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Abstract: Background: Cervical vertebral maturation (CVM) is widely used to evaluate growth
potential in the field of orthodontics. This study is aimed to develop an artificial intelligence (AI)
system to automatically determine the CVM status and evaluate the AI performance. Methods: A
total of 1080 cephalometric radiographs, with the age of patients ranging from 6 to 22 years old, were
included in the dataset (980 in training dataset and 100 in testing dataset). Two reference points
and thirteen anatomical points were labelled and the cervical vertebral maturation staging (CS) was
assessed by human examiners as gold standard. A convolutional neural network (CNN) model was
built to train on 980 images and to test on 100 images. Statistical analysis was conducted to detect
labelling differences between AI and human examiners, AI performance was also evaluated. Results:
The mean labelling error between human examiners was 0.48 ± 0.12 mm. The mean labelling error
between AI and human examiners was 0.36 ± 0.09 mm. In general, the agreement between AI results
and the gold standard was good, with the intraclass correlation coefficient (ICC) value being up
to 98%. Moreover, the accuracy of CVM staging was 71%. In terms of F1 score, CS6 stage (85%)
ranked the highest accuracy. Conclusions: In this study, AI showed a good agreement with human
examiners, being a useful and reliable tool in assessing the cervical vertebral maturation.

Keywords: artificial intelligence; cervical vertebral maturation; skeletal age; deep learning; convolutional
neural network; orthodontics

1. Introduction

Dental malocclusion, with a prevalence of 20–83% among both adolescents and adults,
manifests as misaligned teeth resulting in poor masticatory function and esthetic prob-
lems [1–4]. Of particular, among adolescents, early interventions could eliminate or in-
tercept the development of malocclusion [5], e.g., mandibular advancement therapy for
adolescents with mandibular retrusion [6]. To ensure the success of early interventions,
meticulous and correct assessment of growth potential and the timing of growth spurt is
very important. Traditionally, skeletal age was used to assess the growth potential, among
which hand-wrist bone age and cervical vertebral maturation (CVM) staging were widely
used by dental practitioners [7,8]. Since hand-wrist radiographs require additional radio-
graphic examinations, both orthodontists and patients are reluctant to use this method in
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orthodontic practice. Fortunately, since CVM staging could be assessed in lateral cephalo-
grams that are required for orthodontic diagnosis, CVM staging has been gaining more
and more popularity among orthodontists. CVM is determined through the morpholog-
ical changes of the bodies of the second, third and fourth cervical vertebrae (C2–C4) on
lateral cephalograms [8]. However, it is difficult and time-consuming for practitioners to
determine skeletal maturation and growth spurt through CVM staging correctly.

Nowadays, artificial intelligence (AI) has gained a giant leap in dentistry, assisting
clinicians in a variety of fields, e.g., detection of periapical lesions and root fractures,
optimizing implant designs, diagnosis of oral cancer [9–11]. Deep learning is a key field of
AI, which uses a learning model to extract features of the labelled dataset and eventually
can predict labels on a new dataset [12]. Mimicking the way that human brain neurons
signal to another, neural networks are widely used in deep learning.

Over the past decade, several researchers have explored the promising application of
AI in analysis of cephalometric images. Hwang et al. used a customized You-Only-Look-
Once version 3 algorithm (YOLOv3) to detect 80 landmarks on 1028 cephalograms. The
mean detection error between AI and human was up to 1.46 ± 2.97 mm [13]. Larson et al.
used a deep residual network to estimate skeletal maturity on pediatric hand radiographs
and reported a similar accuracy to an expert radiologist [14]. Moreover, Kok et al. and
Amasya et al. pioneered the applications of neural networks in CVM assessment [15,16].
However, they included 300 and 647 images in the aforementioned two studies, respectively.
Nevertheless, they didn’t list the distribution of the dataset. We inferred that there were
50 and 108 images on average for AI learning for each CVM stage. Considering the short
duration of growth and development, the number of CS 3 which means the growth spurt
was insufficient for AI to learn. Therefore, the generalization of their results is limited by
small sample sizes (n= 300 and 647 for Kok et al. and Amasya et al., respectively) and only
studying the agreement between AI and actual CVM staging.

Therefore, in this study, we developed an AI system to automatically assess CVM
based on a larger sample size (n = 1080) and to assess other indices (e.g., sensitivity),
in order to comprehensively evaluate the generalization potential of an AI system for
CVM staging.

