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Abstract: Radiomics with deep learning models have become popular in computer-aided diagnosis
and have outperformed human experts on many clinical tasks. Specifically, radiomic models based on
artificial intelligence (AI) are using medical data (i.e., images, molecular data, clinical variables, etc.)
for predicting clinical tasks such as autism spectrum disorder (ASD). In this review, we summarized
and discussed the radiomic techniques used for ASD analysis. Currently, the limited radiomic
work of ASD is related to the variation of morphological features of brain thickness that is different
from texture analysis. These techniques are based on imaging shape features that can be used with
predictive models for predicting ASD. This review explores the progress of ASD-based radiomics
with a brief description of ASD and the current non-invasive technique used to classify between ASD
and healthy control (HC) subjects. With AI, new radiomic models using the deep learning techniques
will be also described. To consider the texture analysis with deep CNNs, more investigations are
suggested to be integrated with additional validation steps on various MRI sites.

Keywords: AI; radiomic; autism; deep learning; MRI

1. Introduction

Autism spectrum disorder (ASD) is a pervasive developmental disorder with cognitive
abilities that are below normal for their age group. Its core symptoms are categorized by
social communication deficits, repetitive stereotypical interests, and persistent patterns of
behavior [1]. For example, ASD patients have an inability to understand others’ intentions
properly, reduced interactive eye contact, etc. Specifically, ASD endangers the physical and
mental health of children, placing a burden on patients’ social interaction, learning, life,
employment, family, and society [2]. In this context, early diagnosis and early intervention
for children with ASD can greatly improve the lives of those affected [3]. Unfortunately,
ASD has unclear direct indicators and many studies have suggested the genetic factors [4],
immunological [5], and neuropsychological associations [6]. The prevalence of mental
disabilities among children aged six and below in China is 1/1000, and ASD accounts for
36.9% of them [7]. According to the World Health Organization, the prevalence of ASD is
gradually increasing worldwide, with a global average prevalence of 62/10,000 (0.62%),
equivalent to one child with ASD in every 160 children. It has become a major global public
health problem [8].

Most of the diagnostic tools and methods are based on various tests. The present
research on ASD symptoms is not accurate [9]. It is generally believed that children with
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ASD will have many problems in their growth and development [10,11]. So far, there
are incomplete diagnostic tools for ASD. In this context, a multi assessment is usually
considered. ASD could be related to developmental delays and abnormalities. This as-
sessment considers the growth history, parental interview [10], medical examinations, if
necessary, and many other things. According to American Psychiatric Association’s Diagnostic
and Statistical Manual of Mental Disorders, 5th edition (DSM-5), the diagnostic criteria for
ASD consist of persistent defects in social communication, social interaction, and restricted
and repetitive behavior patterns [11]. In [12], the Autism Diagnostic Observation Schedule
(ADOS) is considered the gold standard test because of its reliability, validity, and useful-
ness. Unfortunately, this test-based screening method can only diagnose children when
they have the ability to communicate. We note that there is a great advantage when ASD
could be identified at an earlier age. However, according to traditional methods, ASD is
difficult to identify at an early age [13] due to the gaps in cognitive abilities in infants at
24 months or older [14]. Even with clinical investigation, deep neurological assessment
seems to be more needed. ASD diagnosis is improved by involving many neurological
techniques/features (e.g., brain waves [15,16], magnetic resonance images (MRI) [17], and
eye-tracking techniques [18], etc.). Another aspect of assessment is related to many genes
for predicting ASD [19]. For example, SHANK3 [20] and PTCHD1 [21] are two genes
involved in the pathogenesis of ASD through regulation of the nervous system. ITGB3 [22]
is associated with the pathogenesis of similar disorders. As with genomic analysis, imaging
analysis is a promising technique that leads to identifying ASD patients.

Imaging such as MRI is used to show the anatomy of the brain (e.g., ASD patients) [23].
Two types are the most considered when identifying ASD patients: (1) functional mag-
netic resonance imaging (fMRI) and (2) structural magnetic resonance imaging (sMRI
or MRI) [24]. The fMRI can show brain function, such as active brain regions, while
sMRI shows the structure variations (e.g., growth, deformation, atrophy, etc.). In addition,
sMRI/MRI is currently the most used technique for imaging the brain structure due to
its fast and high-resolution 3D volume imaging. For ASD, sMRI can describe structural
brain changes by analyzing gray matter volume, cortical thickness, cortical complexity, and
co-variance networks, while fMRI relies on the oxygen content of local tissue vessels (blood
oxygen levels depend on functional brain MRI imaging) and can track signal changes
in real time. So far, MRI or fMRI provide relevant imaging features that are related to
ASD [24].

