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Abstract: Background and Purpose: Only 1–2% of the internal carotid artery asymptomatic plaques
are unstable as a result of >80% stenosis. Thus, unnecessary efforts can be saved if these plaques
can be characterized and classified into symptomatic and asymptomatic using non-invasive B-mode
ultrasound. Earlier plaque tissue characterization (PTC) methods were machine learning (ML)-based,
which used hand-crafted features that yielded lower accuracy and unreliability. The proposed study
shows the role of transfer learning (TL)-based deep learning models for PTC. Methods: As pertained
weights were used in the supercomputer framework, we hypothesize that transfer learning (TL)
provides improved performance compared with deep learning. We applied 11 kinds of artificial
intelligence (AI) models, 10 of them were augmented and optimized using TL approaches—a class of
Atheromatic™ 2.0 TL (AtheroPoint™, Roseville, CA, USA) that consisted of (i–ii) Visual Geometric
Group-16, 19 (VGG16, 19); (iii) Inception V3 (IV3); (iv–v) DenseNet121, 169; (vi) XceptionNet;
(vii) ResNet50; (viii) MobileNet; (ix) AlexNet; (x) SqueezeNet; and one DL-based (xi) SuriNet-
derived from UNet. We benchmark 11 AI models against our earlier deep convolutional neural
network (DCNN) model. Results: The best performing TL was MobileNet, with accuracy and
area-under-the-curve (AUC) pairs of 96.10 ± 3% and 0.961 (p < 0.0001), respectively. In DL, DCNN
was comparable to SuriNet, with an accuracy of 95.66% and 92.7 ± 5.66%, and an AUC of 0.956
(p < 0.0001) and 0.927 (p < 0.0001), respectively. We validated the performance of the AI architectures
with established biomarkers such as greyscale median (GSM), fractal dimension (FD), higher-order
spectra (HOS), and visual heatmaps. We benchmarked against previously developed Atheromatic™
1.0 ML and showed an improvement of 12.9%. Conclusions: TL is a powerful AI tool for PTC into
symptomatic and asymptomatic plaques.

Keywords: stroke; carotid plaque characterization; symptomatic vs. asymptomatic; artificial intelli-
gence; transfer learning; heatmaps

1. Introduction

Stroke is the third leading cause of mortality in the United States of America (USA) [1].
According to World Health Organization (WHO) statistics, cardiovascular disease (CVD)
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causes 17.9 million deaths each year [2]. Atherosclerosis disease is the fundamental cause
of CVD, which leads to the formation of complex plaques in the arterial walls owing to a
sedentary lifestyle over time [3].

Atherosclerotic plaques, particularly in the internal carotid artery (ICA), may rupture
and embolize the brain, leading to stroke. However, only a minority of plaques are unstable
and rupture, producing an annual stroke rate of 1–2% in asymptomatic patients with
>80% stenosis [4]. Thus, operating on all patients with >80% stenosis will result in many
unnecessary operations. In addition, the operation is associated with a 3% preoperative
stroke rate. Some plaques are unstable owing to a large lipid core, a thin fibrous cap, and a
low collagen content (vulnerable). Therefore, they are more likely to rupture by producing
symptoms (symptomatic or hyperechoic or unstable plaque). Compared with the more
stable ones, they have a smaller lipid core, a thick fibrous cap, and a large amount of
collagen, which tend not to produce symptoms (asymptomatic or hypoechoic or stable
plaque) [5]. Therefore, it is important to characterize the plaque early, especially when
it is becoming symptomatic or likely to be unstable, leading to rupture with subsequent
stroke [6,7].

Several imaging modalities exist to image the plaque, such as magnetic resonance
imaging (MRI) [8], computed tomography (CT) [9], and ultrasound (US) [10]. Ultrasound
offers essential advantages because it is non-invasive, radiation-free, and portable proper-
ties [11,12]. In addition, features like compound and harmonic imaging are now available
on standard ultrasonic equipment, yielding a resolution of 0.2 mm [12]. However, visual
classification of plaques into stable or unstable using ultrasound images is challenging
owing to the inter-variability in plaque tissues [13].

Machine learning is a class of artificial intelligence (AI) that has been previously used
for ultrasound-based tissue classification in several organs such as the liver [14,15], thy-
roid [16–18], prostate [19,20], ovary [21], skin cancer [22–25], diabetes [26,27], coronary [28],
and carotid atherosclerotic plaque [22,29–32]. All these methods use a trial-and-error
approach for feature extraction, thus these methods are ad hoc and provide variable
results [33]. Therefore, there is a clear need to design and develop automated feature
extraction approaches to characterize carotid atherosclerotic plaque into symptomatic and
asymptomatic types.

Deep learning (DL) is a subset of AI that has revolutionized image classification
methods [34–36]. Among all the different DL techniques available, transfer learning (TL)
solves the high-performance computational challenges required for images rich with
data [37–39]. In addition to the computational problem, TL reduces the time taken for
training the model compared with DL [40]. This saving of time can be crucial for people
with a high risk of stroke [41].

Several popular models exist in TL, and each model offers its own merits and de-
merits. For example, some models are focused on fast optimization, while some aim for
hyperparameter reduction. Some others apply the TL paradigm in edge devices, such
as NVIDIA Jetson (www.nvidia.com accessed 20 October 2021) or Raspberry Pi (from
Rasberry Pi Foundation, UK) [42]. Few applications of TL have been developed in medical
imaging such as classification of Wilson disease [43], COVID pneumonia [44–47], brain
tumour [37], and so on, which has shown superior performance over DL. In this study,
we choose ten types of TL architectures, where each one of these carries advantages such
as (a) intense neural network, (b) modified kernel sizes, (c) solving vanishing gradient
problems, and (d) feed-forward nature to the features [48]. Therefore, we hypothesize that
the performance of TL is superior or comparable to that of DL.

The architecture of the proposed global AI model is shown in Figure 1. It contains
five blocks: (i) image acquisition, (ii) pre-processing, (iii) AI-based models, and (iv–v) per-
formance evaluation and validation. The image acquisition block is used for scanning
the internal carotid artery. These scans are normalized and manually delineated in the
pre-processing block to obtain the plaque region-of-interest (ROI). As the cohort size was
small, we added the augmentation block as part of the pre-processing step. The AI model

www.nvidia.com
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block helps to determine whether plaques are symptomatic or asymptomatic. This is
accomplished by transforming the test plaque image by the trained TL/DL models. In our
proposed framework, because there are 11 models, we run each test patient’s plaque using
11 (10 TL + 1 DL) different AI models for predicting 11 kinds of labels. We determine the
performance of these 11 architectures, followed by the ranking of their performance.
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Figure 1. Online AI architecture of the Atheromatic™ 2.0 TL study (TL: transfer learning, DL: deep learning, and Grad-CAM:
gradient-weighted class activation mapping).

