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Abstract: Background: We sought to assess the interplay between right ventricle (RV) fibrosis,
biventricular dysfunction based on global longitudinal strain (GLS) analysis, and biomarkers such
as Galectin-3 (Gal-3), procollagen type III (PCIII), and NTproBNP. Methods: We studied 35 adult
patients with rToF. All patients underwent a cardiac magnetic resonance (CMR) scan including
feature tracking for deformation imaging. Blood biomarkers were measured. Results: LGE RV
was detected in all patients, mainly at surgical sites. Patients with the highest RV LGE scoring had
greater RV dilatation and dysfunction whereas left ventricular (LV) function was preserved. LV GLS
correlated with RV total fibrosis score (p = 0.007). A LV GLS value of −15.9% predicted LGE RV
score > 8 (AUC 0.754 (p = 0.02)). Neither RV GLS nor biomarker levels were correlated with the extent
of RV fibrosis. A cut-off value for NTproBNP of 145.25 pg/mL predicted LGE RV score > 8 points
(AUC 0.729, (p = 0.03)). A cut-off value for Gal-3 of 7.42 ng/mL predicted PR Fraction > 20% [AUC
0.704, (p = 0.05)]. Conclusions: A significant extent of RV fibrosis was mainly detected at surgical
sites of RV, affecting RV performance. CMR-FT reveals subtle LV dysfunction in rToF patients, due
to decreased performance of the fibrotic RV. Impaired LV function and elevated NTproBNP in rToF
reflect a dysfunctional fibrotic RV.

Keywords: myocardial fibrosis; cardiac magnetic resonance feature tracking (CMR-FT); Galectin-3;
Procolagen III; NTproBNP; adults with repaired tetralogy fallot; congenital heart disease

1. Introduction

The improvement in the management of Tetralogy of Fallot (ToF) has led to the ex-
tended survival of adult patients with repaired ToF (rToF) [1–6], but also to an increased
number of patients with heart failure (HF) who may deteriorate and require hospital-
ization [7,8]. The early diagnosis of HF is a challenge, as the majority of these patients
underestimate their symptoms. Myocardial damage resulting from the corrective surgery,
the postoperative onset of volume overload or pressure conditions, postoperative conduc-
tion disturbances, and ventricular interaction are factors that lead to the development of
HF in adult patients with rToF. The neurohormonal profile of patients with congenital heart
disease (CHD) is similar to those of HF. Fibrosis biomarkers that have been found to play
an important role in heart failure are also increased in adults with rToF [4–6].
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Furthermore, imaging modalities may add valuable data to risk stratification. Car-
diovascular magnetic resonance (CMR) is the gold standard technique for accurate and
reproducible noninvasive measurements of biventricular size and function, quantification
of valvular regurgitation, and the detection of myocardial fibrosis [9–11]. Analysis of
myocardial strain with feature tracking (FT), which is a CMR-based method, is a sensitive
measure of regional and global ventricular contractile function, and may contribute to risk
stratification of the growing rToF population [12–15].

Therefore, we aimed to assess the following: 1. Detection and distribution of right
ventricle (RV) fibrosis and correlations with clinical data; 2. The prognostic role of biomark-
ers levels in the study population; 3. Analysis of global CMR-FT strain parameters of RV
and left ventricle (LV) and their correlation with extent of RV fibrosis and biomarker levels.

2. Materials and Methods

The study was conducted at the Adult Congenital Heart Disease Clinic, First Cardiol-
ogy Department, AHEPA University Hospital, Thessaloniki, Greece. The study protocol
was approved by the Institutional Review Board (1/8 January 2012) and all participants
provided written informed consent.

2.1. Patient Population

We studied 35 consecutive adult patients (21 women, mean age 31 ± 10.8 years) with
repaired ToF. Patients with a permanent pacemaker/implantable cardioverter defibrillator
(ICD) were excluded, due to contraindication for CMR. All patients had a complete cardiac
examination, including past medical history, physical examination, and standard 12-lead
ECG, and underwent a CMR study (within 3 months from the clinical examination).
Standard 12-lead ECGs were acquired of all patients and the QRS duration was measured
manually [15–17]. The New York Heart Association (NYHA) class was recorded for all
patients [18].