Imaging features (or radiomics) are widely used in medical image analysis. Among
the imaging feature techniques, the following features (radiomics) are the most used
for ASD, namely (1) color features, (2) texture, (3) shape/morphology, and (4) spatial
relationship features. Briefly, color features describe the surface properties of the image. It
is not affected by image rotation and translation; texture features can better describe the
structure image; shape features can effectively describe the geometrical area (i.e., region of
interest); and spatial relationship features can enhance the ability to describe and distinguish
the content of the image. These features have been used for many clinical applications such
as cancer [25–32], neuroimaging [33,34], segmentation [35], etc. As ASD examples, MRI
regional features were computed to study the abnormalities in brain development of ASD
patients [36]. In [37], shape features are considered to predict ASD. In [38,39], multiple
ASD brain developmental abnormalities are detected during infancy. Moreover, many
studies have shown that young children with ASD have a much larger brain size compared
to their normally developing peers [40]. The overall volume and density are significantly
larger than those of normal children (or healthy control) [41]. Briefly, we will describe the
brain differences between ASD and HC as follows:

Surface area: Studies have shown that the early cerebral cortex of children with autism
expands rapidly between six and twelve months. This atypical expansion leads to problems
such as visual receptivity deficits and neglect of social cues [42]. Cortical surface area
increases with an accelerated rate between one and two years of age [43]. It coincides with
problems of social deficits. Another longitudinal study found that the white matter of the
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temporal lobe of the brain increased in autistic children between two and four to five years
old. However, the brain grows at a similar rate to normal during this age interval [44]. As
a result, the overgrowth of the temporal and frontal lobes is an indicator of ASD [8,43,44].

Cerebrospinal fluid: An excessive increase in cerebrospinal fluid can also occur in young
children with ASD. During the first few months of life (i.e., within 24 months), infants
with ASD have a high volume of inter-axial extra-cerebrospinal fluid [45]. Specifically, the
increase in the volume of extra-axial cerebrospinal fluid is more significant at 6 months,
which is about 25% higher than ordinary babies. This is related to movement, communica-
tion, and the condition of ASD. When the extra-axial cerebrospinal fluid continues to rise,
the communication disorder will become more serious [46].

Structural abnormalities in the white matter: The corpus callosum develops abnormally
at six months. Its area and volume increase significantly [47]. This abnormality is positively
correlated with the stereotypical behavior of children with autism [48]. Therefore, structural
abnormalities in the white matter are likely to be an important causal factor in the core
social deficits (especially emotional disturbances) of later autism.

For ASD diagnosis, clinicians have been committed to using neuroimaging tools. It
can automatically distinguish patients with brain diseases from HC or other patients. This
can be achieved using features (e.g., imaging, genes, clinical, omics, etc.) with machine
learning (ML). ML consists of many methods to classify between classes (e.g., neural
networks, support vector machines, random forests, etc.). It learns how to identify the
features associated with ASD and then constructs a relevant model. The accuracy of a
classifier/predictive model is improved by training the model on large datasets. Eventually,
the model can be relied upon to diagnose the presence of ASD. Its accuracy is measured by
how well it is able to predict the true class (e.g., ASD). In this context, we aim in this paper
to discuss the general radiomics/features and AI/ML model for predicting ASD.

The rest of this paper is structured as follows: Section 2 contains a review of the
literature on ASD diagnostic methods. We then discuss the general radiomic methodology
for predicting ASD in Section 3. In Section 4, we present the recent explainable artificial
intelligence (XAI) literature that is related to ASD. Section 5 discusses the strengths and
limitations of ASD predictive models and summarizes the main findings of this study. Last,
Section 6 concludes the paper with future recommendations.