2. Materials and Methods

This study was approved by Ethical Committee of West China Hospital of Stomatology,
Sichuan University. For better understanding, we reported this study according to a
checklist prompted by Schwendicke et al. [17]. The experimental design of the study
is summarized in Figure 1. Briefly, 1080 images were selected and labelled by human
examiners. After pre-processing, they were divided into training and testing dataset. The
training dataset of 980 labelled images was input to an AI-based system for machine
learning. Finally, 100 images were used to test the AI system and statistical analysis was
conducted to evaluate AI performance.

2.1. Patients and Dataset

Cephalometric radiographs of patients with a chronological age between 6 and
22 years old were obtained from Department of oral radiology, West China Hospital
of Stomatology, Sichuan University. Only images with clearly identified contours of the
second (C2), third (C3) and fourth (C4) cervical vertebrae were included. Patients with
congenital diseases were excluded from the dataset. In case of several images from the same
patient, we deleted the repeated ones based on their medical record number. Therefore,
the images in the training set and the testing set were from different patients. Finally, 1080
images (jpg format) were included and randomly assigned into training and testing dataset
(Table 1).
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Figure 1. The experimental design of the study. Step 1: inclusion and exclusion. Step 2: data
pre-processing. Step 3: model training and testing. Step 4: performance evaluation.

Table 1. The age, gender and CVM staging distribution of the dataset.

Training Testing

Age 12.02 ± 4.71 14.27 ± 4.78
Gender (M/F) 432/548 43/57

CS1 242 13
CS2 214 11
CS3 164 5
CS4 108 24
CS5 52 12
CS6 200 35
Total 980 100

2.2. Manual CVM Staging

The CVM staging (CS) of 1080 images were identified by two examiners indepen-
dently and in duplicate (J.Z. & H.Z., who had three years’ experience in CVM assessment)
according to Baccetti methods [8]. Briefly, the CVM assessment was based on the mor-
phology changes of C2, C3 and C4. At CS1, the lower border of C2, C3 and C4 were flat
and presented no concavity. Moreover, the shape of C3 and C4 were trapezoid in shape.
With growth and development, the concavity of lower border of C2, C3, C4 became more
obvious and the height of C3 and C4 increased, therefore the shape of C3, C4 changed to
horizontal rectangles, squares or vertical rectangles. Disagreements were resolved by a
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third examiner (H.L., who had 10 years’ relevant experience). The final CVM stages were
served as a gold standard. The CS of both the training and testing datasets are displayed in
Table 1. For inter-rater reliability, the kappa value was 0.86 and the intraclass correlation
efficient (ICC) value was 0.98.

2.3. Manual Labelling

The training and testing dataset was uploaded to an open-source annotation tool
named LabelMe (https://github.com/wkentaro/labelme; accessed on 18 February 2021).
Then, as presented in Figure 2, two reference landmarks and thirteen anatomic landmarks
were manually labelled on each cephalometric image by an examiner (J.Z.) in duplicate
after a three-month interval. The distance between two reference points is 10 mm. These
landmarks were used for linear and ratio measurements. The definitions of landmarks and
measurements are shown in Table 2. Then the labelled films were saved as. json format
and input to the model for training and testing.

Figure 2. Schematic representation of anatomic landmarks and liner measurements for the determi-
nation of cervical vertebral morphology. (A) Two reference points (R1 and R2) and thirteen anatomic
landmarks of C2, C3 and C4. The distance between the two reference points (R1 and R2) is 10 mm.
(B) C2Conc = C2m − C2m′. (C) C3Conc = C3m − C3m′. (D) C3BAR = (C3lp − C3la)/(C3ua − C3la).
(E) C4Conc = C4m − C4m′. (F) C4BAR = (C4lp − C4la)/(C4ua − C4la).

Table 2. Landmarks and measurements used to determine cervical vertebral morphology.

Landmarks/
Measurements Definition

C2lp The most posterior point of C2 on the lower border
C2la The most anterior point of C2 on the lower border
C2m The deepest point of the concavity at the lower border of C2
C2Conc The distance between C2m and the line connecting C2lp and C2la
C3up The most posterior point of C3 on the upper border
C3ua The most anterior point of C3 on the upper border
C3lp The most posterior point of C3 on the lower border
C3la The most anterior point of C3 on the lower border
C3m The deepest point of the concavity at the lower border of C3
C3Conc The distance between C3m and the line connecting C3lp and C3la

C3BAR Ratio between the length of the base (distance C3lp − C3la) and the
anterior height (distance C3ua − C3la) of the body of C3.