2.2. Blood Samples-Biomarkers

Serum was isolated after centrifugation at 4000 rpm for 10 min at 4 ◦C. Galectin-3
(Gal-3) serum levels were determined using an enzyme-linked immunoabsorbent assay
(ELISA) kit (BOSTER Biological Technology, Pleasanton, CA, USA). The inter-assay and
intra-assay variation are 8.1% and 6.63%, respectively. Galectin values are expressed in
ng/mL. Procollagen type III (PCIII) serum levels were determined using a sandwich ELISA
kit (Abbexa Ltd., Cambridge, UK). The inter-assay and intra assay variation are both <10%.
PCIII values are expressed in ng/mL. NT-proBNP serum levels were determined on a
COBAS 8000 immunoassay analyzer (ROCHE Diagnostics, Mannheim, Germany) with
electrochemiluminescence immunoassay (ECLIA), using monoclonal antibodies which
recognize epitopes located in the N-terminal part (1–76) of proBNP (1–108). The inter-assay
and intra-assay variation are 1.5% and 2.5%, respectively.

2.3. CMR Imaging Protocol

CMR imaging was performed with a Siemens Avanto 1.5T MRI scanner, using a body
surface coil and a standard imaging protocol, which included ECG-gated steady-state,
free-precession cine CMR acquisitions in long-axis and contiguous short-axis cine imaging.
CMR variables included RV and LV end-diastolic volume index (EDVi); RV and LV end-
systolic volume index (ESVi); RV and LV ejection fraction (EF); RV and LV mass index. The
RV free wall below the pulmonary valve was included in the RV mass calculation while
trabecular bands on the RV side of the septum were included in blood pool measurements.
Pulmonary regurgitation (PR) was estimated with CMR pulmonary artery regurgitant
fraction (RF). PR was graded as mild if the RF on CMR was less than 20%, moderate if it was
between 20% and 40%, and severe if it was greater than 40%. All measurements were made
by an experienced observer, blinded to patient clinical status. Late gadolinium imaging
was performed by the same observer with the use of a two-dimensional-segmented phase-
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sensitive inversion recovery sequence (PSIR), and acquisition optimization for imaging
nonischemic myocardial fibrosis, 10 min after intravenous administration of 0.1 mmol/kg
of gadobutrol (Gadovist®, Bayer Inc. 2920 Matheson Boulevard East Mississauga, Bayer
Healthcare, L4W 5R6 Ontario Canada).

For the LGE RV analysis, a segmentation system of RV was utilized as previously
described [14]. The RV was divided into 7 segments in slices aligned with the RV outflow
tract, the LV outflow tract, and the LV-RV short axis. Segments of RV wall with LGE were
scored according to the extent of enhanced myocardium, and expressed as a score out of 20
(Figure 1). Strain analysis: Using specialized software (Circle Cardiovascular Imaging Inc.)
from the cine sequences in the longitudinal axis, the global longitudinal strain values for
the left and right ventricles were calculated.
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Figure 1. Segmentation system for LGE RV analysis. 1–7: RV segments The division of the RV into
7 segments is shown in slices aligned with the RVOT, the LV outflow tract, and the LV short axis,
with maximum LGE score per segment in brackets. [0,1,2,3]: LGE RV SCORE, 0: no linear extent of
enhanced myocardium; 1: enhancement of 1 trabeculation; 2: enhancement of 2 to 4 trabeculations;
3: enhancement of more than 4 trabeculations. The insertion points of RV and LV (marked 7) were
each scored 0 for absence and 1 for presence of LGE. The maximum score was 20.

