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Abstract: There is an emerging trend to employ dynamic sonography in the diagnosis of entrap-
ment neuropathy, which exhibits aberrant spatiotemporal characteristics of the entrapped nerve
when adjacent tissues move. However, the manual tracking of the entrapped nerve in consecutive
images demands tons of human labors and impedes its popularity clinically. Here we evaluated
the performance of automated median nerve segmentation in dynamic sonography using a vari-
ety of deep learning models pretrained with ImageNet, including DeepLabV3+, U-Net, FPN, and
Mask-R-CNN. Dynamic ultrasound images of the median nerve at across wrist level were acquired
from 52 subjects diagnosed as carpal tunnel syndrome when they moved their fingers. The videos
of 16 subjects exhibiting diverse appearance and that of the remaining 36 subjects were used for
model test and training, respectively. The centroid, circularity, perimeter, and cross section area of the
median nerve in individual frame were automatically determined from the inferred nerve. The model
performance was evaluated by the score of intersection over union (IoU) between the annotated and
model-predicted data. We found that both DeepLabV3+ and Mask R-CNN predicted median nerve
the best with averaged IOU scores close to 0.83, which indicates the feasibility of automated median
nerve segmentation in dynamic sonography using deep learning.

Keywords: carpal tunnel syndrome; nerve segmentation; ultrasound; deep learning

1. Introduction

Entrapment neuropathy, the spatial constraint of a peripheral nerve by its surrounding
tissues, is usually debilitating by bringing about numbness and weakness of the innervated
tissues. Carpal tunnel syndrome (CTS) is the most common entrapment neuropathy and
involves the entrapment of median nerve (MN) at across wrist level [1,2]. Traditionally,
the confirmatory diagnosis and severity evaluation of CTS are conducted using nerve
conduction study (NCS) and needle electromyography. However, they are invasive and
may be unacceptable by the patients. Even in symptomatic CTS patients, normal results
in NCSs are not uncommon [3]. A non-invasive and easily accessible diagnostic tool
is needed.

Ultrasonography (US) has been proposed as a promising complement for the diagnosis
and evaluation of CTS in conjunction with NCS [4,5], particularly in conditions with normal
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NCS results [6–8]. Morphological changes, such as enlargement of cross-sectional area
(CSA) of the MN at the pisiform level measured with US [9], might indicate CTS with
the same accuracy as electrodiagnostic studies [10]. In addition, an increasing line of
evidence suggests that dynamic US may reveal abnormal motion patterns of the entrapped
MN [11–14]. Compared to healthy subjects, patients with CTS exhibited significantly less
deformation in terms of circularity and less displacement magnitude of the MN during
finger and wrist motions [11–13]. Furthermore, the degrees of changes in either MN
morphology or displacement during wrist motion may be related to CTS severity [14,15].
However, currently the tracking of MN in consecutive US images still depends on manual
recognition and delineation, which requires massive human labors and makes it hard to
implement the analysis clinically. Moreover, images acquired in dynamic US as the nerve
is moved is usually noisier than static images because of the motion artifacts [16], which
further increases the difficulty in manual tracking. An appealing solution is to employ
machine learning to automatically segment the tracked nerve in the images.