C4up The most posterior point of C4 on the upper border
C4ua The most posterior point of C4 on the upper border
C4lp The most posterior point of C4 on the lower border
C4la The most anterior point of C4 on the lower border
C4m The deepest point of the concavity at the lower border of C4
C4Conc The distance between C4m and the line connecting C4lp and C4la

C4BAR ratio between the length of the base (distance C4lp − C4la) and the
anterior height (distance C4ua − C4la) of the body of C4

https://github.com/wkentaro/labelme


Diagnostics 2021, 11, 2200 5 of 11

2.4. Model Training and Testing

To reduce interference from other anatomic structures, a final ROI (region of interest)
included all part of C2–C4 was cropped on images with a size of 100*× 200 pixels (Figure 1).
The preprocessing images were input to a convolutional neural network (CNN) for training
and testing. The experiments were performed on Intel core i7 quadra core processor with
Nvidia 1080 graphics card. The models were developed with the pytorch libraries using
the Python programming language. We used a Detnet architecture with relu activation
function, adam optimization and MSE loss function to conduct machine learning. Based
on resnet50, Detnet introduced the extra stages in the backbone and was more powerful in
locating large objects and finding small objects [18]. The model consisted of 58 convolution
layers and 1 fully connected layer. In the training stage, we set the training epochs to
200 and batch size as 32. The learning rate was set as 0.0001 and epsilon was 1 × 10−8.
After training on 980 radiographic images, the CNN model achieved satisfactory results
for new images. To test AI performance, 100 new images were uploaded. Automatically,
the CNN model labelled 2 reference landmarks and 13 anatomic landmarks on each image.
These landmarks were output in fully connected layer. Afterwards, the linear and ratio
measurements (C2conc, C3conc, C4conc, C3BAR, C4BAR) were calculated and the CVM
stage was output according to a workflow shown in Figure 3. In brief, these measurements
were input and estimated with thresholds from Baccetti’s original data [8].

Figure 3. Workflow of the AI system to assess the CVM stage. Measurements are input and reassigned
according to thresholds. The CVM stages were calculated and output.

2.5. Statistical Analysis

All the statistical analysis were performed using SPSS Statistics Version 22.0. The
inter-rater reliability of the manual CVM staging was determined through kappa coefficient
and intra-class correlation coefficient (ICC) test. The intra-rater reliability of the labelling
work was calculated through mean difference and the mean value of labelling was served
as gold standard. The disagreement between AI and manual labelling were calculated in
terms of distances measured in millimeter scales. Moreover, both linear measurements
(C2Conc, C3Conc, C4Conc) and ratio measurements (C3BAR, C4BAR) were performed.
The differences of the aforementioned measurements between AI and manual performance
were compared. As for CVM staging difference between AI and gold standard, the overall
accuracy and ICC were calculated and the accuracy of each stage was calculated in precision,
recall, specificity, F1 score [19]. The formulas of these metrics are listed as follows:

Accuracy = TP+TN
TP+TN+FN+FP , which is a general evaluation of AI performance.
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Precision = TP
TP+FP = positive predictive value (PPV), which presents the ability of AI to

correctly predict positives.
Recall = TP

TP+FN = sensitivity, which reflects ability of AI to find all the positive samples.
Specificity = TN

TP+FN , which reflects the ability of AI to find all the negative samples.

F1 score = 2∗pecison∗recall
precision+recall , which weight precision and recall harmoniously to completely

evaluate AI performance.

TP (true positive) is the number of AI correctly predicted images and FP (false positive)
is the number of AI incorrectly predicted image while human classified as positive in a
binary task. In similar, TN (true negative) and FN (false negative) are the number of AI
correctly predicted images and incorrectly predicted image while human classified as
negative, respectively.

3. Results
3.1. Evaluation of Labelling

The mean differences between the first and second manual labelling were 0.48 ± 0.12 mm.
Moreover, the mean differences between the manual labelling (gold standard) and the AI
labelling were 0.36 ± 0.09 mm. Two examples of the landmarks that AI (points in red) and
human (points in green) has labelled were displayed in Figure 4. To visualize and evaluate
the error pattern in two-dimensional space, scattergrams were depicted. As displayed in
Figure 5, the AI and human labelling were well matched. The differences between the first
and second manual labelling and between the manual and AI labelling for each point are
detailed in Table 3.