2.4. Statistical Analysis

All continuous variables are expressed as mean (SD) or median (quartile 1–quartile 3).
Continuous variables were analyzed by either 2-sample independent t test or Mann–
Whitney test as appropriate. Correlations were assessed by Spearman rank correlation
coefficient. Categorical data were analyzed by χ2 test. A nonparametric Kruskal–Wallis
test was used to compare different variables in the lower, middle, and upper quartiles of
the RV LGE score. Interclass correlation coefficient was used to assess the reproducibility of
the RV LGE score. A probability value less than 0.05 was considered statistically significant.
The prognostic potential of LV GLS by FT-CMR and biochemical markers Gal-3, PCIII and
NTproBNP were tested by ROC curve analysis. Patients with missing data were excluded
from the analysis. All data were analyzed with IBM SPSS version 25.0 (Armonk, NY, USA:
IBM Corp.).
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3. Results
3.1. Demographic and Clinical Characteristics

The baseline characteristics of the studied cohort are summarized in Table 1.

Table 1. Demographics, clinical characteristics, CMR data and biomarker levels of 35 adult patients
with rToF *.

Median (SD) or N (%)

Demographics

Age (years) 31.48 (10.8)

Age at ToF Repair (years) 1.8 (3.04)

Gender (male) 14 (40%)

Body surface area, (m2) 1.80 (0.20)

Height (cm) 168.6 (9.5)

Weight (kg) 71.34 (16.2)

Surgical History

ToF repair 15 (57.7%)

ToF repair + PVR 11 (42.3%)

B-Tshunt + ToF repair 3 (33.3%)

B-T shunt + ToF repair + PVR 6 (66.7%)

Maximum number of surgeries (Nr ≥ 3) 6 (17.1%)

Clinical Data

New York Heart Association class > II 25 (71.5%)

Rest Oxygen saturation > 96% 31 (88.5%)

QRS duration, (ms) 130.8 (18.8)

CMR

RV EDVi, mL/m2 115.4 (35.5)

RV ESVi, mL/m2 55.6 (26.4)

RV EF, (%) 49.4 (8.2)

RV GLS, (%) −20.8 (2.4)

LV EF, (%) 58.7 (6.0)

LV GLS, (%) −17.04 (2.6)

Pulmonary regurgitation fraction, (%) 21.1 (17.1)

PR Fraction > 20% 16 (45.7%)

Biomarkers

Galectin 3, (ng/mL) 6.4 (1.57)

Procollagen III, (ng/mL) 43.8 (11.1)

NTproBNP, (pg/mL) 181.28 (178.4)
* Continuous variables are expressed as mean (SD). Categorical variables are expressed as N (%). TOF, tetralogy
of Fallot; B-T shunt, Blalock–Taussig shunt; PVR, pulmonary valve replacement.

3.2. RV Fibrosis Scoring and Clinical Correlates

RV LGE was detected in all patients at surgical sites, more frequently located in the
right ventricular outflow tract (RVOT) scar area (82.8%) and in the site of ventricular septal
defect (VSD) patching (51.4%), but also in the anterior wall (65.7%), inferior wall (20%) and
RV side of septum (54.2%) and in the RV-LV insertion points (88.5%). There was no LGE in
the LV (Supplementary Table S1, Supplementary Figures S1 and S2).
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The median RV fibrosis score was 8 points (mean 7.4 ± 2.4, median 8, IQR (6, 10)). We
studied the relations of RV fibrosis in two groups of patients: group of patients with low RV
score (LGE RV < 8 points) and group of patients with high RV score (LGE RV ≥ 8 points).

The association of LGE RV fibrosis score with clinical markers, CMR indices, and
biomarkers is summarized in Table 2.

Table 2. Association of RV LGE to clinical markers, ventricular volumes, biventricular performance
by CMR and blood biomarkers *.