We proposed an optimized TL model for carotid ultrasound-based plaque tissue
classification (Atheromatic™ 2.0 TL, AtheroPoint™, Roseville, CA, USA). Because the
features using this system are computed using a deep learning paradigm, we hypothesize
that the performance of TL is superior and/or comparable to that of DL. Lastly, we have
also designed a computer-aided diagnostics (CAD) system for computing heatmaps using
an AI-based approach.

2. Literature Survey

The existing work on carotid plaque characterization using ultrasound with AI tech-
niques is primarily focused on the machine learning paradigm. A handful of the studies are
focused on using DL. Our study is the first of its kind that uses the TL paradigm embedded
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with heatmaps for PTC. The section briefly presents the works on PTC. Detailed tabulation
is described in the discussion section.

Seabra et al. [49] used graph cut techniques for the characterization of 3D ultrasound.
It allows for the detection and quantification of the vulnerable plaque. The same set of
authors in [50] estimated the volume inside the ROI plaque using the Bayesian technique.
They compared the proposed method with a gold standard and achieved better results
with greyscale median (GSM) < 32. In [51], they characterized the plaque components such
as lipids, fibrotic, and calcified using the Rayleigh mixture model (RMM).

Afonso et al. [52] proposed a CAD tool (AtheroRisk™, AtheroPoint, Roseville, CA,
USA) to characterize the plaque echogenicity using an activity index and enhanced activity
index (EAI). The authors achieved an area-under-the-curve (AUC) of 64.96%, 73.29%, and
90.57% for the degree of stenosis, activity index, and enhanced activity index, respectively.
This AtheroRisk™ CAD system was able to measure the plaque rupture risk. Loizou et al.
identified and segmented the carotid plaque in M-mode ultrasound videos (MUVs) using a
snake algorithm [53–55]. In [56], the authors studied the variations in texture features such
as spatial gray level dependence matrices (SGLD) and gray level difference statistic (GLDS)
in the MUV framework to classify them using a support vector machine (SVM) classifier.
Doonan et al. [57] studied the relationship between textural and echo density features
of carotid plaque by applying the principal component analysis (PCA)-based feature
selection technique. The authors showed a moderate coefficient of correlation (r) between
these two features, which range from 0.211 to 0.641. In addition to the above studies,
Acharya et al. [58–60], Gastounioti et. al. [61], Skandha et. al. [62], and Saba et. al. [63] also
conducted studies in the area of PTC using AI methods. This will be discussed in detail in
Section 5, labeled benchmarking.

3. Methodology

This section focuses on patient demographics, ultrasound acquisition, pre-processing,
and augmentation protocol. We also described all 11 AI architectures, consisting of ten
transfer learning architectures and one deep learning architecture labelled as SuriNet.
These are then benchmarked against the deep convolution neural network (DCNN).

3.1. Patient Demographics

This cohort consisted of 346 patients with a mean age of 69.9 ± 7.8 and 61% male
patients having an internal carotid artery (ICA) stenosis of 50% to 99%. The study was
approved by the ethical committee of St. Mary’s Hospital, Imperial College, London, UK
(in 2000). The cohort consisted of 196 symptomatic and 150 asymptomatic patients. All the
symptomatic patients have ipsilateral cerebral hemispheric symptoms (amaurosis fugax)
(AF), transient ischemic attacks, and previous history of stroke. Overall, the symptomatic
class contained 38 AF, 70 transient ischaemic attack (TIAs), and 88 strokes, totaling 196. All
the asymptomatic patients showed no abnormalities during the neurological study. The
same cohort was used in our previous studies [29,32,40,58,62–65].

3.2. Ultrasound Data Acquisition and Pre-Processing

All the US scans were acquired using an ATL machine (Model: HDI 3000; Make:
Advanced Technology Laboratories, Seattle, WA, USA) in Irvine Laboratory for Cardio-
vascular Investigation and Research, St. Mary’s Hospital, UK. This scanner was equipped
with a linear broadband width 4–7 MHz (multifrequency) transducer with a 20 pixel/mm
resolution. We used proprietary software called “PTAS” developed by Icon soft Interna-
tional Ltd., Greenford, London, UK for normalization and plaque ROI delineation, as used
in previous studies [29,32,58,62,64,65]. The medical practitioners delineated the plaque
region-of-interest (ROI) using the mouse and trackball; these were then saved in a separate
file. Full scans and delineated plaques are shown in Figure 2.
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plaques after pre-processing and delineation.

3.3. Augmentation

Our cohort was unbalanced, consisting of 196 symptomatic and 150 asymptomatic.
Therefore, we choose to balance using the augmentation strategy prior to offline training
and online predicting processes. We accomplished this by adding 4 symptomatic and
50 asymptomatic augmented images using random linear transformations such as flipping,
rotation by 90 degrees, rotation by 270 degrees, and skew operations. This resulted in a
balanced cohort, containing 200 images in each class. Further, the database was incremented
two to six times, consisting of an equal number of images using linear transformations. This
resulted in six folds of the augmented cohort. We represent these folds as Augmented 2×
(Aug 2×), Augmented 3× (Aug 3×), Augmented 4× (Aug 4×), Augmented 5× (Aug 5×),
and Augmented 6× (Aug 6×). Thus, every fold contained 200 × n images in each class,
where n is the augmented fold.

3.4. Transfer Learning

The choice of the TL architecture for PTC was motivated by (a) the diversity of the TL
models and (b) the depth of the neural network models. Thus, we took two architectures
from the VGG group (VGG-16 and 19), two architectures from the DenseNet architectures
(DenseNet121 and 169), and two architectures from the ResNet architectures (ResNet50
and 101). All these models had a depth of neural networks extending to 169 layers while
ensuring diversity. Note that some of the architectures such as MobileNet and XceptionNet
are the most current, state-of-the-art, and popular TL architectures, demonstrating faster
optimization (see Figure 3).
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Figure 3. Global TL architecture using 10 different TL models (i–ii) Visual Geometric Group-16, 19 (VGG16, 19); (iii) Incep-
tion V3 (IV3); (iv–v) DenseNet121, 169; (vi) XceptionNet; (vii) ResNet50; (viii) MobileNet; (ix) AlexNet; and (x) SqueezeNet.
Te stands for testing and tr stands for training. FN: fine-tune networks.