In musculoskeletal US, deep-learning (DL) has been emerging as the leading machine-
learning tool to segment a variety of anatomical structures, such as muscles [17,18],
nerves [16,19–25], and spinous processes [26]. Because of their small size and speckle
noises, differentiation of nerves from adjacent tissues is generally a challenging task in
clinical practice [21], which drives the development of DL-based approaches to assist the
nerve visualization. The reported applications include automatic segmentation of the
brachial plexus at the axillary level [21,23–25], and the femoral nerve at the level of the
femoral crease [22], to assist training of nerve block. Most of the approaches employed
models based on convolutional neural network (CNN) [19], particularly U-Net [16,20–25],
an architecture of symmetric u-shape to overcome the progressive loss of feature resolution
when the structure increases depth, by combining the spatial information of extracted
features at low level with the high-level semantic information [27]. However, there was
few research evaluating nerve segmentation using later DL models, such as DeepLabv3+,
which improves the preservation of the spatial information during the extraction of the
semantic features [28]. Moreover, there was scanty report focusing on nerve segmentation
in dynamic US, which is expected to be more challenging than static US because of the
motion artifacts. Hafiane et al. utilized CNN reinforced by comparing the spatial and
temporal consistency of US acquired by probe movement to automatically segment MN at
forearm level [19]. However, the nerve was indeed segmented using an active contouring
model rather than DL-based approaches. In addition, the procedure that collects the image
sequence by probe movement cannot be classified as dynamic US, which is acquired when
the subject performs a particular movement as the probe is held stationary; the quality
of image acquired by the former is expected to be less noisy because the change in the
image content is fully controlled by the examiner. Furthermore, application employing
state-of-the-art DL models to automatically extract the morphological dynamic of MN
during fingers motion in patients with CTS is barely addressed. Festen et al. recently
reported the automatic segmentation of MN in dynamic US using U-Net [16]. The data
were collected from 99 CTS patients and better results were found in images acquired
during finger flexion. However, the morphological dynamic of MN during fingers motion
was not addressed. A U-Net based model combined with convolutional long short-term
memory to segment MN and extract the morphological data was recently reported, but
there were only two patients enrolled [20]. Besides, a main obstacle hindering the blooming
of DL systems in musculoskeletal US applications is the scant access to well-labeled US
datasets for model pretraining, mostly resulting from the expensive annotation by human
experts [29,30]. A popular approach addressing this challenge is to transfer knowledge
learned from publicly available, large datasets of natural images, such as ImageNet, to the
US domain. This process is generally accomplished by using models pretrained on the
large image datasets as the network backbone for feature extraction, and fine-tuning the
pretrained models on the US data [31]. The discrepancy between the human experts in
annotation may be another issue in tasks regarding the morphological measurement.
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The objective of this study is to demonstrate the feasibility of implementation of DL
models as clinical tools to aid an automated, objective visualization of MN boundaries
in dynamic US acquired during finger flexion and extension. Our primary interest is to
evaluate the feasibility of using several state-of-the-art DL models to effectively segment
the MN in dynamic US. Both semantic and instance segmentation were employed for
comparison. The former directly localizes MN by enclosing all pixels classified as the nerve
in an image, while the latter localizes many MN candidates in the image and associates
each candidate with a prediction confidence score. Since there is only one MN in individual
frame, the candidate with the highest confidence score was chosen to represent the MN
in the frame. This strategy was anticipated to prevent from the erroneous segmentation
of more than one nerve in the input image, an issue frequently encountered in semantic
segmentation. In the present work, DeepLabv3+ [28] and Mask R-CNN [32] were chosen
for the main semantic and instance segmentation approach, respectively, because both
were ranked as the top-performing architectures during our subject recruitment. Other
modules chosen for performance comparison were U-Net and feature pyramid network
(FPN). U-Net has been widely utilized for nerve segmentation, while FPN is reported to
achieve results comparable with that of DeepLabv3+ but more computationally efficient
for feature extraction of high resolution [33,34]. U-Net and DeepLabv3+ correspond to the
two structures popular in semantic segmentation, symmetric encoder-decoder and atrous
convolution, respectively. A few ablations including variation of model backbone, size of
input image and output stride, were conducted to determine the balance between inference
speed and segmentation effectiveness. Transfer learning and fine-tuning were applied with
model backbones pretrained on ImageNet and coco_2017_train dataset. Our secondary
interest is to compare the morphological features of the MN annotated by one human
expert with that inferred by the models trained with datasets labeled by another expert. The
features retrieved from the images included the spatiotemporal profile of nerve centroid,
the changes in nerve circularity, and the changes in nerve CSA, during finger motions. We
found that, both DeepLabV3+ and Mask R-CNN pretrained on ImageNet and coco dataset
predicted MN with the score of intersection over union around 83% in average, and the
morphological features of the MN exhibited the minimal discrepancy in the spatiotemporal
profile of the nerve centroid between those predicted by the models and annotated by
another expert. Our works evaluated the effectiveness of MN segmentation across a
variety of the state-of-the-art DL models, and successfully demonstrated the feasibility
of automatic extraction of the morphological dynamics of the MN during fingers motion
using these models. To our best knowledge, our work was the first time to demonstrate
the common pattern of the morphological dynamics extracted by the DL models, and our
data suggested that the spatiotemporal profile of the nerve centroid may exhibit the most
consistent behaviors when comparing the morphological dynamics of MN acquired from
the subjects of similar population but annotated by different investigators. Our works
highlight the potentiality of incorporating these models into an US machine to reduce the
burden of clinicians in the acquisition of the morphological dynamic of MN in dynamic
US, which may facilitate the disclosure of additional MN features characterized in CTS.

2. Materials and Methods
2.1. Model Principles

Two techniques in automatic image annotation greatly benefitted by DL are semantic
and instance segmentation. Semantic segmentation assigns each pixel in image a class label
according to the object within which the pixel is enclosed, and all objects of the same class
are grouped as one entity. On the other hand, instance segmentation goes a step further
and assigns individual detected object a distinct instance. The DL models employed in the
present work were U-Net, DeepLabv3+, and FPN for semantic segmentation, and Mask
R-CNN for instance segmentation, respectively. The main principle of the four models is
briefed in the following.
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2.1.1. U-Net

Fully convolutional network (FCN), the pioneer of DL-based semantic segmentation
methods, replaces the fully connected layers in CNN by convolutional layers to classify
individual pixel [35]. Since the task of segmentation mainly involves the classification of
individual pixels, the spatial information at pixel level is important. The so-called skip
connection combining the semantic information retrieved in the higher layers with the
intermediate output rich in spatial cues from the lower layers is employed, to reduce
the progressive loss of feature resolution in the former, a main issue when the structure
increases depth. The follower U-Net [27] proposed an encoder-decoder structure to obtain
better semantic information with preserved spatial information. The encoder path down–
samples the input image by successive pooling operation and convolution striding to extract
semantic information, while the decoder path progressively up-samples and combines
high-level features with the low-level ones provided by the encoder path. The decoder path
is symmetric to the encoder one and lead to a symmetric u-shaped architecture. In addition
to nerve segmentation, the FCN and U-Net based structures had been widely employed in
the automatic segmentation of a variety of anatomical structures in US, including liver [36],
breast [37,38], and thyroid [39].

