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Laura Geiszler 4, Himani Devabhaktuni 1, Giora Z. Feuerstein 5, Matthias J. Schnell 2, Markus Sack 6,
Lawrence L. Livornese, Jr. 4 and Scott K. Dessain 1,2,*

����������
�������

Citation: Puligedda, R.D.; Al-Saleem,

F.H.; Wirblich, C.; Kattala, C.D.; Jović,
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Abstract: Efforts to control SARS-CoV-2 have been challenged by the emergence of variant strains
that have important implications for clinical and epidemiological decision making. Four variants
of concern (VOCs) have been designated by the Centers for Disease Control and Prevention (CDC),
namely, B.1.617.2 (delta), B.1.1.7 (alpha), B.1.351 (beta), and P.1 (gamma), although the last three have
been downgraded to variants being monitored (VBMs). VOCs and VBMs have shown increased
transmissibility and/or disease severity, resistance to convalescent SARS-CoV-2 immunity and
antibody therapeutics, and the potential to evade diagnostic detection. Methods are needed for
point-of-care (POC) testing to rapidly identify these variants, protect vulnerable populations, and
improve surveillance. Antigen-detection rapid diagnostic tests (Ag-RDTs) are ideal for POC use,
but Ag-RDTs that recognize specific variants have not yet been implemented. Here, we describe
a mAb (2E8) that is specific for the SARS-CoV-2 spike protein N501 residue. The 2E8 mAb can
distinguish the delta VOC from variants with the N501Y meta-signature, which is characterized by
convergent mutations that contribute to increased virulence and evasion of host immunity. Among
the N501Y-containing mutants formerly designated as VOCs (alpha, beta, and gamma), a previously
described mAb, CB6, can distinguish beta from alpha and gamma. When used in a sandwich ELISA,
these mAbs sort these important SARS-CoV-2 variants into three diagnostic categories, namely,
(1) delta, (2) alpha or gamma, and (3) beta. As delta is currently the predominant variant globally,
they will be useful for POC testing to identify N501Y meta-signature variants, protect individuals in
high-risk settings, and help detect epidemiological shifts among SARS-CoV-2 variants.

Keywords: COVID-19; SARS-CoV-2; delta variant; variants of concern; clinical diagnostic test;
monoclonal antibody; OCMS™

1. Introduction

The efforts to control SARS-CoV-2 have been challenged by the emergence of vari-
ant strains that have important implications for clinical and epidemiological decision
making [1,2]. These variants arise through error-prone genome replication and the out-
growth of strains with mutations that provide a selective advantage. The CDC designated
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four of these strains variants of concern (VOCs), namely, B.1.1.7 (alpha, United Kingdom),
B.1.351 (beta, South Africa), P.1 (gamma, Brazil), and B.1.617.2 (delta, India), although alpha,
beta, and gamma have recently been downgraded to variants being monitored (VBMs) [3].
These emerging variants can evade antibody immunity, whether provided by vaccination
or passive immunization with monoclonal antibodies (mAbs) [4,5]. They are often more
transmissible than earlier strains and warrant enhanced mitigation practices [6,7]. Highly
pathogenic variants pose a particular risk to health care facilities, congregate housing
settings, public transportation hubs, and high-risk occupational environments.

As multiple variants can circulate simultaneously within a population, variant-specific
testing is necessary to effectively diagnose and manage SARS-CoV-2 infections [8] and
detect changes in SARS-CoV-2 variant epidemiology [9]. For example, the bamlanivimab/
etesevimab mAb combination (Lilly) is not active against the beta and gamma variants, and
its use is not authorized when the frequency of mAb-resistant variants exceeds 5% [10].

SARS-CoV-2 variants can be differentiated by amino acid changes in the spike protein
receptor-binding domain (RBD) (Table 1), which mediates receptor binding and is one
of the major targets of the neutralizing antibody response [4]. One of the most frequent
changes is N501Y, which defines a meta-signature of 35 convergent mutations that are
associated with increased virulence and evasion of host immunity [11]. The N501 residue
lies on the “right shoulder” of the RBD, where it directly contacts the cellular receptor,
angiotensin-converting enzyme 2 (ACE2) [12]. N501Y provides a selective advantage
over Wuhan-Hu-1 (L) by increasing the affinity of the RBD for ACE2 3- to 16-fold and
collaborating with other RBD mutations (especially E484K) to increase binding and infectiv-
ity [12,13]. An RBD mutation screen for high-affinity ACE2 binding repeatedly produced
de novo N501Y mutants, consistent with the observed worldwide appearance of multiple in-
dependent N501Y-containing variants [14]. Natural selection of N501Y-containing variants
is predicted to increase infectivity in non-immune individuals and enable breakthrough
infections in vaccine recipients [10,15].

Table 1. Major circulating SARS-CoV-2 variants and their RBD mutations.

Variant Lineage CDC Classification RBD Mutation(s)

L Wuhan-Hu-1 Wild type N/A
alpha B.1.1.7 VBM N501Y
beta B.1.351 VBM K417N, E484K, N501Y

gamma P.1 VBM K417T, E484K, N501Y
delta B.1.617.2 VOC L452R, T478K

kappa B.1.617.1 VBM L452R, E484Q
epsilon B.1.429 VBM L452R

VBM, variant being monitored; VOC, variant of concern; RBD, SARS-CoV-2 receptor-binding domain;
N/A, not applicable.