Figure 4. CNN output results: Anatomic landmarks that AI (points in red) and human (points in
green) labelled in testing dataset. (A). AI and human labelled landmarks for CS 3 (B). AI and human
labelled landmarks for CS6.
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Figure 5. Scattergram representation of the labelling difference between AI and human. The mean differences between
AI and human of C2 landmarks (line 1) were 0.29 ± 0.25 mm, 0.47 ± 0.33 mm, 0.35 ± 0.27 mm, respectively. The mean
differences between AI and human of C3 landmarks (line 2) were 0.48 ± 0.38 mm, 0.42 ± 0.24 mm, 0.24 ± 0.15 mm,
0.37 ± 0.28 mm, 0.24 ± 0.17 mm, respectively. The mean differences between AI and human of C4 landmarks (line 3) were
0.42 ± 0.36 mm, 0.43 ± 0.27 mm, 0.25 ± 0.21 mm, 0.46 ± 0.27 mm, 0.27 ±± 0.18 mm, respectively.

Table 3. Landmarks and measurements used to determine cervical vertebral morphology.

Landmarks
Between Human Examiners Between AI and Human Examiner

Mean ± SD (mm) Mean ± SD (mm)

C2lp 0.38 0.23 0.29 0.25
C2lm 0.70 0.44 0.47 0.33
C2la 0.41 0.28 0.35 0.27
C3up 0.56 0.40 0.48 0.38
C3ua 0.54 0.28 0.42 0.24
C3lp 0.41 0.24 0.24 0.15
C3m 0.57 0.37 0.37 0.28
C3la 0.32 0.19 0.24 0.17
C4up 0.50 0.29 0.42 0.36
C4ua 0.53 0.30 0.43 0.27
C4lp 0.37 0.21 0.25 0.21
C4m 0.62 0.45 0.46 0.27
C4la 0.35 0.20 0.27 0.18
Total 0.48 0.12 0.36 0.09

3.2. Evaluation of Measurements

The linear and ratio measurements were calculated according to manual- and AI-
labelled anatomic points respectively. As displayed in Figure 6, the results revealed that
they were well-matched and fitted into a linear function (Y = X) (R2 = 0.93, 0.94, 0.93, 0.97
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and 0.95, respectively; all p < 0.001). Moreover, the ICC for all the five measurements were
greater than 0.90, indicating that AI performed comparably with human examiners.

Figure 6. The linear and ratio measurements difference between AI and human. They were well-
matched and fitted into Y = X, R2 = 0.93, 0.94, 0.93, 0.97 and 0.95, respectively; all p < 0.001).

3.3. Evaluation of AI Staging

For manual CVM staging, our results revealed that the inter-rater reliability was
0.86, indicative of perfect agreement between the two examiners. With the manual CVM
staging as the gold standard, the 71% general accuracy was observed for AI CVM staging.
In terms of F1 score, CS6 ranked the highest accuracy (85%) and CS1 the second. CS3,
which indicated the growth spurt, was the lowest (31%). The overall ICC value was 0.98,
indicating that the manual and AI CVM staging was in perfect agreement. In particular, the
precision, recall and specificity ranging from 25–100%,36–100% and 84–100% respectively.
More details were listed in Table 4.

Table 4. The evaluation of CVM staging through AI.

Precision/PPV Recall/Sensitivity Specificity F1 Score

CS1 0.67 0.92 0.93 0.77
CS2 1.00 0.36 1.00 0.53
CS3 0.25 0.40 0.94 0.31
CS4 0.83 0.63 0.96 0.71
CS5 0.46 1.00 0.84 0.63
CS6 1.00 0.74 1.00 0.85