2.1.2. DeepLabv3+

An alternative to the encoder-decoder structure is atrous (dilated) convolution [40],
which replaces the convolution striding by dilating the kernel scale to broaden the receptive
field. Irfan et al. applied atrous convolution to extract semantic feature for breast lesion in
US, with preservation of the spatial information during the progression of feature extrac-
tion [41]. Atrous convolution-based methods have recently dominated the leaderboards of
semantic segmentation models, and DeepLabv3 is one of the top-ranked architectures [42].
DeepLabv3 consists of an improved atrous spatial pyramid pooling (ASPP) module [43]
that employs atrous convolution of different dilation rates in parallel to capture the object
features at multiple scales, as well as an average pooling to extract the global features, and
the results are concatenated together to yield the last feature map. DeepLabv3+ [28], an
improved version of DeepLabv3, combines the ASPP module with an encoder-decoder
structure. With DeepLabv3 being the encoder, DeepLabv3+ adopts a simple decoder
module that utilizes skip connection with the low-level features to obtain sharper object
boundaries. Flores et al. recently compared the segmentation performance of breast tumor
in US using various DL models and shows that the results obtained by DeepLabV3+ were
slightly better than that of U-Net [44].

2.1.3. FPN

Although the application of dilated convolution effectively improves feature resolu-
tion, the complex architecture also increases the cost of computation time and memory,
which limits the choice of backbone network and the size of input image. FPN was orig-
inally designed for fast object detection [34]. Unlike U-Net, FPN is characterized by an
asymmetric, lightweight decoder consisting of single block in individual stage and shared
channel dimension. Kirillov et al. added a lightweight dense-prediction branch on top of
FPN, called semantic FPN, to enable pixelwise classification [33]. Semantic FPN has been
shown impressive results in semantic segmentation comparable with the top-performing
dilation-based systems such as DeepLabV3+ on Cityscapes dataset [33,45]. Wu et al. re-
cently proposed a FPN-based model enhanced by a boundary-guided feature enhancement
module to improve the segmentation of breast lesion in challenging US datasets [46].

2.1.4. Mask R-CNN

As for instance segmentation, one of the most successful models is Mask R-CNN
(regions with CNN features), which involves localizing individual region of object with
a bounding box, followed by the object classification and segmentation [32]. In addition
to CNN, Mask R-CNN utilizes FPN to enhance extraction of feature of different scales. A
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region proposal network scans through the feature map of various levels to propose region
candidate of objects enclosed by bounding boxes. Object classifier and FCN module are
then employed in parallel for each proposed region to tune the mask segmenting individual
objects. Mask R-CNN has been employed for the automatic segmentation of the breast
tumors on sonograms with a mean average precision of 0.75 [47].

2.2. Subject Recruitment and Dataset of Dynamic US Images

Institutional review board approval was obtained for this prospective study (IRB
No. NTUH-REC 201711014RINA). All participants provided written informed consent.
Inclusion criteria were (1) aged 20–80 years; (2) diagnosed with idiopathic CTS according
to clinical and electrodiagnostic criteria [48,49]. Exclusion criteria were histories of wrist
surgery, traumatic wrist injury within 2 years, previous wrist injection within 3 months,
history of peripheral nerve injuries (brachial plexopathy, cervical radiculopathy or thoracic
outlet syndrome), history of thyroid or autoimmune disease, and inability to cooperate
with study protocol. Subjects exhibited bifid MN were excluded in the present work since
this type of MN morphology is rarely seen. There were totally 52 subjects enrolled in this
study from 2018 to 2019. Dynamic US images of MN were acquired by one physiatrist
with 3-year experience of musculoskeletal US, using a 13–18 MHz linear transducer (Aplio
500, Canon Medical Systems Europe B.V., Zoetermeer, the Netherlands). All participants
were positioned with the palm facing upward and the wrist in neutral position. The
transducer was placed at the level of proximal inlet (between the pisiform and scaphoid
bones), and MN was identified in the transverse view. The participants were instructed to
perform neutral extension of their fingers initially, followed by full flexion (clenched-fist
posture) and then back to finger extension (open-palm posture). The transducer was tilted
accordingly during motions to avoid anisotropy of the MN. Such flexion-extension cycles
were repeated for 5 times, lasting for 10–15 s. Active finger flexion and extension induce
MN displacements, and the transverse MN sliding within the carpal tunnel can be clearly
observed in US dynamic imaging. Video clips with 38 frames-per-second were recorded.
Note that there might be more than one video acquired for a single subject. The videos of
16 subjects exhibiting a large variety of image features as determined by the expert were
selected for the test dataset and excluded from the training procedure. The videos of the
remaining 36 subjects were used for model training. Sequential images were picked at
an interval of four or ten frames from the videos and the MN boundaries were manually
labeled by another physiatrist with musculoskeletal US expertise using Labelme [50].
The training and test dataset consisted of 15,215 and 3410 frames, respectively. Before
model training and test, each frame was transformed from RGB to gray scale to remove
the visual enhancement effects provided by the US manufacturer. Data augmentation
included random brightness and contrast adjustment, random resizing, and random left-
right flipping, were applied to the training frames.