N501Y is found in the alpha, beta, and gamma variants. Two recently emerged variants
further exemplify the threat posed by N501Y-containing SARS-CoV-2 variants, Mu (B.1.621)
and C.1.2 [16,17]. Both possess the N501Y and E484K mutations, which provide resistance
to vaccine immunity and reduced neutralization by mAb therapeutics [18,19]. They also
contain additional spike and non-spike mutations that likely contribute to their enhanced
fitness and infectivity [2]. Mu was first identified in Colombia in January 2021 and C.1.2 in
South Africa in March 2021. Since then, both have spread globally, including to the United
States and Europe.

Variant testing generally relies on nucleic acid amplification tests (NAATs), such as
DNA sequencing, S-gene target failure (SGTF), multiplex PCR, and CRISPR [20–22]. Some
NAATs have been adapted for POC use, with processing times of 30 min or less, but they
require specialized equipment for nucleic acid amplification and detection [23]. Immunoas-
says that detect viral antigens, e.g., antigen-detection rapid diagnostic tests (Ag-RDTs), are
technologically well suited to POC testing, as many can be read visually [23]. They can also
be used for testing at home [24] and may be ideal in low-resource settings [25]. Ag-RDTs are



Diagnostics 2021, 11, 2092 3 of 15

typically lateral flow assays (LFAs) that can be read within 15 min. They are less sensitive
than NAATs, but they have high negative predictive values and are therefore ideal for
POC testing, in which rapid turnaround time and high testing frequency are essential for
pandemic control [26,27]. Positive Ag-RDT results correlate with high viral loads and the
presence of culturable virus, potentially important surrogates of transmissibility [28–30].
Over 30 SARS-CoV-2 Ag-RDTs have been granted an emergency use authorization by the
FDA [31]. However, variant-specific tests have not yet been implemented [23,26].

The implementation of variant-specific antigen tests can follow an incremental strat-
egy directed at ongoing epidemiological trends. Delta is currently the most prevalent
SARS-CoV-2 variant in the United States and globally (https://www.gisaid.org/hcov1
9-variants/; Accessed on 10 November 2021). Therefore, Ag-RDTs are currently needed
to detect infections with emerging non-delta variants that may be vaccine resistant and
capable of challenging delta’s dominance. This study is based on a human mAb that binds
N501 but not Y501 and can differentiate delta from the (formerly designated) VOCs alpha,
beta, and gamma in an ELISA. Furthermore, among the Y501-containing variants, mAb
CB6 (the progenitor of etesevimab, Lilly) [32] binds alpha and gamma, but not beta. An
Ag-RDT incorporating these two mAbs may be useful for variant-specific SARS-CoV-2
POC testing.

2. Materials and Methods
2.1. SARS-CoV-2 Spike Antigens and Antibodies

A Wuhan-Hu-1 SARS-CoV-2 spike protein cDNA was cloned into the XhoI and
NheI sites of a modified recombinant VSV vector containing an additional transcription
start/stop signal between the G and L genes. The recombinant virus was recovered on
293T cells as described previously [33] and filtered through 0.22 µm PVDF filters (Milli-
poreSigma, Burlington, MA, USA)). The filtered virus was then used to inoculate human
BEAS-2B lung cells (gift from R. Plemper, University of Georgia) seeded in Cellstack culture
chambers (Corning, Corning, NY, USA). The infected cells were cultured in serum-free
Optipro medium (Invitrogen, Waltham, MA, USA). Cell culture supernatant was harvested
three days post-inoculation, clarified by centrifugation at 3000 g, and filtered through
0.45 µm PES membrane filters (Nalgene, Rochester, NY, USA). The filtered supernatant
was layered on 20% sucrose in DPBS, and particles were sedimented by ultracentrifugation
in a SW32 rotor (Beckman, Brea, CA, USA) for 1.5 h at 25,000 rpm. Viral particles were
resuspended in phosphate-buffered saline and inactivated with 0.05% beta-propiolactone
(BPL). After overnight incubation at 4 ◦C, the particles were incubated at 37 ◦C for 45 min
to hydrolyze BPL and filtered through 0.22 µm PES filters (MilliporeSigma). To separate the
glycoproteins from the ribonucleoprotein complex, 2% beta-octyl-glucopyranoside (OGP)
was added to the viral particles. After 15 min incubation at room temperature, the mixture
was centrifuged for 1.5 h in a SW55 rotor (Beckman) at 45,000 rpm. After centrifugation,
the supernatant was collected and filtered through 0.22 µm PES filters. For protein analysis,
3 µg particles and 1 µg OGP-solubilized glycoproteins were resolved on a denaturing
SDS-polyacrylamide gel. (Figure S1). The gel was fixed and stained with SYPRORuby
(Thermo Fisher Scientific, Waltham, MA, USA) according to the instructions provided by
the manufacturer. Images of the stained gel were acquired on a Fluochem M instrument
(Biotechne, Minneapolis, MN, USA).