3.4.1. VGG-16 and VGG-19

Visual Geometry Group (VGG-16) is a popular pre-trained model developed by
Simonyan et al. [66] to increase the neural networks’ depth by adding a number of
3 × 3 convolution filters. The purpose of VGGx is to design a very deep CNN for complex
pattern understanding in the input features, typically adapted for object recognition in
medical imaging and computer vision. The architecture of the VGG-16 and 19 is shown in
Figure 4, where the input block accepts the image of size 224 × 224. VGG-19 is three layers
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more than VGG-16 (not shown in the figure). Few applications of VGG-16 and 19 can be
seen for the classification of Wilson [38] and COVID-19 pneumonia [67,68] disease.
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3.4.2. InceptionV3

InceptionV3 (IV3) is version 3 of the inception stage and was first developed by
Szegedy et al. [69]. This model was developed to overcome the computational cost and
low parameters count. This model can handle big data. Thus, this model has overall high
efficiency. Inception V3 achieves accuracy greater than 78.1% when using the ImageNet
dataset. The architecture model contains several blocks. The blocks contain convolution
and max-pooling layers. In the architecture given in Figure 5, DL1 to DL6 represent the
depth wise convolution, C1 represents the initial convolution block, T1 to T3 represent the
transition layer, and D1 to D4 represent the batch normalization blocks. In the Inception
V3 architecture, each block in the top row represents the repeated process of row 2 and
row 3. In row 2, each block represents the repeated process of row 3. Each convolution
layer is fused with a 1 × 1 convolution filter with stride 1 and padding 0. First, it increases
the feature map (FM) size, then a 3 × 3 convolution layer with stride 1 and padding 1 is
added. It reduces the FM depth; the resultant FM and the initial FM are fused together to
give each block in row 2.

3.4.3. ResNet

He et al. [70] from Microsoft research proposed ResNet architecture for solving the
vanishing gradient problem. It contains residual blocks. Residual blocks contain skip
connections. These skip connections skip some layers from training and connect directly
to the output. The advantage of these connections is the skipping of layers, so that the
model will learn complex patterns. Unlike other TL models, this model is trained on the
CIFAR-10 data set. Figure 6 represents the ResNet architecture. In the architecture, two
3 × 3 convolution layers are paired together. The output of these pairs and its input are
fused together and fed to next pair. Here, the number of filters is in increasing order from
64 to 512. At the end of the last 3 × 3 convolution layer with 512 filters and an added
flatten layer for vectorization of the 2D features, the output is predicted using the softmax
activation function.

3.4.4. DenseNet

Huang et al. [48] proposed the DenseNet architecture for solving vanishing gradient
problem in deep neural nets. In this model, dense blocks were introduced. It contains a
pool of convolution layers with 3 × 3 filters to 1 × 1 filters followed by batch normalization,
and every layer uses the “ReLu” activation function. Each of these dense blocks was
concatenated with previous block output and input using transition blocks. Each transition
block contains a convolution and pooling layer with 2 × 2 to 1 × 1 filters with dropout
layers. This concertation of blocks preserves the feature propagation nature. In addition,
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the author proposed architectures (DenseNet-121, 169, 201, and 264) to increase the dense
block. Figure 7 shows the DenseNet architecture.
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3.4.5. MobileNet

Howard et al. [42] from Google developed the MobileNet architecture. The main
inspiration of MobileNet comes from the IV3 network. It aims to solve resource constraint
problems such as working on edge devices like NVIDIA Jetson (www.nvidia.com accessed
20 October 2021) or Rasberry Pi (from Rasberry Pi Foundation, Cambridge, UK). This
architecture is a small, low latency, and low power model. This was the first computer
vision model developed for TensorFlow for mobile devices. It contains 28 layers and uses
the TFlite (database) library. Figure 8 presents the architecture of MobileNet architecture.
This model contains bottleneck residual blocks (BRBs), also referred to as inverted residual
blocks used for reducing the number of training parameters in the model.
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3.4.6. XceptionNet

Chollet et al. [71] from Google proposed modifying IV3 by replacing the inception
modules with modified depth-wise separable convolution layers. This architecture contains
36 layers. In comparison with IV3, XceptionNet is lightweight and contains the same
number of parameters as IV3. This architecture outperforms InceptinV3 with top-1 accuracy
of 0.790 and top-5 accuracy of 0.945. Figure 9 represents the architecture of XceptionNet.

www.nvidia.com


Diagnostics 2021, 11, 2109 10 of 31

Diagnostics 2021, 11, x FOR PEER REVIEW 10 of 32 
 

 

 

Figure 8. MobileNet Architecture, BRB: bottleneck and residual blocks. 

3.4.6. XceptionNet 

Chollet et al. [71] from Google proposed modifying IV3 by replacing the inception 

modules with modified depth-wise separable convolution layers. This architecture con-

tains 36 layers. In comparison with IV3, XceptionNet is lightweight and contains the same 

number of parameters as IV3. This architecture outperforms InceptinV3 with top-1 accu-

racy of 0.790 and top-5 accuracy of 0.945. Figure 9 represents the architecture of Xception-

Net. 

 

Figure 9. XceptionNet architecture. 

  

Figure 9. XceptionNet architecture.

3.4.7. AlexNet

Alex Krizhevsky et al. [72] proposed AlexNet in 2012 for solving complicated Ima-
geNet challenges. It is the first CNN architecture built for solving complex computer vision
problems. This architecture achieves a top-5 error rate of 15.3%. This architecture shifts the
paradigm of AI entirely. It takes 256 × 256 size image input and contains five convolution
layers followed by max-pooling with two fully connected networks. The output layer is
the softmax layer. The sample architecture is shown in Figure 10.
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3.4.8. SqueezeNet

Landola et al. [73] proposed a 50× times smaller model than the AlexNet architecture.
Nevertheless, the authors achieved 82.5% in top-5 accuracy on ImageNet. This model
contains a novel “Fire Module”. It contains a 1 × 1 filtered squeeze convolution layer fed
to the “Expand Module”, which contains a mix of 1 × 1 to 3 × 3 filters for convolution. The
squeeze layer (Fire Module) helps to reduce the number of input channels to 3 × 3. The
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architecture of the SqueezeNet and Fire Module is shown in Figure 11. In this study, we
transferred trained weights to SqueezeNet initial layers and fed our cohort at the end layer.
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3.5. Deep Learning Architecture: SuriNet

In our study, we benchmarked TL architectures with two DL architectures. One is
conventional CNN and the other is SuriNet architecture. Although the UNet network
is very popular for segmentation in medical image analysis, we used a modified UNet
architecture called SuriNet for classification purposes. In the proposed SuriNet architecture,
we used separable convolution neural networks to reduce the overfitting and the number
of parameters required for training. Figure 12 shows the SuriNet architecture. Table 1 gives
the detailed number of training parameters for SuriNet.
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Figure 12. SuriNet architecture.

