVD-free event.

Finally, we extracted 30 AI-based ECG features after calculating the average and
standard deviation, for the entire overnight sleeping period, of the AI-based features
extracted from each node in the flattening layer of the CNN model during the whole sleep
period (Table S3).
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2.3.3. Clinical Risk Factors

There have been ongoing studies about risk factors for CVD after the 2000s, so we
referred to previous clinical literature to extract 10 CVD risk factors to use as inputs into
the prediction model (Table S4).

2.4. Selection of Incident CVD Predictor

To select the optimal features for CVD classification, we confirmed for any significant
difference between classes in the 58 features. For statistical analysis, depending on data
type, two independent sample t-test and Chi-square tests were conducted for the training
set, and we determined that each feature between classes was significantly different for
p-value < 0.05 [21]. Additionally, to select the optimal feature out of the features with a
significant difference, we applied support vector machine-recursive feature elimination
(SVM-RFE) [22]. Through SVM-RFE, features were ranked in descending order of discern-
ment, and combining the features in descending order of discernment, we conducted the
learning and performance evaluation repeatedly. The above process was repeated four
times to search for the optimal feature classifying CVD and CVD-free; CHD and HF; CHD
and stroke; HF and stroke (Figure S3).

2.5. Prediction of Incident CVD Outcomes

After the process of feature extraction, we use the SVM model to predict the occurrence
of CHD, HF, and stroke within ten years. First, when classified as CVD after passing
through the SVM_CVD that predicts CVD and CVD-free, the OvO multiple class classifiers
are gone through to classify CHD, HF, and stroke. OvO is the method of selecting a
combination of two classes out of the K existing target classes and then selecting the class
that acquired the most discrimination through K(K-1)/2 binary classifications [23]. In this
study, to classify three target classes, e.g., CHD, HF, and stroke, we predicted incident CVD
outcomes using three SVM classifiers (SVM_C-H, SVM_C-S, and SVM_H_S).

3. Results
3.1. Selection of Optimal Incident CVD Predictor

Figure 4 displays computed recalls after learning while adding one after another
feature with a significant difference between classes in descending order of performance.
We chose the feature showing the optimal performance with a minimal number of features,
and 11, 6, 5, and 7 feature vectors were selected for SVM_CVD, SVM_C-H, SVM_C-S, and
SVM_H-S. Out of the optimal features selected by incident CVD predictor, the AI-based
ECG features going as inputs to the SVM_CVD, SVM_C-H, SVM_C-S, and SVM_H-S were
three, two, one, and two, occupying a high rank. This shows a possibility that the AI-based
novel parameter can be used as an essential factor predicting incident CVD, besides the
common clinical CVD risk factor or ECG abnormality and HRV parameter (Table S5).

3.2. Performance Evaluation of Incidnet CVD Predictor

Tables 1 and 2 show the results of incident CVD prediction for the training and test
set, respectively. The recall and precision values for the entire training set regarding the
CVD-free were 85.5% and 88.9%; CVD, 73.8% and 65.7%; CHD, 63.3% and 57.6%; HF, 55.2%
and 45.0%; stroke, 52.2% and 47.8%, respectively, whereas the F1-score between CVD and
CVD-free were 78.2% and in 4 class, 61.7%. For the entire test set, the recall and precision
values of CVD-free were 82.9% and 87.5%; CVD, 71.9% and 63.8%; CHD, 57.2% and 55.4%;
HF, 52.6% and 40.8%; stroke, 52.4% and 44.6% respectively, whereas the F1-score between
CVD and CVD-free was 76.5% and in four classes.
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Table 1. The prediction results of incident CVD outcomes for the training set.

Predicted
Actual

CVD-Free CHD HF Stroke Precision (%)

CVD-free 1620 87 45 71 88.9
CHD 140 238 10 25 57.6

65.7HF 52 31 85 21 45.0
Stroke 106 20 14 128 47.8

Recall (%) 84.5
63.3 55.2 52.2 4 F1: 61.7

2 F1: 78.273.8

CVD = cardiovascular disease; CHD = coronary heart disease; HF = heart failure; 2 F1 = F1-score for binary
prediction (CVD-free|CVD); 4 F1 = F1-score for four class prediction (CVD-free|CHD|HF|stroke).

Table 2. The prediction results of incident CVD outcomes for the test set.

Predicted
Actual

CVD-Free CHD HF Stroke Precision (%)

CVD-free 394 23 13 20 87.5
CHD 37 56 2 6 55.4

63.8HF 13 12 20 4 40.8
Stroke 31 7 3 33 44.6

Recall (%) 82.9
57.2 52.6 52.4 4 F1: 59.1

2 F1: 76.571.9

CVD = cardiovascular disease; CHD = coronary heart disease; HF = heart failure; 2 F1 = F1-score for binary
prediction (CVD-free|CVD); 4 F1 = F1-score for four class prediction (CVD-free|CHD|HF|stroke).
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4. Discussion

This study proposed a prediction method of CVD that occurs within ten years for
patients with SDB. The purpose of our algorithm is to recognize the risks of SDB, assist
active treatment of it, and prevent the CVD, which is a comorbidity of SDB.