We also expressed a SARS-CoV-2 S1 domain fragment as a trimeric protein in Expi-
293F cells, in part following [34] (Figure S1). We used the original L strain sequence
(GenBank: NC_045512) [35] and produced a fusion protein that included residues G283-
F718 (eliminating the S1 amino terminal domain and extending to the S1–S2 boundary)
and a mutated furin cleavage site. The fusion protein included a mu-phosphatase signal
peptide (N-terminal) and a C-terminal fibritin T4 trimerization domain, followed by a
Myc site and a 6XHis tag. A gene encoding this fusion protein was produced by Twist
Bioscience (South San Francisco, CA, USA) and cloned into the pTwist CMV BetaGlobin
expression vector. The construct was transiently transfected into Expi-293F cells (Thermo
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Fisher) following the manufacturer’s instructions. Due to limited secretion of the protein,
on Day 5, we pelleted the cells by centrifugation at 3000 rpm at 4 ◦C for 20 min. The pellet
was resuspended in Takara xTractor™ buffer (Takara Bio, Mountain View, CA, USA) with
GenDEPOT Protease Inhibitor Cocktail II, EDTA Free (10X) (Thermo Fisher), incubated on
ice with intermittent mixing for 15 min, and then centrifuged at 3500 rpm for 15 min at
4 ◦C. The supernatant was filtered through a 0.45 µm filter, and the protein was isolated
with a Capturem™ His-Tagged Purification Column (Takara). The purity and integrity of
S1 trimer were assessed by SDS:PAGE (data not shown) and Western blot (Figure S1) and
detected with the Anti-6X His tag® antibody [HIS.H8] (Cat: ab18184; Abcam, Cambridge,
MA, USA) and Peroxidase AffiniPure Goat Anti-Mouse IgG, Fcγ fragment specific (RRID:
AB_2313585, Jackson ImmunoResearch, West Grove, PA, USA).

2.2. Commercial Antigens

The following S1 antigens were obtained from Sino Biological, Chesterbrook, PA:
Wuhan-Hu-1 S1 (L): SARS-CoV-2 (2019-nCoV) Spike S1-His Recombinant Protein (Cat:
40591-V08H); Wuhan-Hu-1 S1 with D614G: SARS-CoV-2 (2019-nCoV) Spike S1 (D614G)-His
Recombinant Protein (Cat: 40591-V08H3); Wuhan-Hu-1 RBD (L): SARS-CoV-2 (2019-nCoV)
Spike RBD-His Recombinant Protein (Cat: 40592-V08H); alpha S1 (B.1.1.7, UK): SARS-
CoV-2 (2019-nCoV) Spike S1(HV69-70 deletion, Y144 deletion, N501Y, A570D, D614G,
P681H)-His Recombinant Protein (Cat: 40591-V08H12); beta S1 (B.1.351, South Africa),
only RBD and D614G changes: SARS-CoV-2 (2019-nCoV) Spike S1(K417N, E484K, N501Y,
D614G)-His Recombinant Protein (Cat: 40591-V08H10); beta S1 (B.1.351, South Africa):
SARS-CoV-2 (2019-nCoV) Spike S1 (L18F, D80A, D215G, LAL242-244 deletion, R246I,
K417N, E484K, N501Y, D614G)-His Recombinant Protein (Cat# 40591-V08H15); gamma
RBD (P.1, Brazil/Japan): SARS-CoV-2 (2019-nCoV) Spike RBD (K417T, E484K, N501Y)
Protein (His Tag) (Cat: 40592-V08H86); gamma S1 (P.1, Brazil/Japan): SARS-CoV-2 (2019-
nCoV) Spike S1 (L18F, T20N, P26S, D138Y, R190S, K417T, E484K, N501Y, D614G, H655Y)
Protein (His Tag) (Cat# 40591-V08H14); epsilon S1 (B.1.429, California): SARS-CoV-2 (2019-
nCoV) Spike S1 (W152C, L452R, D614G) Protein (His Tag) (Cat: 40591-V08H17); kappa RBD
(B.1.617.1, India): SARS-CoV-2 (2019-nCoV) Spike RBD (L452R, E484Q) Protein (His Tag)
(Cat# 40592-V08H88); delta RBD (B.1.617.2, India): SARS-CoV-2 Spike RBD (L452R, T478K)
Protein (His Tag) (Cat# 40592-V08H90); N501Y (alpha) RBD: SARS-CoV-2 (2019-nCoV)
Spike RBD (N501Y)-His Recombinant Protein (Cat# 40592-V08H82); E484K RBD: SARS-
CoV-2 (2019-nCoV) Spike RBD(E484K)-His Recombinant Protein (Cat# 40592-V08H84);
K417N RBD: SARS-CoV-2 (2019-nCoV) Spike RBD (K417N)-His Recombinant Protein (Cat#
40592-V08H59); Wuhan-Hu-1 S1 (L) biotinylated: SARS-CoV-2 (2019-nCoV) Spike S1-His
Recombinant Protein, Biotinylated (Cat: 40591-V08H-B).