2.3. Model Implementation

The DL models chosen for semantic segmentation of MN in dynamic US were
DeepLabv3+, U-Net, and the semantic FPN proposed in [33]. Mask R-CNN was cho-
sen as our instance segmentation model and the object with the highest confidence score
in each frame was as selected as MN. Each approach was trained for 465K iteration with
batch size of 2. The learning rate was decreased by 10 at the 274K and 366K iteration. The
training process for individual approach with various initial setting was conducted once.
For DeepLabv3+, we followed the training protocol described in [28] and set the learning
schedule as initial learning rate of 0.015, a weight decay of 0.0001, a momentum of 0.9, and
frozen batch normalization parameters. The default output stride was set as 16 and the
size of the input image was cropped into 721 pixels in height and 961 pixels in width due
to constraint of GPU memory. For Mask R-CNN, we also followed the training protocol de-
scribed in [51], except that the initial learning rates were changed to 0.002 because the size
of our dataset was different than that of ImageNet and coco_2017_train. The values of the
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weight decay and the momentum were set as the same as that in DeepLabv3+. We trained
U-Net and FPN with the same parameters as Mask R-CNN, except that the initial learning
rate was set to be 0.1, since their architectures for feature extraction were similar to but sim-
pler than that of Mask R-CNN. When the performance of the four models was compared,
ResNet-101 initialized with weights pretrained on ImageNet was chosen as the main CNN
backbone. In this context, the encoder path of U-Net was implemented with ResNet-101,
and the output feature maps of the last layer of each stage were skip-connected to the de-
coder path. The channels of the feature maps were reduced by applying 1 × 1 convolution
before being concatenated with the feature in the decoder path to maintain the structural
symmetry. The effects of backbone variation on the model performance were evaluated by
implementing DeepLabv3+ with modified aligned Xception-65 for image segmentation
and ResNet-101 for feature extraction [28], as well as implementing U-Net and FPN with
ResNext, which mixed the split-transform-merge idea from inception module into ResNet
to improve feature extraction [52].

The performance of DeepLabv3+ and Mask-R-CNN was further compared by varying
training settings. Both models were initialized with weights pretrained on coco_2017_train
dataset and fine-tuned on the US data. We trained DeepLabv3+ with output Stride 8 and
16, respectively, by changing the atrous rate in the encoder path. Note that the atrous rates
in ASPP were changed accordingly to retain the same designed scale of feature extraction,
which were 12, 24, 36 for output Stride 8, and 6, 12, 18 for output Stride 16, respectively.
Due to the constraint of GPU memory, the input images used for DeepLabv3+ model
training with output Stride 8 were randomly cropped into 481 by 481 pixels in size, which
was the maximum size allowed by our system at that output stride setting. To maintain the
global and local spatial features, we performed multi-scale training for the DeepLabv3+
model by randomly resizing the US image by 0.5, 0.75, 1, 1.25, or 1.5 times at each iteration
to augment data. The resized images were further cropped into a fixed size of 721 by
961 or 481 by 481 pixels for data input. Multi-scale training was also conducted in Mask
R-CNN model implemented with ResNet-101 or ResNext as the backbone, with that the
input images were randomly resized into 360, 540, 720, 900, or 1080 pixels in height in each
mini epoch. Note that unlike DeepLabv3+, input images of arbitrary size in the training
session of Mask R-CNN were allowed and image cropping was not required. In the present
work, cross-validation was not performed, since our primary goal was to evaluate the
feasibility of using these models to effectively segment MN in dynamic US, rather than the
achievement of the best results by improving the hyper-parameters.

2.4. Morphology Metrics

The centroid position, circularity, perimeter, and CSA of the MN in individual frame
were automatically determined using the binary mask that segmented the nerve from the
image. Let the Cartesian coordinates x and y axes denote the radial-ulnar and palmar-
dorsal directions on the image, respectively, and the numbers of pixel along the x and y
direction are w and h, respectively. The MN CSA was calculated from the zeroth moment
of the binary mask, namely

CSA =
x=w

∑
x=0

y=h

∑
y=0

x0y0 f (x, y) =
x=w

∑
x=0

y=h

∑
y=0

f (x, y), (1)

where f (x, y) represents the values of the binary mask at pixel (x, y), and is equal to 1 and
0 as the pixel is inside and outside the mask, respectively. Hence, the CSA is indeed the
total number of pixels classified as the MN. The coordinates of the MN centroid,

(
cx, cy

)
,

was derived from the first moment of the mask along the x and y direction and expressed as

cx =
x=w

∑
x=0

y=h

∑
y=0

x1y0 f (x, y)/CSA =
x=w

∑
x=0

y=h

∑
y=0

x f (x, y)/CSA, (2)
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cy =
x=w

∑
x=0

y=h

∑
y=0

x0y1 f (x, y)/CSA =
x=w

∑
x=0

y=h

∑
y=0

y f (x, y)/CSA. (3)

The MN circularity was defined as

circularity = 4π · CSA
p2

MN
, (4)

Which indicates the segmented MN resembled a circle if the value was equal to 1, and
the smaller the value, the less roundness of the nerve shape. pMN denotes the perimeter
of the segmented nerve and was calculated using the arcLength function in OpenCV. To
facilitate comparison with the data reported in literature, the calculated values of centroid
position, perimeter, and CSA were further converted into unit of cm based on the scale
provided by the US images.