3.6. Experimental Protocol

Our study used 12 AI models (10 TL and 2 DL) with six augmentation folds and
1000 epochs using the K10 cross-validation protocol. It totals to ~720,000 (720 K) runs for
finding the optimization point of each AI model. The mean accuracy of each model is
calculated using the following section.
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Table 1. SuriNet architecture parameters.

Layer Type Shape #Param
Convolution 2D 128 × 128 × 32 896

Batch normalization 128 × 128 × 32 128

Separable Convolution 2D 128 × 128 × 64 2400

Batch normalization 128 × 128 × 64 256

MaxPooling 2D 64 × 64 × 64 0

Separable Convolution 2D 64 × 64 × 128 8896

Batch normalization 64 × 64 × 128 512

MaxPooling 2D 32 × 32 × 128 0

Separable Convolution 2D 32 × 32 × 256 34,176

Batch normalization 32 × 32 × 256 1024

MaxPooling 2D 16 × 16 × 256 0

Separable Convolution 2D 16 × 16 × 64 18,752

Batch normalization 16 × 16 × 64 256

MaxPooling 2D 8 × 8 × 64 0

Separable Convolution 2D 8 × 8 × 128 8896

Batch normalization 8 × 8 × 128 512

MaxPooling 2D 4 × 4 × 128 0

Separable Convolution 2D 4 × 4 × 256 34,176

Batch normalization 4 × 4 × 256 1024

MaxPooling 2D 2 × 2 × 256 0

Flatten 1024 0

Dense 1024 1,049,600

Dropout 0.5 0

Dense 512 524,800

Dropout 0.5 0

Dense (softmax) 2 1026

Total Trainable Parameters 1,687,330

3.6.1. Accuracy Bar Charts for Each Cohort Corresponding to All AI Models

If η(m, k) represents the accuracy of an AI model “m” using cross-validation combi-
nation “k” out of total combinations K, then the mean accuracy for all the combinations for
the model “m”, represented by η(m) can be mathematically given by Equation (1). Note
that we considered K10 protocol in our paradigm, so K = K10 = 10.

η(m) =
1
K

K

∑
k=1

η(m, k) (1)

3.6.2. Performance Analysis and Visualization of SuriNet

The objective of this experiment was to evaluate the performance of SuriNet using
Equation (1). In addition, SuriNet is based on the DL model. It is end-to-end trained on the
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target labels. So, we can visualize the intermediate layers’ feature maps of symptomatic
and asymptomatic plaques. In this regard, we considered the optimized augmentation fold
out of 10 combinations as the combination with the best performance for the visualization
of the filters.

4. Results

This section discusses three sets of experimentations for comparison of TL versus DL to
prove the hypothesis. The first experiment is the 3D optimization of the ten TL architectures
by varying the augmentation folds. The second experiment is the 3D optimization of the
SuriNet architecture by varying the same fold. The third experiment is the benchmarking
TL architectures with SuriNet and CNN by calculating the AUC.

4.1. 3D Optimization of TL Architectures and Benchmarking against CNN

In this experiment, we used all the TL architectures for finding the optimized TL by
varying the augmentation folds. There are 10 TL architectures, 6 augmentation folds, K10
cross-validation protocol, and 1000 epochs. The model is trained by empirically selecting each
model’s flatten point at a loss versus accuracy, thus there were 12 × 6 × 10 × 1000 ~720 K runs.
We used a total of 720,000 runs to obtain the optimization point. This is a reasonably large
number of computations and needs high computation power. Thus, we used the Nvidia DGX
V100 supercomputer at Bennett University, Gr. Noida. Figure 13 shows the performance of
ten AI architectures, and the red arrow indicates the optimization point for each AI model
when ran over six augmentations. The corresponding values are represented in Table 2. Using
Equation (1), we calculate the mean accuracy of the AI models.
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As seen in Figure 13, MobileNet and DenseNet 169 show better accuracy than other
TL architectures. They showed 96.19% and 95.64% accuracy, respectively. Aug 2× is the
optimization point for both models. Table 3 shows the comparison between ten types
of TL, which include VGG16, VGG19, DenseNet121, XceptionNet, MobileNet, AlexNet,
InceptionV3, and SqueezeNet, along with seven types of DL. The ten types of TL and
seven types of DL include CNN5, CNN7, CNN9, CNN11, CNN13, CNN15, and SuriNet,
respectively. Note that CNN5 to CNN15 were taken from our previous study [62], so we
have elaborated on the CNN architecture in Appendix A.
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Table 2. Accuracies of 10 TL and 2 DL models for 6 augmentations. Bold represents the optimization
point of each classifier.

AI Model Balanced Aug 2× Aug 3× Aug 4× Aug 5× Aug 6×
VGG16 48 47.5 47.97 66.72 79.12 70.87
VGG19 81.5 87.33 88.07 89.08 87.5 91.56
ResNet50 70.4 75.4 78.2 70.5 68.7 66.5
DenseNet169 80.9 95.64 86.14 86.57 85.06 85.66
DenseNet121 76.99 79.69 73.29 85.17 77.33 75.81
Xception Net 67.49 82.74 79.99 81.87 76.49 86.55
MobileNet 81.49 96.19 72.82 79.99 83.59 81.24
InceptionV3 82.18 91.24 79 84.69 83.33 86.88
SuriNet 80.32 85.09 86.50 88.93 92.77 84.95
CNN [62] 84.24 90.6 92.12 92.99 95.66 92.66
AlexNet 62.84 74.29 80.21 91.09 78.81 80.91
SqueezeNet 74.65 83.20 79.23 83.12 81.33 82.00

Table 3. TL systems vs. DL systems, background color represents the optimization point.

TL Type TL Acc. (%) DL Type DL Acc. (%)
VGG16 79.12 CNN5 70.32
VGG19 91.56 CNN7 94.24

DenseNet169 95.64 CNN9 95.41
DenseNet121 85.17 CNN11 95.66 *
Xception Net 86.55 CNN13 92.27

MobileNet 96.19 * CNN15 95.40
InceptionV3 91.24

SuriNet 92.77
AlexNet 91.09

SqueezeNet 83.20
ResNet50 78.20
Best TL 96.19 Best DL 95.66

Absolute difference mean TL vs. mean DL 0.53

* Highest accuracy.