2.3. Discovery of the 2E8 Human Monoclonal Antibody

We collected sera and peripheral blood mononuclear cells (PBMCs) from 25 patients
at least 14 days following complete recovery from a SARS-CoV-2 infection. All subjects
provided signed informed consent under a protocol approved by the Main Line Hos-
pitals Institutional Review Board. We assayed the sera for immunoreactivity with the
SARS-CoV-2 S1 pseudotyped VSV (VSV G:S1) particles by ELISA. A male volunteer in
his 50s was found to have anti-spike titers >1:8000. He was a Caucasian, without comor-
bid health conditions, diagnosed by RT-PCR testing in New York City in March 2020.
He required hospitalization due to respiratory decompensation but was not intubated.
Blood was sampled 25 days after his last COVID-19-related symptom. We fused CD27+
peripheral blood mononuclear cells and the LCX OCMS fusion partner cell line [36]. Hy-
bridomas were screened for binding to the VSV G:S1 particles by ELISA. A positive well
was subjected to three rounds of single-cell cloning to isolate a monoclonal cell expressing
the anti-SARS CoV-2 mAb, 2E8. For scale up, the hybridoma was adapted to 5% Ultra Low
IgG FBS (Thermo Fisher), and the mAb was isolated from the supernatant using a Pierce™
Protein G column (Cat: 89927; Thermo Fisher). The 6A control mAb was also produced
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from its hybridoma [37]. The 2E8 Ig variable domains were amplified by RT-PCR, using
the Qiagen RNA extraction kit (Cat: 74124; Qiagen, Germantown, MD, USA), and reverse
transcribed with the Omniscript RT Kit (Cat: 205111; Qiagen). Variable domain cDNA
sequences were amplified with consensus primer sets specific for human immunoglobulin
heavy and light chain genes [38]. Amplified sequences were isolated by agarose gel elec-
trophoresis, purified with the QiaQuick Gel Extraction kit (Cat: 28706; Qiagen), sequenced
by Psomagen, Inc. (Rockville, MD, USA), and analyzed with IMGT/V-QUEST [39]. We
also isolated polyclonal IgG from plasma of the individual who provided the 2E8 mAb,
using a Pierce™ Protein G column (Thermo Fisher).

2.4. Production of Recombinant Antibodies

For recombinant 2E8 production, full-length human IgG1 and Igλ cDNAs encoding
the 2E8 mAb heavy and light chain variable regions were produced and subcloned into
pTwist CMV BetaGlobin expression plasmids (Twist Bioscience) [40]. The plasmids were
transiently transfected into Expi-293F cells following the manufacturer’s instructions. On
day 4, cell culture supernatants were harvested and purified with the Pierce™ Protein
G column (Thermo Fisher). Purity and size were confirmed by SDS:PAGE (data not
shown). The 2E8 mAb concentration was measured with a NanoDrop1000 (Thermo Fisher).
Recombinant human mAbs CB6 [32], CR3022 [41], and 4G1 [42] were produced by the
same method.

2.5. Surface Plasmon Resonance (SPR) Spectroscopy

The binding kinetics of the 2E8 IgG with the SARS-CoV-2 S1 protein was determined
using the 2-channel OpenSPR (Nicoya Lifesciences, Kitchener, ON). The assays were
performed at 21 ◦C with buffer PBS 0.05% Tween-20 (PBST). The S1 protein (Wuhan-Hu-1
S1 (L): SARS-CoV-2 (2019-nCoV) Spike S1-His Recombinant Protein (Cat: 40591-V08H))
was immobilized on a nitrilotriacetic acid (NTA) sensor chip following EDTA conditioning.
His-streptavidin (Abcam, Cat: ab78833) was immobilized in the reference channel as a
control ligand. Purified recombinant 2E8 mAb was diluted in PBST supplemented with
0.1% BSA and injected for 5 min at a flow rate of 20 µL/min in a concentration series from
1.23 nM to 100 nM, with 10 min dissociation time. Sensors were regenerated with two
injections of 500mM imidazole per regeneration step, with 40 s contact time and 270 s
dissociation time. Sensorgrams were fitted with TraceDrawer analysis software (Ridgeview
Instruments, Uppsala, Sweden).

2.6. ELISAs

Recombinant antibody binding to SARS-CoV-2 spike antigens: NUNC high-binding
ELISA plates (Thermo Fisher) were coated in PBS with 500 ng/well antigen at 4 ◦C
overnight. Plates were washed three times with PBS containing 0.05% Tween-20 (PBST)
and blocked with blocking buffer (BB) (PBST containing 5% non-fat dry milk) at 37 ◦C for
one hour. Ten-fold serial dilutions of the mAbs were diluted in BB, added in triplicate,
and incubated for 1 h at 37 ◦C. Following 3 washes with PBST, samples were incubated
with horseradish peroxidase (HRP)-conjugated mouse anti-human IgG Fc fragment spe-
cific secondary antibody (RRID AB_2687484; Southern Biotech, Birmingham, AL, USA),
diluted 1:1500 in BB, for one hour at 37 ◦C. After three washes, the plate was incubated
with OPD substrate (P8287; Sigma Aldrich, St. Louis, MO, USA) for 10 min at RT. The
reaction was stopped with 1N HCL, and the optical density (OD) at 490 nm was read
with a Biotek Synergy II microplate reader (BioTek Instruments, Winooski, VT, USA). The
mouse mAb positive control was SARS-CoV-2 (2019-nCoV) Spike Neutralizing Antibody
(RRID:AB_2857934; Sino Biological) and was detected with Goat Anti-Mouse Ig, Human
ads-HRP (Cat: 1010-05; Southern Biotech).