2. Related Works

Increasing attention has been remarkable for ASD since Leo Kanner talked about it
in 1943 and mentioned that it is related to the brain [49–52]. In [49], children with ASD
show larger brain volume than HC. In [50], ASD was related to large and small brain white
matter hyperplasia and early gray matter hyperplasia, respectively. Compared to HC, ASD
children have a larger volume in the amygdala [51] and hippocampus [52,53]. Most of
these studies consider the classifications between ASD and HC according to the difference
in brain volume or thickness, while texture feature based on gray-scale co-occurrence
matrix (GLCM) and Laplacian filter firstly appeared in Chaddad et al. to compare [17]
and classify [54] between ASD and HC. As the prevalence of autism increases year by
year, effective ASD diagnostic methods have become a major concern worldwide. We
summarize three main diagnostic methods as follows:

Electroencephalography (EEG): EEG measures neural activity and can detect children at
risk of developing ASD and, thus, provide an opportunity for early diagnosis. For example,
EEG data is used to compare between ASD and HC [16,55,56]. In [57], the CNN model was
used for classification after converting the data into 2D form. Although EEG can be used to
diagnose ASD, it still has limitations in a number of conditions (e.g., signal noises).

Eye tracking: It is based on characteristic changes of eyes, such as periphery and
iris. In [58], they studied 86 two-year-old’s (26 ASD, 38 HC, and 22 developmentally
delayed children). It shows that eyes with ASD were associated with passive insensitivity
to social signals. In [59], they selected 29 ASD children aged between 5 and 11 years.
Through the visualization of real faces and avatars, it was possible to study how children
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with ASD recognize emotions. For ASD patients, eye tracking is not an optimal method
because it takes a long time for children to cooperate. In addition, it is not flexible for
clinical diagnosis.

MRI/fMRI scans: Data quality of MR imaging is improving in function with the
advanced technology. Previous studies have shown that brain structures in patients with
ASD can differ significantly in terms of volume, thickness, and texture [54,60]. However,
this scenario is still under radiomic and AI investigation for ASD diagnosis. Yet, no clear
tools have been involved in the clinical system. However, we find many works prove that
classifier models using extracted features from MRI/fMRI images have the ability to predict
ASD patients. For example, a support vector machine (SVM) model has shown an accuracy
value of 66.8% to predict ASD images [24]. In [61], 12 classifiers are compared, namely
six nonlinear shallow ML models, three linear shallow models, and three deep learning
models. A dense feedforward network provides the best results among the 12 models
with an AUC value of 80%. This demonstrates that even when using features derived from
imaging data, deep learning methods, such as the dense feedforward network, can provide
higher predictive accuracy over classical ML methods [61]. To let the AI models be feasible
for ASD prediction, more investigation is recommended since the performance metrics
are still limited. In addition, no clear study is considered when the images from an MRI
scanner consist of 7 Tesla or above. We believe that more resolution of images will let the
radiomic with texture analysis be more informative for predicting ASD [17,54].

3. Radiomic Methodology

To provide a wider perspective to the readers, the radiomic pipeline is simply given in
Figure 1. It illustrates the processing steps for the radiomic pipeline that consist of image
acquisition and preprocessing, segmentation, feature extraction, statistical analysis, and
classifications. We describe, below, a detailed review of each step.

Figure 1. General radiomic workflow for predicting ASD. Schematic illustration of the entire radiomic process, including
image acquisition with preprocessing with symptomatic ASD patients undergoing MR (MRI and/or fMRI) scans. After
image segmentation, radiomic features are extracted and selected. Data aggregation for statistical modeling, with classifier
modeling employed for classifying ASD from HC.

3.1. Image Acquisition and Preprocessing

The purpose of preprocessing is to improve the visual effect of the image. It can
purposely emphasize the overall or partial characteristics of the image for various sce-
narios [62]. For example, it can improve the color, brightness, and contrast of the image.
There are two main methods for image enhancement: (a) Spatial domain, which includes
image gray-scale transformation, histogram correction [63], local statistics method, image
smoothing, and image sharpening, etc. As in [64], fast non-rigid registration can improve
the contrast of the brain structures. In [65], the image enhancement method is based on
brightness level and gradient modulation. This method reduces the dynamic range of the
brightness level and enhances the details (i.e., texture) of the image. (b) Frequency domain,



Diagnostics 2021, 11, 2032 5 of 16

which transforms an image into the frequency domain for filtering using Fourier analysis.
The image is then inversely transformed back into the spatial domain. The most used
frequency-domain methods are the homomorphic filtering [66] and wavelet transform [67].
Therefore, image denoising plays a major role for texture analysis. It can be described by
probability distribution function and probability density function. We note that the texture
analysis could be related to the scale of image filtering and then to ASD [68].