Accuracy 0.71
ICC 0.98

4. Discussion

The assessment of growth and development plays a critical role in orthodontic treat-
ment planning for growing patients. Appropriate growth prediction and prudent treatment
timing benefit adolescents with skeletal discrepancy through growth modification by utiliz-
ing growth potential. Several indicators have been used to determine the growth potential,
i.e., chronological age, body height, sexual maturity, dental age and skeletal age. Great in-
dividual variations have been discovered in chronological age, increase in body height and
sexual maturity [20,21]. As for dental age, dentition phase and dental maturity are often
used to assess skeletal maturity. However, a large body of evidence indicated that dental
age is not recommended to assess skeletal maturity or to determine growth spurt [22–24].
Due to high reliability, skeletal age is more popular in the dental community. Larson et al.
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applied CNN network in hand-wrist radiographs method and reported a good agreement.
Compared with the hand-and-wrist method [25,26], CVM staging method based on cervical
vertebrae is more popular among orthodontists for no additional radiographic require-
ments. Since the introduction of a modified CVM staging method by Baccetti et al. [8], this
CVM staging has been consistently proved to be reliable [25,27,28].

The CVM stages are determined through the morphological changes of the contours
of cervical vertebrae (C2–C4). With the aid of deep learning algorithm, CVM assessment
can be more accurate and efficient. As pixel values could be digitally coded, radiology
images are easily translated into computer language [29]. Several seminal studies have
successfully translated AI applications into identifying cephalometric landmarks [30,31].
The first step of the AI CVM staging was to identify the contours of the cervical vertebrae.
Our results revealed that the AI labelling was in almost perfect with the gold standard
(manual labelling), with the mean error being 0.36 mm that was even smaller than that
(0.48 mm) between the two manual labellings. This suggested that AI labelling was more
consistent with manual labelling. It has been revealed that automatic identification of
landmarks is considered to be successful if the difference between AI and human is less
than 2 mm [32], indicating that the AI labelling in our present study was accurate. Moreover,
the mean error (0.36) between the AI and manual labelling was smaller than that reported
by Hwang et al. [13] (1.46 mm), which could be attributed to the fact that only cervical
vertebral points were labelled in this present study while all cephalometric points were
identified in the previous study (Hwang et al.). The precise point labelling ensured the
accuracy and precision of linear measurements. Likewise, we found that the five linear
and ratio measurements evaluating the morphology of cervical vertebrae through the AI
algorithm were highly consistent with those through manual methods.

In this study, we developed a CNN model to label the contours of cervical vertebrae
and to assess the CVM staging. As an optimal feature extractor applied at image positions,
CNN is highly efficient for image processing [33,34]. The architecture of a typical CNN
contains three layers: convolutional layers, pooling layers and fully connected layers. In
convolutional layers, features of each image were extracted and organized in feature maps.
These similar features were merged into new feature maps in pooling layers. Finally, all
features were connected and classified in fully connected layers to output a predicted
image [35].

Although six maturation stages are defined by the CVM staging according to different
morphological shapes of cervical vertebrae, CVM stages are sometimes still difficult to
differentiate since the morphological changes of cervical vertebrae are continuous rather
than incremental. Thus, CS1 (no development) and CS6 (maturity) stages are easier to
identify while the CS2–CS5 (in the process of development) stages are more difficult to
differentiate. Consistently, our results revealed that AI performed best at CS1 (F1 score:
77%) and CS6 (F1 score: 85%).CS3 (growth spurt) showed the lowest F1 score (31%).
Another explanation is the insufficient training set of CS3, for growth spurt is short and
difficult to encounter in clinical practice. This finding was in accordance with that in
Kok et al. [13]. Moreover, we found that the overall ICC between the AI staging and the
gold standard was 0.98, indicating that the CNN model in this present study was accurate
and precise in the assessment of CVM staging.

One of the limitations of our study was the size of testing dataset. In our study, we
used 10% hold-out validation to test AI performance. This may result in over-fitting since
the dataset was not properly distributed [36]. This may explain high precision and recall
were detected for CS5 (recall: 100%) and CS6 (precision: 100%, specificity: 100%) stages.
Therefore, we used F1 score to comprehensively evaluated AI performance.

Another limitation was the number of examiners in labelling. All the images were
labelled by examiner 1. To keep labelling consistency, it was done twice after three months.
The mean differences between the first and second manual labelling indicated a well
consistency. Considering the labelling error, the midpoint of two manual labellings were
saved as gold standard.
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5. Conclusions

Taken together, we suggest that the AI algorithm described in this study is accurate
and reliable in identifying the contours of cervical vertebrae and in CVM staging, with
high accuracy (F1 score up to 85%) and perfect agreement with gold standard (ICC = 0.98).
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