Sandwich ELISAs for specific variant binding: NUNC high-binding ELISA plates were
coated with 100 ng/well 2E8 or CB6 or 500 ng/well anti-6X His tag® antibody [HIS.H8]
(RRID:AB_444306; Abcam), in PBS overnight at 4 ◦C. Plates were washed and blocked
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as above. S1 or RBD proteins were added to the plates (500 ng/well) and incubated for
1 h at 37 ◦C, followed by 3 washes. Biotinylated mouse anti-S1 (RRID:AB_2857934; Sino
Biological), biotinylated with EZ-Link Sulfo-NHS-Biotin, (Thermo Fisher), was added
(500 ng/well) and incubated for 1 h at 37 ◦C followed by 3 washes. Pierce Streptavidin-
HRP substrate (Thermo Fisher) was added at 1:2000 dilution and incubated for 1 h at 37 ◦C
and washed as above, and then the plates were washed and detected with OPD substrate
as above.

2.7. Flow Cytometry-Based Receptor-Binding Inhibition Assay

Antibody interference of S1 binding to human ACE2 receptor on the cell surface of
293T cells was measured by flow cytometry. Briefly, 0.1 µg/mL biotinylated SARS-CoV-2
spike S1 (Cat: 40591-V08H-B; Sino Biological) was incubated with 1 µg/mL recombinant
mAb or a human ACE2-Fc fusion protein (Cat fc-hace2: Invivogen, San Diego, CA, USA)
at 37 ºC for one hour. The S1:mAb mixtures were added to 5 × 105 293T-hsACE2 cells (Cat:
C-HA101; Integral Molecular) and incubated for 30 min at room temperature. Following
incubation, cells were washed twice with PBS containing 2% fetal bovine serum (PBSF)
and incubated with Alexa Flour 488 Streptavidin (RRID: AB_2337249; Jackson ImmunoRe-
search) (1:200 dilution) to detect S1 binding and Goat Anti-Human IgG (H + L) Antibody,
Alexa Fluor 647 Conjugated (RRID:AB_2535862; Thermo Fisher) to detect human IgG
binding. After 30 min incubation, cells were washed twice with PBSF and analyzed using a
BD FACS Canto II (Becton Dickson, Franklin Lakes, NJ, USA). Data were analyzed using
FlowJo 10.6.1. software (Tree Star, Ashland, OR, USA).

2.8. Pseudotyped SARS-CoV-2 Antibody Neutralization Assay

The antibody neutralization assay was obtained from Integral Molecular and per-
formed following their protocol, using the 293T-hsACE2 cell line (Cat: C-HA101; Integral
Molecular, Philadelphia, PA, USA) and the pseudotyped SARS-CoV-2 (Wuhan-Hu-1 strain)
reporter viral particles (RVPs) with luciferase (Cat: RVP-701L, Lot CL-114B, Integral Molec-
ular). Briefly, in a 96-well plate, 5-fold serially diluted mAbs were combined with 10 µL
RVPs and incubated for 1 h at 37 ◦C. Following incubation, 2 × 104 293T-hsACE2 cells were
added to each well, mixed gently by pipetting, and then incubated at 37◦ C with 5% CO2.
After 72 h, SARS-CoV-2 RVP infection was quantified using the Renilla-Glo® Luciferase
Assay System (Cat: E2710, Promega, Madison, WI, USA). Briefly, we centrifuged the plate
for 5 min at 2000 rpm, aspirated the supernatants, and added 30 µL PBS to each well,
followed by 30 µL Renilla-Glo® Assay Substrate (1:100 dilution). After 10 min, relative
luminescence values were measured using the Synergy 2 plate reader (BioTek Instruments).
The values from the negative control wells were normalized and used to calculate the
percent infection for each concentration. All samples were run in triplicate.

2.9. Epitope Binning

We performed competitive binding assays to test whether biotinylated 2E8 could bind
SARS-CoV-2 spike antigens (S1 and RBD) in the presence of the human mAbs CB6, CR3022,
and the murine SARS-CoV-2 (2019-nCoV) Spike Neutralizing Antibody (RRID:AB_2857934;
Sino Biological) [43,44]. Black NUNC MaxiSorP 96-well plates (Thermo Fisher) were
incubated overnight with 500 ng/well S1 or RBD, then washed three times with PBST,
and blocked with BB for 1 h at 37 ◦C. The 2E8 was biotinylated with the EZ-Link Sulfo-
NHS-Biotin kit (Thermo Fisher), and the S1 and sRBD antigen binding curves were found
to be linear between 2.5 pg/mL and 2.5 µg/mL. In the experiments shown, 500 ng/well
of the competing mAb was added to half of the antigen wells and PBS to the other half
and then incubated for 1 h at 37 ◦C, followed by 3 PBST washes. The 2E8 serial dilution
was added to the entire plate. After three more washes, Pierce Streptavidin-HRP substrate
(Thermo Fisher) was added at 1:2000 dilution and incubated for 1 h at 37 ◦C. Following
3 PBST washes, SuperSignal ELISA Femto Substrate (Thermo Fisher) was added (1:1 ratio),
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and relative luminescence values were measured using the Synergy 2 plate reader (BioTek).
Duplicate binding curves were plotted, and the linear portions were used for analysis.