3.2. Normalization/Standardization

Image normalization is one of the preprocessing steps to avoid image distortions
(i.e., translation, rotation, scaling, and skew). However, the main challenge for ASD
studies is related to MRI images derived from multisites [69–71]. For example, scans
from multisites lead to high differences of texture features between these sites. In [72],
min–max normalization is used to overcome the image variation and convert the im-
age values to a range of [0–1]. Normalization of images here improves the learning rate,
reduces the dependence on initialization, and reduces the training time to overcome
the overfitting problem. In [73], non-parametric models are used to correct intensity in-
homogeneities and avoid the scanner distortions. In [74], MRI was normalized using
voxel-based morphometry (VBM) that is available in the Statistical Parametric Mapping
software (https://www.fil.ion.ucl.ac.uk/spm/software/, accessed on 19 September 2021).
VBM technique is spatially normalizing the MRI scans to the same stereotactic space to
correct nonuniform intensity variations [75]. Recent work shows that domain adaptation
can effectively reduce the site variation using the CNN models [71], (e.g., Table 1). However,
more work on image normalization for multisite variation is needed to extract the texture
features for radiomic analysis.

Table 1. Summary of ASD studies using MRI/fMRI with machine learning models.

Work Data Source Cases Number Data Type FEM Classifer Model Acc Sen Spec AUC

[76] FSL 50 ASD and 50 HC TfMRI SPF DWT-CNN 80% 84% 76% -

[77] ABIDE-I+II 23 ASD and 15 HC Rs-fMRI SPF SVM 80.76% - - -

[78] NDAR 185 subjects sMRI-fMRI SF RF 80.8% 84.9% 79.2% 81.92%

[79] ABIDE 505 ASD and 530 HC Rs-fMRI SPF Ridge Return 71.98% - - -

[80] ABIDE 518 ASD and 567 HC rs-fMRI SF CNN 71.8% 81.25% 68.75% 67%

[81] Private 40 ASD and 36 HC MRI SF SVM 84.2% 80% 88.9% -

[82] ABIDE-I 505 ASD and 530 HC rs-fMRI OF DNN 70% 74% 63% -

[24] ADHD-200 279 ASD and 279 HC fMRI TF SVM 64.91% 44.16% 81.91% -

[83] ABIDE-I+II 76 ASD and 75 HC MRI TF and SF SVM 64.3% 77% 82% 69%

[84] ABIDE-I 155 ASD and 186 HC T1-MRI SF HGNN 76.7% - - -

[85] ABIDE-I+II 255 ASD and 276 HC rs-fMRI SF SVM 75.00–5.23% 90.62% 90.58% -

[86] ABIDE 539 ASD and 573 HC T1-MRI SF 6 classifiers >80% - - -

[87] ABIDE 539 ASD and 573 HC rs-fMRI OF SVM 86.7% 87.5% 85.7% -

[88] ABIDE 99 ASD and 85 HC fMRI SPF CNN 68.54% 69.49% 67.58% -

[89] ABIDE-I 270 ASD and 305 HC rs-fMRI SPF ANN 74.54% 63.46% 84.33% -

[90] ABIDE-I 48 ASD and 24HC MRI TF and SF RF 98% - - 52.5–53%

[91] ABIDE 49 ASD and 41 HC rs-fMRI SF SVM 78.89% 85.71% 70.73% -

[92] ABIDE 539 ASD and 573 HC fMRI SF CNN 87% - - -

[93] ABIDE-I 505 ASD and 530 HC fMRI SF CNN 70.22% 77.46% 61.82% 74.86%

[72] ABIDE-I 79 ASD and 105 HC 3D-fMRI OF CNN 94.7% - - 94.703%

[85] ABIDE-I+II 255 ASD and 276 HC rs-fMRI SF SVM-RFECV 75.0–95.23% 90.62% 90.58% -

[94] ABIDE-I 368 ASD and 449 HC sMRI SF AE, MLP 85.06% - - -

[95] ABIDE-I+II 620 ASD and 542 HC rs-fMRI SF 3D-CNN,SVM 72.3% - - -

[96] ABIDE-I 505 ASD and 530 HC rs-fMRI OF CNN 82.69% 88.23% 88.67% -

https://www.fil.ion.ucl.ac.uk/spm/software/
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Table 1. Cont.