In the SuriNet architecture, there are 22 layers, while there is a varying number of
layers in the CNN architecture, ranging from 5 to 15. It is important to note that all CNNs
except CNN5 have accuracies above 92.27%. The overall mean and standard deviation
of the DL accuracies was 90.86 ± 3.15%. The innovation of the current study was the
design and development of TLs. They are benchmarking against DL. In Table 3, the mean
and standard deviation of ten TLs was 89.35 ± 2.54%. Thus, the mean accuracy of TL
systems is comparable to the mean accuracy of DL systems and in the range of ~1%.
MobileNet has the highest accuracy among all the TL systems (96.19%), while CNN11 has
the highest accuracy among all the DL systems (95.66%). Further, it is essential to note that
the mean accuracy variations are less than or equal to 3% within the limits of good design
and operating conditions (typically, regulatory approved systems have variation of less
than 5%).

4.2. 3D Optimization of SuriNet

In this set of experiments, we used the popular UNet architecture model for classifica-
tion. Figure 12 represents the SuriNet architecture inspired by UNet. We optimized SuriNet
by varying the augmentation folds. Here, we also used the K10 CV protocol for training
and testing. We choose 1000 epochs empirically. Therefore, the total number of runs for op-
timizing SuriNet is 60,000 (1 SuriNet × 6 Aug folds × 10 combinations × 1000 epochs). We
used the same set of hardware resources (used in the previous section) for this experiment.
Table 2 represents the average accuracy at the augmentation folds. SuriNet is optimized at
Aug 5× with an accuracy of 92.77 percent.
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4.3. Visualization of the SuriNet

We visualized the intermediate layers of SuriNet to understand the learning ability of
the model over CUS. Figure 14 represents the mean visualization of the training samples
of symptomatic and asymptomatic classes from all the filters at the end layer before
vectorization. The turquoise color represents the learned features, yellow represents the
high-level features, and green represents the low-level features.
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5. Performance Evaluation

This section aims to evaluate the samples required for the study using standard power
analysis. As we are using 12 AI models (10 TL, 2 DL), it is necessary to rank the models
by considering all the performance parameters for finding the best performing AI model
among the 12 AI models. In addition to that, we compared the performance of all 12
AI models with area-under-the-curve (AUC) using the receiver operating characteristic
curve (ROC).

5.1. Power Analysis

We used a standardized protocol (power analysis) for analyzing the number of samples
required at a certain threshold of the error margin. We considered a 95% confidence interval
with a 5% margin of error and a data proportion of 0.5. We used Equation (2) below to
compute the number of samples.

n =

(z∗)2 ×


^
p
(

1 − ^
p
)

MoE2


 (2)

Here, n is the number of samples (sample size), z* is the z score (1.96) from the z-table,

MoE is a margin of error, and
^
p represents the data proportion. In our study, we had a

total of 2400 images. Using the power analysis, the total samples required for the study
was 384. Thus, the number of the sample used in this study was 84% higher than the
required samples.
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5.2. Ranking of AI Models

After obtaining the absolute values of 12 AI models’ performance metrics, we sorted
the AI models into increasing order and then compared each value with the highest possible
value in the attribute. We considered five marks. If the percentage was more significant than
95%, we considered four marks. If it was greater than 90 and less than 95, we considered
three marks. If it was more significant than 80% and less than 90%, we considered two
marks. If it was more significant than 75%, we considered one mark. If it was greater
than 50% or less than 50%, it was considered as zero. The resultant rank table of the AI
models is shown in Table 4. We color-coded each AI model from red to green. Each model
is color-coded in this band. If the model performance is low, it is represented as red. If it
performs well, it is represented as green. Please see Appendix B for grading scheme.

Table 4. Ranking table of the AI models. The background color tells about the intensity of the classifier.

Rank Model O A F F1 Se Sp DS D TT Me AUC AS %
1 VGG19 5 3 4 5 5 4 5 5 3 1 3 43 78.18
2 MobileNet 2 5 4 3 5 4 1 4 5 5 5 43 78.18
3 CNN11 * 4 5 2 4 5 4 4 5 1 3 5 42 76.36
4 AlexNet 5 4 2 2 2 2 5 3 4 3 3 35 63.60
5 Inception 1 3 5 5 4 5 1 5 1 1 3 34 61.82
6 DenseNet169 1 5 4 3 3 4 1 3 2 3 5 34 61.82
7 XceptionNet 5 3 2 2 3 2 5 0 3 4 3 32 58.18
8 SuriNet 2 3 3 3 4 3 3 3 3 3 30 54.55
9 VGG16 5 1 3 3 3 3 5 1 4 1 1 30 54.55
10 SqueezeNet 2 2 3 3 3 3 4 1 2 3 2 28 50.90
11 DenseNet 121 4 2 2 2 3 2 4 0 2 3 2 26 47.27
12 ResNet50 3 2 2 2 3 2 3 0 1 3 2 23 41.80

O: optimization, A: accuracy, F: false positive rate, F1: F1 score, Se: sensitivity, Sp: specificity, DS: data size, D:
DOR, TT: training time, Me: memory, AUC: area-under-the-curve AS: absolute score. * Note that CNN11 (rank 3)
was used for benchmarking against other models (1, 2, and 4–12).

5.3. AUC-ROC Analysis

We computed the area-under-the-curve (AUC) for all the proposed AI models and
compared the performance with our previous existing work [62] consisting of a CNN model
with an accuracy of 95.66% and AUC of 0.956. Figure 15 represents the ROC comparison of
10 AI methods. Among all the architectures, MobileNet showed the highest AUC value as
0.961 (p-value < 0.0001) and better performance than CNN [62].
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6. Scientific Validation versus Clinical Validation

In this section, we discussed the validation of the hypothesis. Scientific validation was
carried out by heatmap analysis using the TL-based “Grad Cam” technique and clinical
validation was proved using a correlation analysis of the biomarker with AI.

6.1. Scientific Validation Using Heatmaps

We applied a novel visualization technique called gradient weighted class activation
map (“Grad Cam”) for identifying the diseased areas in the plaque cut sections using
VGG16 transfer learning architecture. Grad-CAM produces heatmaps based on the weights
generated during the training. Here, we take feature maps of the final layer. It gives the
essential regions of the target, and heatmaps highlight these regions. Figures 16 and 17
represent the heatmaps of the nine patients of symptomatic and asymptomatic class. The
dark red color region represents the diseased region in symptomatic plaque, whereas it
represents the higher calcium area in asymptomatic plaque.