3. Results
3.1. A Human mAb That Neutralizes SARS-CoV-2 through Spike RBD Binding

The 2E8 mAb was cloned from a male in his 50s who had a confirmed case of
COVID-19 contracted in New York City in March 2020. A peripheral blood sample was
obtained 42 days after his first symptom. The 2E8 mAb was cloned using the human
hybridoma method described previously [36]. As antigens, we used VSV-G:S1 particles
(pseudotyped with the SARS-CoV-2 spike protein S1 domain) and a trimeric, S1 protein (S1
trimer) (Figure S1), both based on the reference sequence Wuhan-Hu-1 (L, NC_045512) [35].
We tested the hybridoma-expressed mAb for binding to commercial antigens (spike S1,
spike D614G, and nucleocapsid) and the VSV-G:S1. In a direct ELISA (Figure 1a), the
2E8 bound all four S1 antigens, with somewhat less binding to the VSV-G:S1 and the S1
trimer at the 0.1 µg/mL level (Figure 1a). We then made a recombinant IgG1 2E8 molecule,
which was used for all subsequent studies, as well as recombinant IgG1 mAbs, CB6 and
CR3022 [32,41].

Figure 1. SARS-CoV-2 L strain (Wuhan-Hu-1) spike binding by the 2E8 human mAb. (a) The 2E8 mAb binding in a direct
ELISA to SARS-CoV-2 antigens: S1, S1 D614G, and nucleocapsid (Sino Biologicals); spike-pseudotyped VSV particles; and
a recombinant S1 trimer. Samples were tested in triplicate. Error bars = S.E.M. (not visible due to minimal differences).
(b) S1 binding to 293T-hsACE2 cells in the presence of 2E8, 4G1 (isotype control IgG), CR3022, CB6, and an ACE2-Fc fusion
protein was assessed by flow cytometry. S1 cell binding, x-axis; IgG binding, y-axis. (c) Pseudovirus neutralization assay.
293T-hsACE2 cells were transduced with SARS-CoV-2 luciferase (Wuhan-Hu-1 strain) reporter viral particles (RVPs) in the
presence of the mAbs, 6A (isotype control IgG), CR3022, 2E8, and CB6, and a polyclonal IgG isolated from the 2E8 B cell
donor (P24). Normalized percent infection is shown; samples were tested in triplicate. Error bars = S.E.M. (d) SPR analysis
of 2E8 binding to the spike S1 domain, performed on the Nicoya OpenSPR™; KD = 7.38 ± 0.58 nM.
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The 2E8 inhibited the binding of S1 to the 293T-hsACE2 cell line, reducing the amount
of right-shifted cells from ~33% to 7.5%, compared to the 4G1 isotype control (Figure 1b).
The CB6 mAb also inhibited S1 binding (5%), whereas the CR3022 did not inhibit S1
binding despite adhering to S1 at the cell surface. To test viral neutralization, we used
a reporter viral particle (RVP) assay, in which 293T-hsACE2 cells were incubated with
SARS-CoV-2 (Wuhan-Hu-1 strain) pseudotyped virions that contain a luciferase transgene
(Figure 1c). Cells were infected in triplicate. The data were normalized to the negative
control wells and calculated as the % infection. The 2E8 substantially reduced luciferase
expression (80% reduction at 10 µg/mL) compared to the 6A non-binding control mAb,
the non-neutralizing CR3022 mAb, and a polyclonal IgG (P24) from the B cell donor
sampled for 2E8 mAb cloning. However, its activity was 100-fold less than that of the
CB6 mAb (85% reduction at 0.1 µg/mL). We measured the binding kinetics of the 2E8
with the Wuhan-Hu-1 S1 using the OpenSPR™ Benchtop SPR System (Nicoya Lifesciences,
Kitchener, ON, Canada). The Kinetic analysis is shown in Figure 1d: KD = 7.4 ± 0.58 nM,
kon = 1.4 × 105 M−1 s−1 ± 2.0 × 103 M−1 s−1, koff = 9.6 × 10−4 ± 5.6× 10−5 s−1 (Figure 1d).
This is approximately a three-fold lower affinity than that of the CD6 mAb, 2.49 ± 1.65 nM [32].
The full immobilization sequence of the SARS-CoV-2 S1 domain and 2E8 binding to the
immobilized S1 domain are shown in Figures S2 and S3, respectively.

To gain more insight into the nature of S1 binding, we epitope binned the 2E8 in
comparison to the CB6 and CR3022 mAbs and a neutralizing, pan-specific anti-spike mouse
mAb (Sino Biologicals, RRID: AB_2857934) on the Wuhan-Hu-1 S1 and RBD proteins. We
used a binding assay that analyzes mAb competition at the linear portion of an antigen
binding curve [43,44]. The 2E8 epitope on S1 and RBD clearly overlaps with CB6 but not
CR3022 or the mouse mAb (Figure 2a,b). This is consistent with the observations that CB6
binds S1 in a configuration that overlies the N501 residue and that CB6 and CR3022 bind
non-overlapping epitopes [32,41]. Murine mAb binding was not inhibited by 2E8 or CB6,
suggesting that it can be used in combination with these mAbs in a SARS-CoV-2 sandwich
ELISA (Figure 2c,d).