Work Data Source Cases Number Data Type FEM Classifer Model Acc Sen Spec AUC

[97] ABIDE-I 403 ASD and 468 HC fMRI OF SVM 76.8% 72.5% 79.9% 81%

[98] ABIDE-II 26 ASD and 26 HC MRI SF SVM-RFE 73% 71% 75% 81%

[99] ABIDE-I 403 ASD and 468 HC rs-fMRI SF RNN-LSTM 74.74% 72.95% - -

[100] ABIDE-I 505 ASD and 530 HC fMRI SF SAE 70.8% 62.2% 79.1% -

[101] ABIDE-I 505 ASD and 530 HC sMRI SF RFE+RF 72% - - -

[94] ABIDE-I 368 ASD and 449 HC sMRI SF AE 85.06 ± 3.52% - - -

[102] NDAR 47 ASD and 24 HC rs-fMRI OF SVM-RFE 86% 81% 88% -

[103] ABIDE 539 ASD and 573 HC fMRI SF RCE-SVM 70.01% - - -

[87] ABIDE-I 539 ASD and573 HC rs-fMRI SF SVM 86.7% 87.5% 85.7% -

[104] NDAR 33 ASD and 33 HC fMRI SF 1D-CNN 77.2% 78.1% 76.5% -

[105] ABIDE 41 ASD and 41 HC rs-fMRI OF KNN 85.9% 79.3% 92.6% -

SPF: spatial feature, TF: texture features, SF: shape/morphological feature, OF: other features, rs-fMRI: resting state-functional magnetic
resonance imaging, T1-MRI: T1-weighted magnetic resonance imaging, ABIDE I and II: autism brain imaging data exchange I and II, NDAR:
National Database for Autism Research, FSL: fMRI software library, SVM-RFECV: support vector machine-recursive feature elimination
with a stratified-4-fold cross validation, AE: autoencoder, SAE: stacked autoencoder, DWT-CNN: discrete wavelet transform-convolutional
neural network, MLP: multi-layer perceptron, DNN: deep neural networks, KNN: Kohonen neural network, RNN: recurrent neural
networks, LSTM: long short-term memory, SVM-RFE: support vector machines-recursive feature elimination, RCE-SVM: recursive cluster
elimination-support vector machines, FEM: feature extraction method, Acc: accuracy, Sen: sensitivity, Spec: specificity, AUC: area under
curve, HGNN: hypergraph neural network, +: combination, >: is greater than, ±: plus or minus.

3.3. Segmentation/Labeling

ASD segmentation aims to label the brain regions (e.g., region of interest). An image
is divided into several regions with similar properties. Currently, clustering and deep
learning techniques are the main methods for segmenting brain MRI images [106]. For
example, deep learning is able to properly segment the corpus callosum (CC) [107]. This
technique reduces the need for manual or semi-automatic segmentation of neuroanatomical.
Manual and semiautomatic segmentation can be performed on a brain MRI using the 3D
Slicer tool [108]. However, deep learning-based segmentation offered significant algorithms
for labeling brain regions in an automatic fashion [109]. Actually, the most used tool for
ASD image preprocessing, standardization, and brain region labeling is the FreeSurfer [110].
Specifically, it processes the 3D structure brain image, and performs automatic cortical and
subcortical labeling. By generating accurate gray and white matter, and cerebrospinal fluid
regions, it can compute cortical thickness and other surface characteristics. Specifically,
for ASD, FreeSurfer is widely used in the preprocessing of MRI images. For example, it is
used to preprocess and extract features from MRI images of ASD patients [78]. While it is
analyzed, high-quality MRI images in [111]. It is also considered when generating brain
morphological features, including regional volume, surface area, average cortical thickness,
and Gaussian curvature [112].