The Grad-Cam works on the training weights generated during the training phase. The
DL model captures the important regions of the target label. We compared the heatmaps
with original images of both symptomatic and asymptomatic images. We observed that
heatmaps exhibit a darker region surrounded by grayscale regions. Meanwhile, in asymp-
tomatic regions, DL observes grayscale regions. Figure 17(a1,a2,b1,c1) are the important
regions observed by DL of symptomatic images, and Figure 17(d1,e1,e2,e3,f1,f2,f3) are
the observed important regions of the asymptomatic images by the DL model. This com-
parison proves our hypothesis that symptomatic plaques are hypoechoic and dark, and
asymptomatic plaques are bright and hyperechoic.

6.2. Correlation Analysis

We correlated all the biomarkers for the detection of the risk with AI. Table 5 represents
the correlation coefficient of all the biomarkers. Among all the biomarkers, GSM versus
FD shows a better p-value. We computed the correlation coefficient using MedCalc. We
computed the Euclidean distance (ED) between the centers of the two clusters (sym and
asym). Table 6 represents the ED between two clusters, symptomatic versus asymptomatic.
AI shows constant variation among all the techniques, whereas GSM with FD and higher
order spectra (HOS) shows the maximum distance. Figure 18 represents the correlation
of AI (SuriNet), GSM, FD, and HOS, and the black dot represents the center of each class.
The clusters of symptomatic and asymptomatic are represented with red and violet color,
respectively. The black dot represents the center of the cluster and the eclipse on the
cluster represents the high-density area. Figure 18b,d,e represent the (a) strong correlation,
(c) moderate correlation, and (f) weak correlation between the biomarkers.

Table 5. Correlation analysis.

Symptomatic Asymptomatic
Comparison

CC p-Value CC p-Value
Abs.

Difference

FD vs. HOS 0.07221 0.0149 0.156 0.0017 1.160366

FD vs. GSM −0.241 <0.0001 −0.383 <0.0001 0.589212

GSM vs. HOS 0.0725 0.0147 −0.0630 0.0208 1.868966

SuriNet vs. GSM 0.0017 0.009 −0.0437 0.0031 26.70588

SuriNet vs. HOS −0.0234 0.006 −0.0394 0.0042 0.683761

SuriNet vs. FD 0.0623 0.0021 0.01347 0.0079 0.783788
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7. Discussion

The proposed study is the first of its kind to use ten transfer learning models that
classify and characterize the symptomatic and asymptomatic carotid plaques. The proposed
models, 10 TL and 1 DL (SuriNet), are optimized using augmentation folds with K10 cross-
validation protocol. The proposed MobileNet showed an accuracy of 96.19%, while SuriNet
was relatively high, having an accuracy of 92.70%, and our previous study using CNN [62]
showed 95.66%. Our overall performance analysis showed that TL performance is superior
to that of the DL models.

7.1. Benchmarking

In this section, we benchmarked the proposed system with the existing
techniques [29,58–63,74–84]. Table 7 shows the benchmarking table, where the table can
be classified into ML-based and DL-based systems for PTC. The table shows columns C1 to
C6, where C1 represents the author and the corresponding year, C2 shows the selected features
for that study, C3 shows the classifiers used for PTC, C4 displays the dataset size and country,
and C5 and C6 give the type of AI model and accuracy along with the AUC. Rows R1 to R17
represent the existing studies on PTC using CUS, while R18 and R19 discuss the proposed
studies. In row R1, Christodoulou et al. [76] extracted ten different law texture energy features
and fractal dimension features from the CUS and were able to characterize the PTC with diag-
nostic yield (DY) of 73.1% using SOM and 68.8% using k-NN. Mougiakakou et al. (2006) [44]
(R2, C1) extracted first-order statistics and the law of texture energy features from 108 US scans.
The authors reduced the dimensionality of the extracted features using ANOVA and then
fed the resultant features to neural networks with backpropagation and genetic architecture
to classify symptomatic versus asymptomatic plaques. The authors achieved an accuracy of
99.18% and 94.48%, respectively. Seabra et al. [74] (R3, C1) extracted echo-morphological and
texture features from 146 US scans. Then, they fused those features with clinical information,
later used by AdaBoost classifier for classifying symptomatic versus asymptomatic plaques.
The authors successfully achieved 99.2% accuracy using leave-one-participant-out (LOPO)
cross-validation.

Table 7. Benchmarking table.

C1 C2 C3 C4 C5 C6
SN#

Authors, Year Features
Selected

Classifier
Type Dataset AI Type ACC. (%)

AUC (p-Value)

R1 Christodoulou
et al. (2003) [76]

Texture
Features

SOM
KNN

230
(-) ML 73.18, 68.88,

0.753, 0.738

R2 Mougiakakou
et al. (2006) [77]

FOS and
Texture
Features

NN with BP
and GA

108
(UK) ML

99.18,
94.48,
0.918

R3 Seabra et al.
2010 [74] Five Features Adaboost using

LOPO 146 Patients ML 99.2

R4
Christodoulou

et al.
2010 [79]

Shape Features,
Morphology

Features,
Histogram
Features,

Correlogram
Features

SOM
KNN 274 Patients ML 72.6,

73.0

R5 Acharya et al.
(2011) [58]

Texture
Features

SVM with RBF
Adaboost

346
(Cyprus) ML

82.48,
81.78,

0.818, 0.810
p < 0.0001
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Table 7. Cont.

C1 C2 C3 C4 C5 C6
SN#

Authors, Year Features
Selected

Classifier
Type Dataset AI Type ACC. (%)

AUC (p-Value)

R6 Kyriacou et al.
2012 [80]

Texture
Features with
Second-Order

Statistics Spatial
Gray Level

Dependence
Matrices

Probabilistic
neural

networks and
SVM

1121
Patients ML 77, 76

R7 Acharya et al.
(2012) [59]

Texture
Features SVM 346

(Cyprus) ML 83.8
p < 0.0001

R8 Acharya et al.,
(2012) [60] DWT Features SVM 346

(Cyprus) ML 83.78
p < 0.0001

R9
Gastounioti et.

al.
(2014) [61]

FDR+ Features SVM 56 US
Image ML 88.08,

0.90

R10 Molinari et al.
2018 [84]

Bidimensional
empirical mode
decomposition

and entropy
features

SVM with
RBF 1173 Patients ML 91.43

p < 0.0001

R11 Skandha et. al.
2020 [62]

Automatic
Features

Optimized
CNN

2000
Images (346

Patients)
DL 95.66

p < 0.0001

R12 Saba et al.
2020 [63]