2.5. Performance Evaluation

The model performance was evaluated by calculating the values of the intersection
over union (IoU) between the ground truth data labeled by the physiatrist and that pre-
dicted by the models for individual frames in the test video, as well as the inference time.
To minimize the weighting effect resulting from the unbalanced number of the sampled
frame in each video and highlight the difference among the videos, the effectiveness of
MN segmentation using various models was evaluated per video, rather than individual
frame. The inference accuracy of each video was represented by the variable average IoU,
defined as the average of the IoU values of all the sampled frames in the video. Significance
of the performance difference across various models was analyzed. The data normality
was checked using the Kolmogorov–Smirnov and Lilliefors test. For normally distributed
data, the significance of differences was evaluated by ANOVA with post hoc Tukey’s test,
whereas the Kruskal–Wallis test were employed for non-normally distributed data. A
p-value less than 0.05 was considered significant. The inference time was calculated by
averaging the time spent for MN prediction in individual images across the video. All the
computation was conducted using chips of NVIDIA GEFORCE GTX 1080 Ti.

3. Results
3.1. Effects of Model and Backbone Variation on Inference Performance

We first evaluated the performance of various models implemented with different
backbones in MN segmentation, as summarized in Table 1. The effectiveness of the
MN segmentation in each test video was quantified by the average IoU and there were
totally 81 videos included in the test set. It appears that the highest score was achieved
by DeepLabv3+ implemented with Xception-65, immediately followed by Mask R-CNN
implemented with ResNet-101, although the difference of the average IoU scores across
different models was not statistically significant. The fastest inference speed was achieved
by FPN implemented with ResNet-101, which was roughly 0.05 s per frame or 20 frame
per second (FPS). Improvement in the average IoU score were also seen in U-Net and FPN
model when the backbone was changed from ResNet-101 to ResNext-101-32x8d, although
the scores still fell behind that of DeepLabv3+ and Mask-R-CNN. The 32x8d notation
indicates that the backbone consisted of 32 groups of residual transformation blocks of
the same topology (cardinality = 32) at the second stage, with that the channel number of
individual groups was 8. These results agree well with the fact that ResNext-101-32x8d
defeats ResNet-101 in the ImageNet classification dataset and is considered to be better in
feature extraction. The tradeoff, however, is the substantial increase of the computation
time, which was roughly doubled when the backbone was changed. As for DeepLabv3+,
changing the backbone into Xception-65 did improve the IoU score without considerable
increase of computation time. Note that the model was trained with output Stride 16 and
without cropping of the input image, and tested with output Stride 16 in both backbone
conditions. These results indicate that DeepLabv3+ and Mask R-CNN are capable of
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providing MN automatic segmentation with considerable accuracy at an inference speed
approximately of 10 FPS.

Table 1. Performance of MN segmentation using different models with varied backbone.

Model Backbone Segmentation Type Average IoU Average Inference Time (s)

U-Net ResNet-101 Semantic 0.7873 ± 0.0882 0.0623
U-Net ResNext-101-32x8d Semantic 0.8031 ± 0.0668 0.1239
FPN ResNet-101 Semantic 0.8016 ± 0.0647 0.0556
FPN ResNext-101-32x8d Semantic 0.8132 ± 0.0608 0.1146

DeepLabv3+ ResNet-101 Semantic 0.8045 ± 0.0628 0.0794
DeepLabv3+ Xception-65 Semantic 0.8243 ± 0.0527 0.0984
Mask R-CNN ResNet-101 Instance 0.8216 ± 0.0564 0.0849

3.2. Effects of Various Training Conditions on Model Performance

Given that the top-ranked IoU scores in MN segmentation were achieved by DeepLabv3+
and Mask R-CNN, we then leveraged the performance of these two models with various
training conditions. Table 2 lists changes in the performance of DeepLabv3+ model trained
in conditions with various output strides, with and without cropping of the input image,
and in that of DeepLabv3+ and Mask R-CNN trained with and without the presence of
multi-scale input. Almost all of the resultant values of averaged IoU exceed 0.82. Although
the difference of the IoU scores across various conditions was not statistically significant,
the highest score occurred when the MN was predicted by DeepLabv3+ trained with
smaller output stride, multi-scale input, and cropping of the input image. For both models
trained with various settings, the variation of the IoU scores across all test videos was
around 0.05–0.06, roughly 7% of the averaged value. Note that the number of output stride
is referred to as the scale ratio of the input image to the feature map after down-sampling.
Hence, a smaller output stride was expected to yield a high-level feature map of higher
resolution, yet cost more computation time. However, halving the output stride number
did not substantially improve the IoU score in our dataset. Training with multi-scale input
improved the IoU score in both DeepLabv3+ and Mask R-CNN models, irrespective of
whether the input image was cropped or not in the former. This is reasonable because
multi-scale input enriched the training dataset by providing MN image of a variety of
size, which prevented from imbalanced training of a particular level for feature extraction
when the MN size in the input image was out of the size range processed by the level.
As mentioned earlier, we were forced to randomly crop the input image into a smaller
size to meet the constraint of GPU memory when the model was trained with smaller
output stride. Although the size of the cropped image was still larger than that of MN,
we thought that the random cropping may impede the learning efficacy if part of the
MN was cropped from the input image. However, training with cropped image did not
always yield lower accuracy in MN prediction, which is against what we assumed. These
results suggest that, as for our dataset, training DeepLabv3+ with local features may be
more beneficial than with global features. In general, the echotexture of MN exhibits a
so-called honeycomb appearance which is characterized by a collection of hypoechoic
fascicles interspersed with a meshwork of echogenic perineurium and the whole structure
is enclosed by a hyperechoic outer lining (the epineurium). Image cropping may force
the model to learn to detect MN primarily based on the local feature (i.e., the honeycomb
appearance), rather than a structure surrounded by an intact hyperechoic outer lining, if
the MN was partially cropped from the input image. As for Mask R-CNN model, change
of backbone from ResNet-101 to ResNext-101-32x8d alone doubled the computation time
without substantially improving the IoU score. Taken together, these data highlight the
importance of multi-scale input to improve the inference accuracy in both models.
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Table 2. Model performance with various training conditions.