3.4. Features Extraction

An image consists of many features that define the behavior of an image [113]. Specifi-
cally, feature extraction techniques aim to find the most important information to save com-
putational work and data storage. Briefly, we summarize three types of image features that
are used for predicting ASD: (1) shape features, (2) spatial features, and (3) texture features.

Shape features: This type of feature is related to the geometric and morphological
region of interest (e.g., brain subcortical regions). For example, many studies consider the
shape features to predict ASD patients [50–52]. The shape feature problem is represented
by unreliable results when the target is deformed, in addition to distortion due to changes
in viewpoint. We note that Hough transform and Fourier shape descriptors are classical
methods to extract shape features. Despite the wide use of shape features, this type of
feature does not describe the content of the image. Then, in combination with other
informative features, it may improve performance metrics [17,54].
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Spatial features: It refers to the spatial position or relative direction. It can strengthen
the description and distinction of image content, while the rotation and change of the
scale can affect the spatial characteristics. There are two ways to extract the spatial relation-
ship: (1) extract the features using the automatic segmentation (objects, colors, etc.) and
(2) by generating an index. Alternatively, you can segment the image uniformly, extract
the features from each image separately, and consider the index. Furthermore, spatial
features have advantages in diagnosing ASD patients of different ages and genders. For
example, spatial filter can provide highly discriminative features between ASD patients
and neurotypical subjects [114]. However, there are few studies that used spatial features
for ASD diagnosis due to the constraint of high-dimensional data and a relatively small
dataset [115].

Texture feature: Most of the current literature for predicting ASD based on images
is based on shape features. However, the potential of MRI images has not been fully
developed. Fortunately, studies such as [17,54] have proved that texture features can
classify patients with ASD. Specifically, texture features reflect the homogeneity of the
image [17,54]. These features describe the surface properties of the image [116]. Specifically,
the texture is based on a statistical order that is widely used for many topics. For example,
gray-level co-occurrence matrix (GLCM) is currently one of the best statistical techniques
for computing image texture. Computation of GLCM reflects comprehensive information
about the direction, adjacent interval, and gray level of an image. In addition, the local
patterns and their arrangement rules are analyzed using this technique.

3.5. Feature Selection

Due to the high-dimensional nature of MRI data, features may consist of redundant
information [87]. Feature selection is a procedure to choose the dominant features. Specif-
ically, feature selection algorithms aim to find the most predictive features by removing
irrelevant or redundant features. This procedure improves the classifier model performance
and reduces the running time [117]. These algorithms can be classified to three methods,
namely filter, wrapper, and embedded [118,119].

Filter method (FM): The features of each dimension are given weights which represent
the importance of the feature. These features are then ranked according to the weights [120].
A number of features are selected using a threshold. The typical methods are Pearson
correlation coefficient and Chi-square test. This kind of feature selection algorithm has low
algorithmic complexity and is suitable for large-scale datasets. However, it has a lower
classification performance compared to wrapper algorithms.

Wrapper method (WM): It divides the features into different combinations, evaluates
the combinations, and compares them with other combinations. Typical methods are repre-
sented by recursive feature elimination (REF), stepwise selection, backward elimination,
etc. These algorithms are convenient with some studies. Despite the advantage of wrapper
methods, more investigations to generalize these algorithms are needed [121].

Embedded method (EM): The feature selection algorithm itself is embedded in the
learning algorithm as a component [118]. ML models are used for training, then obtain
the weight coefficients of each feature. Features are selected based on coefficients from
the largest to smallest (similar to the filter method, except that the coefficients are trained).
This method is considered an efficient technique to select predictive features.

Table 2 reports the techniques used recently for feature selection in ASD studies. For
example, wrapper methods are generally used more compared to filtering and embedding.
As expected, the predictive feature derived WM is considered higher performance than
FM [122]. Due to the difficulty of setting parameters, the use of EM is limited. More details
about feature selection techniques are reported in [123].

3.6. Statistical Analysis and Classification Models

To predict the ASD images, features extracted are used as input to a classifier model.
Many ML models could be used as predictive models. The ML models are generally
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divided into two types: supervised and unsupervised [124]. An algorithm based on
supervised learning uses labeled input and output data, while an unsupervised learning
algorithm does not. We summarize two groups of ML methods: conventional methods
(i.e., SVM, KNN, RF, etc.) and deep learning (e.g., CNN, RNN, LSTM, etc.).