In this study, we extracted a total of 58 feature vectors and selected the optimal feature
vector through statistical analysis and SVM-RFE. Among the feature vectors selected with
the optimal features, we confirmed the AI-based features that were proposed in this study
showing excellent performance. In addition to the conventional CVD predictors, the new
AI-based parameters showed a possibility to be used as a meaningful CVD predictor.
Selected features were inputted into the SVM model to predict CVD, and four SVM models
were designed for classifying CVD-free, CHD, HF, and stroke.

We evaluated the prediction performance of CVD and CVD-free in the test set depend-
ing on the severity of the SDB symptoms as well as gender. The F1-score was 73.9% in
women, and 79.1% in men, so it could be confirmed that the prediction performed better
in men than in women. Gottlieb et al. [9] and Redline et al. [10] analyzed the relationship
between CVD and SDB according to the gender in the SHHS. As a result, it was confirmed
that the relationship between CVD and SDB was higher for men than for women. The
CVD predictor extracted from this study also showed a higher relationship for men than
for women. Besides, the F1-score tends to fall with the severity of SDB for both men and
women. This is seen to have been caused by the bias from low severity data set when
learning, because those with AHI < 15 produced far more data than those with AHI >15 in
the SHHS study. This performance is better than that of other models.

To learn about the difference between our proposed method and the conventional
method, we experimented and presented the results in Table S6. We evaluated the perfor-
mances by applying input features and AI models in various ways. For the AI model, we
utilized the artificial neural network (ANN), convolutional neural network (CNN), support
vector machine (SVM), linear discriminant analysis (LDA), and k-nearest neighbor (k-NN).
We evaluated after dividing the input into the one that includes the feature extraction
process and the one that does not. As a result, the proposed model in this study excelled
over the other model in terms of performance. Through this, we developed a prediction
model of an excellent performance using a small number of features that were acquired
through the optimal feature selection process.

Therefore, we confirmed the excellence of the CVD prediction model for SDB, pro-
posed in this study. We also presented a possibility of CVD prediction that may occur
within the next ten years in the patient with SDB. Thus, we believe that the algorithm pro-
posed in this study can be used to, recognize the risks of SDB, assist aggressive treatment,
prevent the CVD, comorbidity of SDB.

In this study, we extracted the signal processing-based ECG features, AI-based ECG
features, and clinical CVD risk factors. We also selected the optimal feature by using
statistical analysis and SVM-RFE. Among the optima features, the AI-based ECG features
were confirmed to have excellent performance in predicting the incident CVD outcomes.
However, this study did not investigate how each feature is related to and CVD clinically.
to confirm this, studies are needed that apply explainable AI technique to explain the
meaning of each feature.

In this study, a method for predicting the occurrence of cardiovascular disease us-
ing a single electrocardiogram and major clinical indicators was presented. In addition,
meaningful results were obtained by extracting new AI-based features. However, although
classification of diseases is important, risk assessment for cardiovascular disease is more
meaningful in clinical practice, and additional research is needed for this.

In patients with SDB and accompanying CVD, the mechanisms are increased oxidative
stress and sympathetic nervous system activation [24]. For the prediction of the incident
CVD, this study mainly dealt with ECG-based analysis, which is to check for ECG ab-
normality and changes in autonomic nervous system. However, in addition to ECG, it
is necessary to analyze various signals simultaneously, such as oxygen saturation, which
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is associated with oxidative stress. We can expect the enhancement of performance and
stability of a model by conducting research using various input signals and characteristics.
In this study, we analyzed CVD such as CHD, HF, and stroke as targets. However, it is
necessary to expand research about CVD outcomes by including more diverse details.
Researchers have been interested in CVD risk factors for a long time. Thus, there have been
many cohort research investigating the CVD risk factors [25]. Further, only SHHS data
were used in this study. However, to verify our proposed method, extra data set should be
additionally collected and analyzed.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/diagnostics11122212/s1, Figure S1: Definition of sleep-disordered breathing, Figure S2:
Pathogenesis of sleep -disordered breathing, Figure S3: Procedure of SVM-RFE for feature selection,
Figure S4: Protocol of prospective cohort study, Figure S5: Participating Institutions of SHHS,
Table S1: Subject characteristics of the SHHS dataset, Table S2: Description of 18 signal processing-
based ECG features, Table S3: Description of 30 AI-based ECG features, Table S4: Description of
10 clinical CVD risk factors, Table S5: The results of feature selection for each classifier, Table S6:
Comparison with other models.
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