Low RV Score
LGE

RV < 8 Points
(n = 15)

High RV Score
LGE

RV ≥ 8 Points
(n = 20)

p Value

Total RV Score
Spearman

Correlation
Coefficient, (p)

Age, (years) 30.4 (11.6) 33.8 (10.7) 0.40 0.24 (0.170)

Age at repair, (years) 0.43 (0.37) 0.35 (0.30) 0.54 −0.02 (0.916)

Shunt to repair time
(years) 1.9 (3.9) 1.3 (2.6) 0.67 0.15 (0.416)

Follow-up since
repair, (years) 25.1 (10.9) 27.5(8.4) 0.52 0.27 (0.152)

Clinical

NYHA Class ≥ II,
[N, (%)] 9 (60%) 12 (60%) 0.21 —–

Rest SatO2, (%) 97.6 (1.1) 96.5 (1.8) 0.05 −0.46 (0.012)

QRS duration, (ms) 134.1 (17.6) 130.0 (20.3) 0.56 −0.18 (0.328)

Cardiac Magnetic Resonance

RV EDVi, mL/m2 101.39 (19.8) 134.61 (43.1) 0.017 0.44 (0.015)

RV ESVi, mL/m2 46.0 (12.4) 73.4 (27.0) 0.003 0.66 (<0.001)

RV EF, (%) 53.4 (4.4) 43.3 (8.1) 0.001 −0.69 (<0.001)

RV GLS, (%) −20.75 (2.3) −20.75 (2.7) 0.99 −0.03 (0.844)

LV EF, (%) 61.1 (5.3) 56.5 (6.3) 0.04 −0.46 (0.011)

LV GLS, (%) −18.0 (2.6) −15.9 (2.1) 0.03 0.49 (0.007)

PR Fraction, (%) 16.2 (16.0) 24.6 (18.0) 0.20 0.44 (0.017)

Biomarker Levels

Galectin 3, (ng/mL) 5.9 (1.33) 6.8 (1.64) 0.10 0.23 (0.211)

Procollagen III,
(ng/mL) 42.5 (8.06) 43.5 (13.0) 0.78 −0.28 (0.123)

NTproBNP,
(pg/mL) 121.6 (70.3) 196.4 (99.9) 0.02 0.29 (0.110)

* Continuous variables are expressed as mean (SD). Categorical variables are expressed as N (%). Statistical
significance was defined as p < 0.05. CMR, cardiac magnetic resonance; RV, right ventricular; EDV, end-diastolic
volume; ESV, end-systolic volume; EF, ejection fraction, GLS, Global Longitudinal Strain.

Patients with above-median RV LGE scores were older and in worst clinical condition
based on NYHA Class and rest SatO2 compared to patients with low RV fibrosis score
(96.5 ± 1.8 versus 97.6 ± 1.1, p = 0.05). RV myocardial fibrosis score was associated with
RV dilatation and RV dysfunction based on RVEDVi, RVESVi, and RV ejection fraction
measurements (Table 2). LV systolic function was worse in the group of patients with
high RV fibrosis score compared to low RV fibrosis group. Pulmonary regurgitation
severity had a moderate positive correlation with total LGE RV scoring (Table 2). Lowest
values of RV EF were observed in patients with high RV score and moderate/severe PR,
(Supplementary Figure S3).
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3.3. RV Fibrosis Scoring and Biomarker Levels in Adults with rToF

Median Gal-3 was 6.1 (5.2, 7.6) ng/mL, median PCIII was 41.8 (38.2, 45.9) ng/mL
and median NTproBNP was 143.4 (74.6, 226.5) pg/mL. There was no correlation between
collagen biomarkers Gal-3 and PCIII, with NTproBNP.

Gal-3 levels were higher in patients with supramedian LGE RV score but did not
correlate with total LGE scoring of RV, p = 0.21, (Table 2). Gal-3 levels had a significant
correlation with moderate/severe PR as estimated by PR Fraction > 20%, p < 0.044),
(Supplementary Table S2). In ROC curve analysis, a cut-off value for Gal-3 of 7.42 ng/mL
predicted PR Fraction > 20% with specificity 93% and sensitivity 53% (AUC 0.704, (p = 0.05))
(Figure 2).
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PCIII levels did not correlate with LGE scoring of RV, (Table 2).
NTproBNP levels were elevated in patients with high RV score, (Table 2).