Figure 2. Epitope binning the 2E8 on the SARS-CoV-2 S1 and RBD. We performed competition
binding assays to test 2E8 binding in the presence of the CR3022, CB6, and the murine anti-S1 mAb.
L-type spike (a,c) or RBD (b,d) was captured on the plate and binding of biotinylated 2E8, or the
anti-spike murine mAb was tested in the presence of non-biotinylated competitor mAbs. Blue, no
competitor; orange, competitor present.
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3.2. Binding of 2E8 to Important SARS-CoV-2 Variants

Present and previously designated VOCs contain mutations in the RBD that can affect
binding by mAbs. We used a direct ELISA to compare the binding of 2E8 and CB6 to
recombinant S1 and RBD proteins, including S1 proteins corresponding to L, alpha, beta,
gamma, and epsilon (B.1.429; L452R, E484Q) (Figure 3). We also tested RBDs corresponding
to delta, kappa (B.1.617.1; L452R, E484Q), and the single mutant K417N. The 2E8 bound all
the spike proteins tested, except for alpha, beta, and gamma (Figure 3a). As these VBMs
share the N501Y RBD mutation, and the alpha contains only the N501Y mutation, we
also tested 2E8 binding to an N501Y RBD; no binding was observed (data not shown).
In contrast, 2E8 binding to RBDs with a single K417N or E484K mutation was not impaired
(Figure 3a). This suggests that the 2E8 interacts with N501 but not substantially with E484
or K417. Equivalent binding to delta, kappa, and epsilon S1 proteins further indicates
that 2E8 does not recognize L452 or T478. This indicates that the 2E8 can distinguish
between N501 and N501Y independent of changes affecting class I (K417) and class II
(E484) neutralizing antibodies.

Figure 3. Differential recognition of SARS-CoV-2 variant spike antigen by direct ELISA. The 2E8
(a), CB6 (b), and the mouse anti-S1 mAb (c) were tested for binding to spike antigens adhered to an
ELISA plate: L RBD (Wuhan-Hu-1), α S1 (B.1.1.7), β S1 (B.1.351), γ S1 (P.1), δ RBD (B.1.617.2), K417N
RBD, κ RBD (B.1.617.1), ε S1 (B.1.429). Error bars = S.E.M.
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CB6 is a well characterized, potent neutralizing mAb that shows reduced neutraliza-
tion activity against many VBMs. CB6 shows no binding to beta and reduced binding
to gamma but no reduction in binding to alpha, delta, kappa, or epsilon (Figure 3b). We
explored the difference between binding to the beta and gamma RBDs, which differ only
at K417 (beta, K417N; gamma, K417T). K417N by itself significantly reduces binding
(Figure 3b). This is consistent with the observations of others [45] and suggests that CB6 is
useful to differentiate N501Y-containing variants alpha and gamma from beta in an ELISA.
The murine mAb bound to every antigen tested, indicating its suitability as a capture mAb
in variant-specific sandwich ELISAs (Figure 3c).

3.3. Spike Variant Binding in a Sandwich ELISA

Sandwich ELISAs can be used to evaluate mAbs for use in LFAs, as both formats
use a pair of non-overlapping mAbs for antigen capture and detection. We tested 2E8
and CB6 binding to variants in a sandwich ELISA format, including an anti-6X His tag
antibody (Abcam, Cat: ab18184) as a positive control for antigen capture. The mAbs were
used to capture the spike antigens, which were then detected with the biotinylated murine
mAb (Figure 4a). We tested binding to the same antigens tested in Figure 3. The 2E8
ELISA bound to L, delta, the K417N mutant, kappa, and epsilon but not to any of the
Y501-containing variant proteins: alpha, beta, and gamma. CB6 bound every antigen
except beta. As in the direct ELISA, reduced CB6 binding was seen with the gamma and
K417N RBDs. The Anti-6X His tag antibody gave an equivalent signal with all antigens.
These results are summarized in Table 2. Taken together, these results confirm the utility of
the 2E8 mAb to differentiate variants by distinguishing N501 from Y501 in the spike RBD.
They further show that CB6 can be used in this format to differentiate Y501-containing
VBMs alpha and gamma from beta.

Figure 4. Differential recognition of SARS-CoV-2 variant spike antigens using a sandwich ELISA
with human mAbs. The mAbs were adhered to the ELISA plate and tested for capture of soluble
spike antigen. Bound antigen was detected with the mouse anti-S1 mAb. (a) Both 2E8 and CB6 are
compared. (b) An anti-His tag capture antibody was used as a positive control. Antigens used (same
as Figure 3): L RBD (Wuhan-Hu-1), α S1 (B.1.1.7), β S1 (B.1.351), γ S1 (P.1), δ RBD (B.1.617.2), K417N
RBD, κ RBD (B.1.617.1), ε S1 (B.1.429).
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Table 2. The binding of 2E8 and CB6 to SARS-CoV-2 spike proteins.

Variant Lineage Tested RBD Mutation(s) 2E8 CB6

L Wuhan-Hu-1 RBD N/A ++ ++
alpha B.1.1.7 S1 N501Y - ++
beta B.1.351 S1 K417N, E484K, N501Y - -

gamma P.1 S1 K417T, E484K, N501Y - +
delta B.1.617.2 RBD L452R, T478K ++ ++

kappa B.1.617.1 RBD L452R, E484Q ++ ++
epsilon B.1.429 S1 L452R ++ ++
N/A N/A RBD K417N ++ +

RBD, receptor-binding domain; S1, spike S1 domain; -, no binding; +, intermediate binding; ++ high binding.