Table 2. Summary of feature selection techniques related to ASD.

Work Feature Group Feature Selection Type Technique
[81] SF WM Identify the feature group that achieves the best performance through greedy

forward feature selection.
[87] OF WM A feature selection algorithm based on a minimum spanning tree is proposed to

find the optimal feature set.
[101] SF WM Use recursion to perform feature selection.
[125] OF FM Use Pearson correlation coefficient to filter redundant features.
[126] OF WM Use recursive feature elimination (RFE) to rank the importance of features and

then remove irrelevant features recursively.
[127] OF WM Use the reverse order feature selection algorithm.
[128] OF WM Adopt a restricted path depth-first search algorithm (RP-DFS).
[129] OF FM Chi-square is used to remove non-significant features.
[91] SF EM Use principal component analysis (PCA) to select the principal components.
[130] SF EM Use the sure independence screening (SIS) method. Multiple features are re-

moved in each iteration.

SF: shape/morphological feature, OF: other features, FM: filter method, WM: wrapper method, EM: embedded method

Table 1 reports the performance metrics in predicting ASD using the current feature
extraction techniques and various image sources (ABIDE (http://fcon_1000.projects.nitrc.org,
accessed on 19 September 2021), NDAR (https://nda.nih.gov, accessed on 19 September
2021) and FSL (https://www.fmrib.ox.ac.uk/datasets/, accessed on 19 September 2021)). We
found that shape/morphological and texture features generally lead to a higher accuracy rate
compared to shape or texture features. We noted that the use of texture features is still limited
due to the limited resolution of MRI/fMRI scans with 1.5 or 3 Tesla. Thus, more investigation
related to texture analysis is recommended for improving the performance metrics.

Conventional method: The most popular is the SVM. It is in many neuroimaging
tasks [81,131,132]. However, SVM is not recommended when the samples are less than the
features number due to the overfitting. In this context, random forest can solve this problem
by automatically selecting the features to build the classifier model [133]. RF combines
random feature selection and bootstrap aggregation to build a collection of decision trees
that exhibit controlled variation [134]. To tune the parameters of conventional models, a
grid search on a validation set is considered. In addition, many types of validation steps
such as cross validation are used to test the classifier model [135].

Deep learning: Deep learning is a part of ML models, advanced with new hardware
technology such as a graphics processing unit (GPU). Recently, deep learning demonstrated
remarkable classification results in clinical applications [136]. In [88], a hybrid model
consisting of CNN with brain features was used to improve the performance metrics. In
addition, some literature combined conventional methods and deep learning to improve
the performance and overcome overfitting [95].

Statistical and performance metrics: For evaluating the classifier models, many perfor-
mance metrics are considered. However, the common measurements are the area under the
receiver operating characteristic (ROC) curves (AUC), accuracy, sensitivity, and specificity.
To compare between classes (e.g., ASD versus HC), significance tests are used to measure
the p value. Correction of significant values (e.g., p < 0.05) is recommended following the
Holm–Bonferroni correction (or using other correction techniques) [137]. For example, we
note that the range value of classification accuracy is 70.01–94.7% and depends on the fea-
tures extracted, classifier model, and data source (see Table 1). We observed that the most
common models are CNNs and SVMs. However, CNN demonstrates higher performance

http://fcon_1000.projects.nitrc.org
https://nda.nih.gov
https://www.fmrib.ox.ac.uk/datasets/
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metrics compared to other models [138]. Moreover, ML or deep learning algorithms require
a large dataset to generalize a reliable predictive model, which is not currently available
in a medical field. To obtain benefit from deep learning, a transfer learning technique is
used to overcome the overfitting and time computation [139]. Although, for the potential
of deep learning for clinical tasks, more work is required to understand the mechanism of
such algorithms (e.g., information flow of CNN for classifications [140]).