Automatic
Features

CNN with 13
layers

2311 Images
(346 Patients) DL 89

p < 0.0001

R13 Proposed Automatic
Features

10 TL
architectures

VGG16
VGG19

DenseNet169
DenseNet121
XceptionNet
MobileNet

InceptionV3
AlexNet

SqueezeNet
ResNet50

346 Patients
(Augmented

from balanced
to 6x)

DL
96.18
0.961

p < 0.0001

R14 Proposed Automatic
Features SuriNet

346 Patients
(Augmented

from balanced
to 6x)

DL
92.7

0.927
p < 0.0001

Christodoulou et al. [79] (R4, C1) extracted multiple features such as shape features,
morphology features, histogram features, and correlogram features from 274 US scans,
which were then used by two sets of classifiers, SOM and k-NN. The authors achieved an
accuracy of 72.6% and 73.0%, respectively. Acharya et al. [58] (R5, C1) extracted texture-
based features from the Cyprus cohort containing 346 carotid ultrasound scans, which
were then fed to (a) SVM classifier with RBF kernel and (b) Adaboost classifier. The
authors achieved an accuracy of 82.48% and 81.7% with AUC of 0.82 and 0.81, respectively.
Kyriacou et al. [80] (R6, C1) developed a CAD system for predicting the period of stroke
using binary logistic regression and SVM, which achieved 77%. Acharya et al. [59] (R7, C1)
extracted texture-based features from 346 CUS scans and fed them to the SVM classifier,
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and achieved an accuracy of 83.78%. The same authors in [60] (R8, C1) extracted discrete
wavelet transform (DWT) features using the Cyprus cohort of 346 US scans, and fed them
to an SVM classifier, achieving an accuracy of 83.78%. Gatounioti et al. [61] (R9, C1)
extracted Fisher discriminant ratio features from 56 CUS scans, and fed them to an SVM
classifier, achieving an accuracy of 88.08% with an AUC of 0.90. Molinari et al. [84] (R10,
C1) used a data mining approach by taking bidimensional empirical mode decomposition
and entropy features from 1173 CUS scans and then used an SVM classifier with RBF kernel
for classification. The authors achieved an accuracy of 91.43%.

The second set of studies used DL models for PTC. Skandha et al. [62] (R11, C1)
extracted automatic features using optimized CNN from augmented 346 patients. The
authors achieved an accuracy of 95.66% and an AUC of 0.956 (p < 0.0001). The authors
successfully characterized the symptomatic versus asymptomatic plaques using mean
feature strength, higher-order spectrum, and histogram analysis. Saba et al. [63] (R12, C1)
used a randomized augmented cohort generated from 346 patient CUS with 13 layered
CNN and achieved an accuracy of 89% with an AUC of 0.9 (p < 0.0001).

7.2. Comparison of TL Models

TL architectures use the pretrained weights for retraining the model for target label
prediction. However, the TL architecture training time depended on the size of the pre-
trained weights and hardware resources. Various TL models discussed in Table 6 had
advantages over the other model, as explained in Tables 8 and 9.

Table 8. Comparison of TL models.

SN# Author, Year Name of the
Network Dataset Purpose

Pretrained
Weight Size

(MB)

Type
of

Layers

1 Krizhevsky
et al., 2012 [72] AlexNet ImageNet Classification 244

Convolution,
Max Pooling,

FCN

2 Simonyan et al.,
2015 [66] VGG -16, 19 ImageNet Object

recognition 528, 549
Convolution,
Max Pooling,

FCN

3 Szegedy et al.,
2015 [69] InceptionV3 ImageNet Object

recognition 92

Convolution,
Max Pooling,

Inception,
FCN

4 He et al.,
2016 [70]

ResNet 50, 101,
and 152

ImageNet,
CIFAR

Fast
optimization
for extremely
deep neural

networks

98,171, 232

Convolution,
Avg Pooling,

Residual,
FCN

5 Howard et al.,
2017 [42] MobileNet ImageNet

Classification
and

segmentation
in mobiles

16

Convolution,
Depth-wise

Convolution,
Average Pooling,

FCN

6 Chollet et al.,
2017 [71] XceptionNet ImageNet,

JFT

Modified
depthwise
separable

convolution.
Advancement

of
InceptionV3

88

Convolution,
Separable

Convolution,
Max Pooling,

Global Avg Pooling,
FCN
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Table 8. Cont.

SN# Author, Year Name of the
Network Dataset Purpose

Pretrained
Weight Size

(MB)

Type
of

Layers

7 Huang et al.,
2018 [48]

DenseNet 121,
169, 201, and 264 CIFAR

Gradient
problem,

substantially
reducing the
number of
parameters

33, 57, 80

Convolution,
Max Pooling,

Transition,
Dense,
FCN,

Global Avg Pooling

8 Landola et al.
2017 [73] SqueezeNet ImageNet

Reducing the
number of

parameters,
efficient

working on
edge devices

4.8

Convolution,
Fire Module
Max Pooling,

FCN
Global Avg Pooling

Table 9. Similarities and differences between the TL models.

Architecture Key Findings Similarities Differences

AlexNet First deep neural network
using convolution.

• All the models are pre-trained
on ImageNet

• All models use convolution
operation

• Every model uses a softmax
activation function in the
output layer and a ReLu
activation function in
intermediate layers.

• Every model loads the
pretrained weights from the
cloud/offline.

• Every model uses a
network-based TL paradigm.

• MobileNet is focused on solving
the computer vision problems in
edge devices

• Densenet is trained and tested
on the CIFAR dataset where
remaining models uses
ImageNet.

• XceptionNet only uses the JFT
dataset for pre-training.

• Except for Xception and
MobileNet, all the other models
use standardized convolution.

• Except for IV3 and Xception, all
other models use depth-wise
kernels.

SqueezeNet

It is developed to reduce the
number of parameters
required for AlexNet with the
same accuracy. Effectively
used for edge devices.

VGG
Reducing the number of
parameters in convolution
and training time.

InceptionV3

Effective object detection for
solving variable size objects
using kernels of different sizes
in each layer.

ResNet

Solving the vanishing
gradient problem in the deep
neural network using skip
(shortcut) connections.

MobileNet

The first model was
developed for supporting
tensor flow in edge devices
using light-weighted tensor
flow.

XceptionNet

Fast optimization and
reducing the trainable
parameters in IV3 using
depth-wise convolution.

DenseNet

Increasing the feed-forward
nature in the neural networks
using dense layers by
concatenating the features
from its previous layers.
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7.3. Advantages of TL Models

TL models’ designs have similarities and differences between them. These are ex-
plained in Table 9, along the key findings of every TL model.