Model Backbone Training
Output Stride

Test Output
Stride

Training
Image Size

Multi-Scale
Input Average IoU

Average
Inference
Time (s)

DeepLabv3+ Xception-65 16 16 721,961 No 0.8249 ± 0.0533 0.0982
DeepLabv3+ Xception-65 16 8 721,961 No 0.8278 ± 0.0508 0.3651
DeepLabv3+ Xception-65 16 16 481,481 No 0.8247 ± 0.0569 0.1002
DeepLabv3+ Xception-65 16 8 481,481 No 0.8244 ± 0.0513 0.3539
DeepLabv3+ Xception-65 8 8 481,481 No 0.8179 ± 0.0673 0.3644
DeepLabv3+ Xception-65 16 16 721,961 Yes 0.8315 ± 0.0562 0.1018
DeepLabv3+ Xception-65 16 8 721,961 Yes 0.8285 ± 0.0533 0.3700
DeepLabv3+ Xception-65 16 16 481,481 Yes 0.8342 ± 0.0480 0.1024
DeepLabv3+ Xception-65 16 8 481,481 Yes 0.8283 ± 0.0454 0.3706
DeepLabv3+ Xception-65 8 8 481,481 Yes 0.8356 ± 0.0481 0.3718
Mask R-CNN ResNet-101 No 0.8242 ± 0.0541 0.0845
Mask R-CNN ResNet-101 Yes 0.8317 ± 0.0555 0.0846
Mask R-CNN ResNext-101-32x8d No 0.8252 ± 0.0580 0.1525
Mask R-CNN ResNext-101-32x8d Yes 0.8300 ± 0.0570 0.1536

3.3. Conditions Affect the Model Inference

Given that there was roughly 7% variation of the IoU values across the test videos in
both models, we wondered whether the IoU score was dependent on the quality of the
input images. Inspecting individual test frames and the associated IoU scores revealed
that the low IoU scores mainly arose from two image conditions, a MN with blurred
appearance, and a MN with clear yet ambiguous pattern. Figure 1 exhibits examples of
segmented MN with high and low IoU scores owing to the aforementioned conditions.
The MN enclosed by the light blue line was predicted by DeepLabv3+ trained with multi-
scale input, backbone of Xception-65, training crop size of 481 by 481 pixel, and output
Stride 8, whereas that delineated by the light green line was predicted by Mask R-CNN
implemented with ResNext-101-32x8d and trained with multi-scale input, with that the
dark green rectangle represented the bounding box of the highest confidence score. The true
MN region determined by the experts was marked with the red line. The numbers above
individual panel denoted the corresponding IoU score of the particular frame. In Figure 1A,
both segmentation methods yielded high IoU scores, and the predicted MN regions were
almost the same as that enclosed by the experts. In Figure 1B, the MN appeared blurred,
probably owing to that the image was not sampled fast enough to catch the moved MN,
and the MN predicted by both models only partially matched that localized by the experts.