3.4. RV Fibrosis and Cardiac Magnetic Resonance Data with Feature Tracking (CMR-FT) Analysis

The mean value of RV GLS was −20.8 ± 2.47%, with no correlation with high RV
scoring, or total RV score (Table 2). The mean value of LV GLS was −17.04 ± 2.61%. LV
performance showed a statistically significant difference between fibrosis score groups.
LV GLS had a significant correlation with high RV score, p = 0.032, and total RV scoring
(Table 2).

Biomarker levels did not show any correlation with RV GLS or LV GLS values.

4. Discussion

ToF represents the most common form of cyanotic heart disease at birth. Late complica-
tions include pulmonary regurgitation, heart failure, and malignant arrhythmias associated
with sudden cardiac death (SCD). Areas of fibrosis are detected at the sites of surgery,
mainly in the RV outflow tract and the interventricular septum around the ventricular
septal defect patch region. Focal fibrosis can be identified using CMR and correlations
with both systolic dysfunction and reduced exercise capacity and arrhythmias have been
reported [15,16]. Myocardial fibrosis (as estimated by extracellular matrix expansion) has
been associated with worse outcomes in heart failure and may even predict mortality in
patients with acquired heart disease [19,20].
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There is no proven treatment to improve RV function by targeting RV fibrosis, although
preclinical studies have shown that Sodium-glucose transport protein 2 inhibitors have
also demonstrated a positive effect in cardiac fibrosis [21–23].

Our data specifically support an association between RV myocardial fibrosis and
impairment of RV function, independently of the first palliation or the highest number of
surgeries (Supplementary Table S3). Extended RV fibrosis was observed in patients who
were older with residual moderate/severe PR, which suggests that volume overload may
have predisposed to myocardial damage and fibrosis in addition to the myocardial surgical
scars. Lowest values of RV EF were observed in patients with significant fibrosis of RV and
moderate/severe PR (Supplementary Figure S3). Although no LV fibrosis was detected,
LV function was affected by high RV fibrosis scoring and RV deterioration. Furthermore,
LV long axis displacement by CMR -FT had impaired values in patients with the highest
RV fibrosis scoring. Previous studies have shown that patients who underwent corrective
surgery at an older age have a higher risk of developing LV dysfunction [24–26]. However,
our results did not confirm this association.

4.1. RV Fibrosis, Biomarker Levels and Prognostic Associations

Gal-3 value of >7.42 pg/mL predicted moderate/severe PR in the studied cohort. In
previous studies, Gal-3 has been studied as a biomarker of fibrosis with a prognostic role in
HF mortality and rehospitalization and in congenital heart disease patients as a prognostic
indicator in risk stratification [21,27–32].

Previous studies in patients with rToF, reported that BNP levels are increased and
associated with overload conditions and severity of PR [33,34]. NTproBNP levels in our
study did not correlate with the severity of PR. Instead, NTproBNP levels correlated
with high LGE RV scoring. NTproBNP levels of 145.25 pg/mL predicted an LGE RV
score > 8 points. The association between NTproBNP and fibrosis could be mediated via
focal dilatation of RV outflow tract. Therefore, NTproBNP could be a sensitive predictive
indicator of the functionality of RV, independently of the loading conditions [35–38].

Levels of Procollagen III and Galectin 3 have been evaluated in HF studies and have
been well associated with the prognosis of HF patients with normal cardiac anatomy, with
Procollagen III being appreciated as a remodeling index [39]. This fibrosis index in children
with congenital shunt lesions was increased due to various hemodynamic disorders, while
in children with rToF PCIII levels were related to the degree of cyanosis. Lai et al. reported
a good correlation between the mechanical asynchronization of LV and the expression of
PCIII in a study of children and young adults with rToF [40]. In our study, which included
adults with rToF, PCIII levels had a significant correlation only with LV EF and not with LV
GLS or the shunt to repair time.