7.4. GUI Design

AtheroPoint™ developed the Atheromatic™ 2.0 TL system, a computer-aided diag-
nostic system for stroke risk stratification. Figure 19 represents the screenshot of the CAD
system. This CAD system will provide the plaque risk and heatmaps generated by the
Grad-Cam with the help of TL/DL models. In the CAD system, the heatmap would be
predicted on the test image once the training model is selected.
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7.5. Strengths/Weakness/Extensions

We evaluated the optimization point of the TL models against various augmentation
folds and compared the performance of the TL models against that of the DL models
such as SuriNet and CNN. The TL model showed an improvement for symptomatic
versus asymptomatic plaque classification accuracy. Furthermore, our Atheromatic™ 2.0 TL
system predicts the risk of plaque and vulnerability using the color heatmaps on test scans.

Even though the power sample suggests that we have enough samples for the training,
the main limitation of this study was the moderate cohort size. In addition to the cohort
size, another limitation of this study is the limited availability of the hardware resources
such as supercomputer availability, especially in third-world developing countries.

Our study had a manual delineation of ICA data sets. In future, there could be a need
to design an automated ICA segmentation system [85]. Another possibility would be to
improve the CNN by an improved DCNN model, where the rectified linear unit (ReLU)
activation function was modified, ensuring “differentiable at zero” [38]. There are dense
networks such as DenseNet121, DenseNet169, and DenseNet201 that could be tried and
compared [39]. Further, one can further combine hybrid deep learning models for PTC [86].
Finally, the proposed AI models can be extended to a big data framework by including
other risk factors.
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8. Conclusions

The proposed study is the first of its kind to characterize and classify the carotid plaque
using an optimized transfer learning approach and SuriNet (a class of Atheromatic™ 2.0
TL). Eleven AItherop models were implemented, and the best AUC was 0.961 (p < 0.0001)
from MobileNet and 0.927 (p < 0.0001) from SuriNet. We validated the performance
using grayscale median, fractal dimension, higher-order spectra, and spatial heatmaps.
TL showed equal and comparable performance to deep learning. The Atheromatic™
2.0 TL model showed a performance improvement of 12.9% over Atheromatic™ 1.0ML
(AtheroPoint, Roseville, CA, USA) compared with the previous machine learning-based
paradigm. The system was validated with the widely accepted dataset.
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Abbreviations

Symbol Abbreviation
Acc Accuracy
AF Amaurosis fugax
AI Artificial intelligence
APSI Atheromatic plaque separation index
Asym Asymptomatic plaque
AUC Area-under-the-curve
CAD Computer-aided diagnostic
CT Computed tomography
CV Cross-validation
CVD Cardiovascular disease
DCNN Deep convolutional neural network
DL Deep learning
DOR Diagnostics odds ratio
DWT Discrete wavelets transform
DY Diagnostic yield
EAI Enhanced activity index
ED Euclidean distance
FC, FCN Fully connected network
FD Fractal dimension
FN Fine-tune networks
GLDS Gray level difference statistic
Grad-Cam Gradient-weighted class activation map
GSM Greyscale median
ICA Internal carotid artery
IV3 Inception V3
k-NN K-nearest neighbor
LOPO Leave-one-participant-out
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MFS Mean feature strength
ML Machine learning
MRI Magnetic resonance imaging
MUV M-mode ultrasound videos
PTC Plaque tissue characterization
ReLu Rectified linear unit
RMM Rayleigh mixture model
ROC Receiver operating characteristic curve
ROI Region-of-interest
SACI Symptomatic and asymptomatic carotid index
SGLD Spatial gray level dependence matrices
SOM Self-organizing map
SVM Support vector machine
sym Symptomatic plaque
TL Transfer learning
US Ultrasound
USA United States of America
VGG Visual geometric group
WHO World Health Organization

Appendix A. CNN Architecture

Appendix A.1. Deep Convolutional Neural Network Architecture

The global architecture of the deep convolutional neural network (DCNN) is shown in
Figure A1. It is composed of four convolution layers followed by an average pooling layer,
thus a total of nine layers. These are followed by a flatten layer for the conversion of the 2D
feature map to a 1D feature map. This is followed by two hidden dense layers consisting
of 128 nodes. The final output is the “softmax” layer that has two nodes representing
symptomatic class and asymptomatic class. We choose the “ReLu” activation function
for all the n − 1 layers, as ReLu helps in fast convergence to the solution compared
with “sigmoid” or “tanh” activation functions [87]. Equation (A1) gives the categorical
cross-function used in the experimentation for all the models.

Loss =− [(y i × log ai) + (1 − yi) × log(1 − ai)] (A1)

where yi is the class label for input and ai is the predicted probability of class being yi.
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Appendix A.2. 3-D Optimization of Deep Convolutional Neural Network Architecture

As the best performance of the DCNN model depends on the number of layers and
hyperparameters tuned [63], we thus considered several configurations of DCNN that
consisted of a combination of difference convolution, average pooling, and dense layers.
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This required undergoing 3D optimization between accuracy, DCNN layers, and folds of
the augmentation. Table A1 shows the six types of DCNN.

Table A1. Six types of DCNN models consisting of a different combination of convolution, average
pooling, and dense layers. The total number of layers is shown as the number “X” at the end of
DCNN in column 1.

Column1 Column2 Column3 Column4
R# DCNN

Type
Convolution

2D Layers
Average

Pooling Layers Dense Layers

R1 DCNN5 1 1 3
R2 DCNN7 2 2 3
R3 DCNN9 3 3 3
R4 DCNN11 4 4 3
R5 DCNN13 5 5 3
R6 DCNN15 6 6 3

Appendix B. Grading Scheme for Ranking TL Systems

Table A2. Grading scheme for the attributes of AI systems.

SN Attribute High Grade
(4–5) Medium Grade (3–2) Low Grade

(1–0)
1 Optimization High Aug (>5) Avg Aug (<5 and ≥3) Low Aug (<3)

2 Accuracy >95 >85 to <95 <85

3 False Positive
Rate <0.1 >0.1 to <0.2 >0.2

4 F1 Score >0.9 >0.8 and <0.9 <0.8

5 Sensitivity >0.9 >0.8 and <0.9 <0.8

6 Specificity >0.9 >0.8 and <0.9 <0.8

7 Data Size >1600 >800 and <1600 ≤800

8 DOR >300 >150 and <300 <150

9 Training Time <24 h >24 h and <30 >30 h

10 Memory ≤15 MB >15 MB and <20 MB >20 MB

11 AUC >0.95 >0.85 to <0.95 <0.85
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