Figure 1C demonstrates an issue commonly encountered by all segmentation-based
methods. The MN appeared clearly defined, but there was a hypoechoic structure (marked
by the pink spot) adjacent to the MN and the two structures may be mistaken for a
fragmented MN by inexpert specialists. The hypoechoic structure was indeed part of the
flexor digitorum tendons, which are normally positioned next to the MN. Since semantic
segmentation is aimed to perform pixelwise classification, the hypoechoic structure was
erroneously labeled by DeepLabv3+ as another instance of MN of tiny size (labelled by
pink color). However, we solved this problem by enforcing the model to choose the
segmented region of the largest area as the MN, which successfully recapitulated the true
MN region. In contrast, the trained Mask R-CNN model mistook the two structures for the
MN. This discrepancy probably resulted from the difference in spatial resolution between
the high-level feature map extracted by the two models. The feature map of the highest
level generated by Mask R-CNN had an output stride equivalent to 32, which was far
larger than that set in DeepLabv3+ and may be less robust to differentiate local structure of
ambiguity. Thus, erroneous prediction occurred once the proposed bounding box mapped
to the feature map of the highest level obtained the highest confidence score.
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Figure 1. MN US images with various IoU scores. The first, second, and third column refers to the input image, and the
image superimposed with MN region predicted by DeepLabv3+ and Mask R-CNN, respectively. The red, light blue, and
light green line represents the ground truth, and the segmentation of MN predicted by DeepLabv3+ and Mask R-CNN,
respectively. The dark green rectangle denoted the bounding box of the highest confidence score for MN in Mask R-CNN.
The numbers above individual panel denoted the corresponding IoU scores. (A) MN image with high IoU scores in both
models; (B) MN with blurred appearance and low IoU scores in both models; (C) MN image with clear but ambiguous
appearance. The MN predicted by DeepLabv3+ with the largest area successfully recapitulated the true MN region, and
that of a smaller size (labelled with pink color in the hypoechoic structure) was excluded from the final output. However,
the MN segmented by Mask R-CNN mistook the hypoechoic structure for part of the nerve.

3.4. Morphological Characteristics of the Inferred Median Nerve

Of great interest to most clinician in the application of the DL-based models is to
automatically retrieve several morphological features from the inferred nerve to assist
clinical diagnosis and management. The morphological features addressed in the present
work were the temporal profile of the centroid position of the inferred MN, and the
temporal variation of the MN circularity, CSA, and perimeter, during the finger motions.
Figure 2 demonstrated an example of these profiles traced from the inferred MN during
four successive motions of fingers flexion and extension of one subject. During the finger
motion cycle, the MN centroid exhibited larger displacement in x direction (positive for
scaphoid side) than that in y direction (positive for palmar side) and moved primarily
toward the negative x direction; the CSA and perimeter was roughly enlarged by 20% and
10% during finger flexion, respectively, and shrunk back when fingers extended; the nerve
became less circular during finger flexion and recoiled as fingers extended; and the centroid
displacement exhibits a biphasic pattern, corresponding to the flexion and extension of
the fingers.
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Figure 2. Typical temporal profiles of the morphological characteristics of an inferred median nerve (MN) during fingers
motion, including the x (Cx) and y (Cy) coordinates of the MN centroid, the cross-sectional area (CSA) and the perimeter of
the MN, the MN circularity, and the centroid displacement between consecutive images. The data were grouped by four
cycles of finger flexion and extension, with that the vertical gray dash lines represent the beginning of each cycle and the
black dotted lines denote the end of the cycle. Data collected within and out of individual cycles were depicted in solid and
dotted line, respectively.

We then examined the common pattern of these features by pooling the data derived
from the MN inferred in the test dataset. Data associated the finger flexion and extension
phase in individual motion cycle were manually separated based on the biphasic pattern
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of the centroid displacement as shown in Figure 2. Figure 3 depicts the histogram of the
time spent for the individual finger flexion and extension phase extracted from the motion
cycle, respectively. The duration of the finger flexion and extension that occurred the most
frequently was around 0.68–0.71 and 0.47–0.5 s, respectively; namely the whole motion
cycle lasted slightly over 1 sec. The dotted and dash line shown in Figure 3 represented
the 90% and 50% value of the maximum count (frequency). We defined D90 and D50 as
the duration ranges with frequency larger than or equal to the 90% and 50% value of
the maximum, respectively. Hence, the D90 and D50 were 0.52–0.71 and 0.47–0.87 s for
the flexion, and 0.47–0.5 and 0.42–0.55 s for the extension phase, respectively. The varied
duration of individual phases rendered it difficult to profile the common pattern against
time simply by aligning the data sequence of individual phase with respect to the phase
beginning and averaging them at each time point. To facilitate alignment of the temporal
sequence, we normalized the phase durations of similar length with respect to themselves
and resampled the data at an interval of 1/29 relative to the normalized duration. In
other words, there were totally 30 data points resampled at a fixed interval throughout the
collected data sequence. The resampled data sequences were temporally aligned, averaged,
and profiled against the normalized duration.

Figure 3. Histogram of the time spent for fingers flexion and extension that were estimated from the inferred images. The
dotted and dash line represented the 90% and 50% value of the maximum count, respectively. The duration ranges include
the bars of count larger than or equal to the 90% and 50% value were defined as D90 and D50, respectively.