4. Discussion

The emergence of SARS-CoV-2 variants has greatly complicated the efforts to control
and treat the disease. The variants differ in their ability to evade antibody immunity
provided by vaccination or passive immunization and, therefore, may dramatically impact
health care facilities, congregate housing settings, public transportation hubs, and high-risk
occupational environments. Variant-specific POC testing is necessary to protect individuals
in these settings, as well as to screen populations for shifts in SARS-CoV-2 epidemiology.
This study advances the concept of using variant-specific Ag-RDTs as a component of the
SARS-CoV-2 screening and diagnostic paradigm.

Detection of the N501Y spike mutation with the 2E8 mAb is an efficient way dis-
tinguish delta from variants with the N501Y meta-signature [11], such as beta, gamma,
mu, C.1.2, and novel N501Y-containing variants yet to emerge. The N501Y mutation has
originated independently within multiple viral lineages and is positively selected because
it increases infectivity through enhanced ACE2 binding [11,12]. Mutagenesis and modeling
experiments suggest that the N501Y mutation will support the evolution of SARS-CoV-2
variants with increased infectivity and resistance to vaccines and therapeutics [13,45]. As
the delta variant is currently the dominant strain globally, an Ag-RDT to detect infec-
tions with N501Y meta-signature variants will be a powerful tool for disease monitoring
and control.

The N501 residue lies on the “right shoulder” of the RBD and directly interacts
with ACE2 during cell binding [11,12]. The N501Y mutation does not dramatically alter
the overall RBD structure. This suggests that 2E8 binds N501 and/or may be sterically
inhibited by Y501. The 2E8 binding site overlaps the CB6 site, yet its binding is not affected
by changes at K417, and CB6 binding is largely insensitive to the N501Y change [12].
Furthermore, 2E8 has ~100-fold less neutralizing activity than that of CB6, even though its
affinity is only 3-fold lower than that of the CB6 (7.38 ± 0.58 nM vs. 2.49 ± 1.65 nM) [32].
These data highlight the structural independence of these two epitopes in variant RBDs.

The CB6 interaction with the spike has been defined using X-ray crystallography [32].
CB6 is a type I neutralizing mAb that contacts the K417 and N501 residues. CB6 neutraliza-
tion is unaffected by the N501Y RBD mutation, consistent with the relative unimportance
of this residue to CB6 binding. In contrast, the gamma and beta variant changes essentially
eliminate CB6 binding and neutralization [46–48]. Published data show that CB6 binding
affinities for the beta and gamma variants are 42.6-fold and 18.7-fold lower, respectively,
in comparison to the wild-type spike. This is attributable to the K417N mutation, which
alone reduces affinity 21.9-fold compared to a 13.8-fold reduction from the K417T change.
Our results are consistent with these data, which explain how CB6 distinguishes beta from
alpha and gamma in our ELISAs.

The 2E8 and CB6 mAbs provide qualitatively different information, because the
2E8 is a poorly neutralizing non-clinical antibody, whereas the CB6 is part of the etese-
vimab/bamlanivimab therapeutics. A lack of 2E8 binding to a clinical sample suggests
additional mutations associated with an increased risk of breakthrough infections and
treatment failures. In contrast, a lack of CB6 binding strongly suggests that either the beta or
gamma variant is present; furthermore, it predicts resistance to etesevimab. In the current
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delta-dominant milieu, either finding would ideally trigger a follow-up characterization
using an NAAT test.

This study supports a paradigm for the detection of SARS-CoV-2 variants using an
Ag-RDT with variant-specific mAbs. The mAb capture/detection pairs used here should
be readily adaptable for use in LFAs. Ideally, the 2E8 mAb would be used in a multiplexed
assay in parallel with a mAb or ACE2 reagents capable of binding all variants [49–51]. Such
tests can be an important adjunct to NAATs, as they are ideal for POC testing to protect
vulnerable populations and broaden epidemiological surveillance. Both 2E8 and CB6 have
immediate applicability for testing while delta is the most prevalent variant. However,
additional mAbs will be needed as the variant landscape evolves. This objective should be
achievable, as the repertoire of potential variant-specific mutations is well defined, a large
number of anti-spike mAbs have been cloned, and extensive structural data describing
mAb–spike interactions have been generated.

5. Conclusions

It is essential to remain vigilant for emerging SARS-CoV-2 variants that are resistant
to pre-existing anti-viral immunity and can out-compete the delta variant. This study of
the 2E8 mAb supports an immediately applicable paradigm for the detection of important
SARS-CoV-2 variants using an Ag-RDT. Such tests are ideal for POC testing to protect
vulnerable populations, plan medical care, and broaden epidemiological surveillance.

6. Patents

A patent application has been filed by the Lankenau Institute for Medical Research,
which claims the 2E8 mAb and the methods described.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/diagnostics11112092/s1, Figure S1: Pseudotyped VSV-G:S1 and S1 trimer antigens. Figure S2:
Full immobilization sequence of the SARS-CoV-2 S1 domain. Figure S3: Anti-spike antibody 2E8
binding to the immobilized S1 domain.
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