4. Explainable Artificial Intelligence

Recent literature for reporting clinical research involving deep learning will real-
ize the full potential of machine learning tools [141,142]. Unfortunately, these models
(i.e., algorithms) work as a black box in the medical field [143]. It is not explained how
to correlate inputs and outputs or the mechanism of information flow in the hidden lay-
ers [144]. XAI provides interpretability for algorithms, models, and tools. It aims to make
AI algorithms more transparent to improve human understanding of these models. For
example, CNNs can automatically extract features based on their convolutional layers and
its interpretability is crucial for personalized diagnosis (e.g., ASD [145], Coronavirus [146],
etc.). The output can be mapped back to the input space to see which parts of the input
are discriminative [147]. In [148], loss function is considered for each filter within the
high-level convolutional layer to produce interpretable activation patterns. In [149], con-
volutional layers of CNN models are quantified to understand the information flow from
input to output of architecture for predicting Alzheimer disease using MRI images. EEG
data were used to detect emotions in ASD patients, and an interpretable deep learning
technique (SincNet) was investigated [150]. In addition, an explainable SVM model for
ASD identification was studied by demonstrating a link between the dominant features
and the model outcome [151].

Applying such XAI models in predicting ASD images will provide more details about
the brain subcortical regions related to ASD. Most of the XAI is focused on model-agnostic
post-hoc explainability algorithms due to their easier integration and wider reach [152]. In-
terpretable AI techniques can be generally characterized from a different perspective [153].
While the former strategies are easier to grasp and hence adopt, their effectiveness is often
limited, necessitating the deployment of more sophisticated procedures. Deep radiomic
analysis, in which the CNN layers are encoded and utilized as input into a classifier model,
is one of the most active study areas in XAI [34,146,149]. In this context, deep radiomic anal-
ysis seeks to provide high-level transparency of deep learning algorithms in the health data
(e.g., images). Despite XAI gaining traction, evaluating these methods is still a challenge
and poses an open question in the future of XAI research in clinical tasks.

5. Discussion

Using radiomics with AI models is considered a pioneering development of precision
medicine work [149,154] such as in mental disorders (e.g., ASD) [155]. This is motivating
to make a systematic overview of the radiomic application for ASD diagnosis. There are
only two classes (ASD and HC) available in the public domain, which are not able to
investigate all subtypes of ASD. Although fMRI and sMRI data are publicly available in
the ABIDE dataset, the results of combining these multisite data for ASD diagnosis using
radiomics and deep learning models have not yet been investigated. As we previously
mentioned, the texture features depend on the MRI sites that led to bias when we combined
all ABIDE sites. Nowadays, assistive tools using domain adaptation algorithms can reduce
this issue; however, the problems still dominate when implementing these algorithms in
real-world scenarios.

This study demonstrated the various uses of radiomic models in diagnosing and
classifying ASD, along with their strengths and limitations. Critical examples of radiomic
pipelines for ASD with classification accuracy, different evaluation measures, and essential
feature selection, and their techniques and dataset sources, have been discussed and
analyzed. However, certain prevailing problems need to be addressed, such as learning
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from limited data, considering inappropriate sampling methods, classification between
imbalanced datasets, and how we involve the XAI in radiomic analysis. Integrating AI
in clinical settings would not only improve our knowledge of ASD but will also allow
healthcare practitioners to employ these methods as clinical decision support systems for
screening and diagnostic processes. To sum up, we summarize the main findings of this
study on ASD as follows:

• MRI-based models for the diagnosis of ASD are more suitable for clinical trials than
eye tracking and CT image analysis. MRI can provide more detail of the brain.

• The brain of ASD patients can be heterogeneous in many locations (e.g., hippocampus,
amygdala, etc.). The variation could be captured by shape features (e.g., volume,
thickness, etc.).

• Deep learning is still challenging to diagnose ASD patients due to the lack of bench-
mark datasets [156].

• XAI could be the solution as a diagnostic model for ASD. However, it needs more
investigation in real-world scenarios.

• The public dataset needs to be continually expanded to avoid inappropriate studies
due to insufficient data. In addition, it needs to be ensured that there is no error in
results due to age, gender, etc. [157].

6. Conclusions

In this paper, we present a survey of AI related to ASD using MRI/fMRI scans. We
discussed the general radiomic features and classifier models that are used for predicting
the ASD images. Recent studies show that the texture features are informative features.
Among the deep learning models, CNN demonstrates the highest metrics. However, more
investigation is needed in the context of XAI. For future work, high-precision and high-
transparency models can be established by quantifying the deep texture from CNN models
to predict early ASD patients.
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