Biomarker levels did not have a significant correlation with the extent of RV fibrosis
in our study. An explanation for the discordance between the extent of RV fibrosis and
biomarkers levels may be that in rToF the profibrotic damage-injury occurred at one single
time point (at the time of palliation) whereas biomarker levels reflect the neurohormonal
activation at the time of assessment. In contrast, in hypertensive patients there is con-
tinuous profibrotic damage-injury that constantly induces collagen deposition, and thus
biomarker elevation.

4.2. Role of Feature Tracking CMR (CMR-FT) in Adults with rToF

Cardiac magnetic resonance feature tracking analysis is progressively establishing its
role as an accurate tool for quantitative evaluation of cardiovascular function by directly
evaluating myocardial fiber deformation. Feature-tracking derived strain parameters
are able to identify subtle myocardial abnormalities before overt clinical manifestation,
thus allowing the early diagnosis of primitive cardiomyopathies, identification of cardiac
involvement in systemic diseases, as well as risk stratification and monitoring of treatment
effects in patients with heart failure of various etiologies [41]. In the adult CHD population,
many of whom have had multiple previous surgeries and scars, the potential advantage
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of FT-CMR is that it can deliver quantification of myocardial deformation of the right
ventricle, overcoming the limitation of the acoustic window [24].

The longitudinal systolic strain of RV and LV was assessed using CMR FT. RV strain
for our cohort was impaired when compared with published CMR strain values from
healthy volunteers (age 48 ± 13 years) [13], with significant correlation with RVEF, but no
correlation with the extent of RV fibrosis (p = 0.844). RV EF is impaired decades after repair
surgeries and RV FT-CMR analysis seems to mirror the effect of chronic pressure and/or
volume load to RV, although without the ability to guide us regarding the RV performance
and the adverse outcomes in this population.

A significant impairment of all global strain parameters with echocardiography-based
2D strain analyses has been described in rToF patients who experienced death or sustained
ventricular tachycardia [25]. Numerous studies have attempted to determine the best
values of echo-based RV GLS with reduced CMR RV EF in children and young adults
with rToF in order to predict major cardiovascular events [26,42–45]. A recent study in
adults with rToF and 2D STE study found that reduced RV myocardial strain is associated
with worse outcomes [46]. On the contrary, Jing et al. state that FT-CMR parameters
were not predictive indicators of the progressive dilation of the RV and therefore of any
complications [47]. In our small study population, no significant correlation was revealed
between the extent of RV fibrosis and RV GLS values. However, larger studies are needed
to reach more robust conclusions.

LV longitudinal systolic analysis showed that LV systolic dysfunction coexists with
relatively preserved LV EF in adults with rToF and impaired RV EF. Although focal fibrosis
was not detected in the LV in the present study, LV performance was affected, with a statis-
tically significant difference between groups of patients with maximum and lower LGE
RV scoring, indicative of adverse progressive ventricular–ventricular interaction [25,26].
Considering that the interventricular septum is mainly a constituent part of the LV and only
contributes 20% to RV systolic performance [48], the grade of dilatation and dysfunction of
RV in rToF can affect LV GLS values.

Adverse clinical outcomes in adult patients with rToF have been associated with
LV dysfunction, with the reasons for left ventricular dysfunction poorly understood. LV
displacement by 2D STE study, in a study from Diller et al. [49] with 413 adult patients
with rToF, showed that LV longitudinal dysfunction was associated with a higher risk of
sudden cardiac death/life-threatening ventricular arrhythmias.

The novelty of our study is the correlation of the estimated focal RV fibrosis with the LV
strain values and RV deterioration. A previous study of Hagdorn et al. in younger adults
with rToF (median age 24.3 years, 54 patients <18 years) reported that LV GLS values predict
ventricular tachyarrhythmia, but not deterioration of ventricular function [50]. A recently
published study of de Alba et al. in 48 rTOF subjects and 20 healthy controls reported no
association between LV global systolic strain and LV diffuse interstitial myocardial fibrosis
(LV-ECV) evaluated by T1 mapping [51]. What seems certain is that changes in RV size
and function lead to the asynchronization of the LV and in adverse cases inter-ventricular
dysfunction [39,40]. Studies have shown that the amount of myocardial fibrosis affects
the function of the LV and patients who underwent corrective surgery at an older age
had a higher risk of developing LV dysfunction [52,53]. Our study confirms that CMR-FT
reveals LV dysfunction in adults with rToF despite normal LVEF, due to decreased fibrotic
RV performance.

Larger prospective studies are needed with techniques such as CMR-FT, which are
reproducible, quick, and easy to apply, in order to establish the prognostic role of biventric-
ular GLS in risk stratification of the rToF aging population.

4.3. CMR-FT Analysis and Biomarkers Levels in Adults with rToF

Despite the perception of many that TOF is a mainly right-sided heart disease, various
LV parameters have been associated with this outcome [40,41]. Therefore, the NTproBNP
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levels and LV GLS values could be useful and sensitive indicators of early recognition of
fibrotic RV performance disorders in this special population.

We found that longitudinal strain analysis by CMR-FT of the LV was impaired in adults
with rToF, despite the preserved LV EF and correlation with high RV fibrosis score. Accord-
ing to the normal values for ages <75 years old of the non-HF population (<125 pg/mL),
mean values of NTproBNP levels in our study were increased (181.2 ± 178.4 pg/mL), with
preserved LV EF. NTproBNP levels correlated significantly with high RV fibrosis score.
In ROC curve analysis, a cut-off value of NTproBNP >145 pg/mL and a cut-off value of
GLS LV −15.9% predicted LGE RV >8 points, reflecting the coexistence of the LV longitu-
dinal systolic dysfunction due to ventricular–ventricular interaction and neurohormonal
activation, as result of high RV fibrosis (Figure 3).
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Figure 3. In ROC curve analysis, a cut-off value for NTproBNP of 145.25 pg/mL predicted LGE RV
score > 8 points with specificity 80% and sensitivity 73.3% [AUC 0.729 (p = 0.03)], and a cut-off value
for LV GLS of −15.9% predicted LGE RV score > 8 points with specificity 80% and sensitivity 69.2%
[AUC 0.754 (p = 0.02)].

We assume that further studies of LV GLS analysis and NTproBNP levels could
contribute to the identification of early intervention time and risk stratification of adults
with rToF.

4.4. Limitations

Our study has some limitations. The cohort of patients analyzed in this study does
not reflect the entire spectrum of adult patients with rToF, as patients unsuitable for
CMR assessment with gadolinium, including the higher risk patients with implantable
cardioverter defibrillators, were excluded.

Finally, we used the late gadolinium technique to assess the extent of regional myocar-
dial fibrosis on CMR. T1 mapping sequences were not available in our site and therefore
the assessment of diffuse myocardial fibrosis was not possible.

A larger, prospectively followed-up cohort may provide further information on addi-
tional causes of fibrosis, its correlation with novel methods of RV and LV performance, as
well as its prognostic power.

5. Conclusions

A significant extent of RV fibrosis was mainly detected at surgical sites of RV. Gal-3,
could serve as a blood collagen biomarker for the noninvasive assessment of volume
overload due to significant PR in adults with rToF. RV fibrosis leads to impaired LV
performance and possible neurohormonal activation. Non-invasive imaging with CMR,



Diagnostics 2021, 11, 2101 10 of 13

with the detection of myocardial fibrosis and strain analysis, could allow for a more refined
timing of interventions such as PVR. A larger, prospectively followed-up cohort may
provide further information concerning additional causes of RV fibrosis, the correlation of
biomarker levels and strain analysis with CMR-FT, and their precise prognostic value.
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