Figures 4 and 5 depicted the temporal profiles of the MN CSA, perimeter, circularity,
and centroid offset with respect to the normalized duration in finger flexion and extension
phase, respectively. The centroid offset represented the spatial deviation relative to the
centroid position at the beginning of finger flexion phase. At each normalized time point,
the data were represented by the average (the solid line) and that plus and minus one
standard deviation (the dash lines). In both Figures 4 and 5, the data shown in the left
and right column were collected from the phases of duration confined by D90 and D50,
respectively. In general, the data shown in the left and right column followed a similar
trend with that the latter appeared smoother owing to their larger sample size. The MN
CSA was shrunk about 12% in average when finger flexed and recoiled as finger extended.
The change in the nerve perimeter during finger motion was in accordance with that of
CSA. The nerve circularity varied minimally throughout the motion cycle and the value
was approximately 0.6, which indicates that most of the time the nerve shape appeared as
an equilateral triangle. The nerve centroid was displaced approximately 1 mm in average
in a reversible manner during the motion, with that the majority of displacement occurred
within the 40% duration from the initiation of the flexion and extension phase.
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Figure 4. Temporal profiles of the morphological characteristics of inferred MNs during fingers flexion, including the
CSA and the perimeter of the nerve, the MN circularity, and the centroid displacement throughout the motion. The phase
duration was rescaled by normalization. The data shown in the left and right column were pooled from the data of duration
confined by the D90 and D50 defined in Figure 3, respectively. In individual panel, the solid line represents the average of
the resampled data, and the dash lines stand for average plus and minus one standard deviation, respectively.
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Figure 5. Temporal profiles of the morphological characteristics of inferred MNs during fingers extension, including the
CSA and the perimeter of the nerve, the MN circularity, and the centroid displacement throughout the motion. The phase
duration was rescaled by normalization. The data shown in the left and right columns were pooled from the data of duration
confined by the D90 and D50 defined in Figure 3, respectively. In the individual panel, the solid line represents the average
of the resampled data, and the dash lines stand for average plus and minus one standard deviation, respectively.
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We finally examined whether the inference results met the clinical consensus. We
compared the morphological features calculated from the inference data with that manually
measured from the same image sequences by another expert who did not participate the
labeling of the ground truth in the model training. Figure 6 exhibits the comparison using
data collected from the phases of duration confined by D90 shown in Figure 3. It appears
that the inference data agree well with that measured manually in the MN perimeter and
circularity during finger flexion, the MN CSA during finger extension, and the centroid
displacement throughout the motion. In contrast, the inferred MN CSA exceeded the
manually measured ones by approximately 13% in average during finger flexion; during
finger extension, the inferred nerve perimeter was shorter than the manually measured
ones by approximately 7% in average, and the average discrepancy between the inferred
and manually measured circularity was around 8%. These discrepancies may be attributed
to the errors in model prediction, given that the best IoU values delivered by our model
were less than 0.84. Besides, the data disagreement may arise from the subjective variation
across observers in defining the MN boundaries. If the difference in boundary definition
was consistent throughout the nerve peripheries, it was expectable that there would be
the least difference in the centroid displacement throughout the finger motion, since the
centroid positions would vary insignificantly when the boundaries were homogeneously
enlarged or contracted.

Figure 6. Cont.
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Figure 6. Temporal profiles of the morphological characteristics of MNs labelled manually during
fingers flexion and extension, including the CSA and the perimeter of the nerve, the MN circularity,
and the centroid displacement throughout the motion. The phase duration was rescaled by normal-
ization. The data were pooled from the data of duration confined by the D90 defined in Figure 3.
In the individual panel, the solid line represents the average of the resampled data, the dash lines
stand for average plus and minus one standard deviation, and the dotted line refers to the average
calculated from the inference data, respectively.

4. Discussion

In the present work, MN was automatically delineated and traced across US image
sequences acquired from CTS patients in a robust manner using DL-based segmentation
models. The averaged IoU score exceeded 0.83 when the model was DeepLabv3+ imple-
mented with backbone of Xception-65, and trained with multi-scale input, cropped input
images, and output Stride 8, and Mask R-CNN implemented with ResNext-101-32x8d
as backbone and trained with multi-scale input. When fingers actively flexed and then
extended, the inferred MN was displaced preferentially toward the ulnar side only for
1 mm in average and then back to the radial side; the MN CSA was slightly shrunk by
about 12% in average in finger flexion and swelled back as finger extended, with that
over 84% (data range above mean minus one standard deviation) of the estimated CSA
was larger than 0.1 cm2 throughout the motion; accordingly, the nerve perimeter was
shortened by about 8% when finger flexed and recoiled back during finger extension; the
nerve circularity changed minimally and the nerve appeared as an equilateral triangle most
of the time throughout the motion. These findings were consistent with those reported
previously [9,11,12].

US has been regarded as a useful tool for CTS diagnosis in conjunction with NCS.
Proposed diagnosis criteria for CTS using US include MN enlargement at carpal inlet, as
well as limited MN deformation in terms of circularity and reduced MN displacement
during finger and wrist motions [11–13]. However, the manual recognition and delineation
of MN in consecutive images require massive human labors. Therefore, the most popular
approach is to analyze the MN in the initial and final frames of the selected motion,
which ignores the temporal variation of the nerve pattern across the motion and may
overlook features potentially correlated with the disease progression and severity. In the
current study, we successfully used DL-based models for automatic segmentation of MN in
dynamic US. Our work may have potential to be incorporated into a US machine to perform
real-time MN segmentation, and automatically estimate MN CSA and displacement during
finger motion. This will allow clinicians to acquire the dynamic information regarding
MN morphology and movement more efficiently. Furthermore, the automatic detection
of the temporal changes in MN CSA, circularity, and displacement during finger and
wrist motion may facilitate the disclosure of additional MN features characterized in CTS.
Improved diagnosis and prediction of disease severity of CTS may be achievable by using
DL models to handle the high-dimensional datasets containing NCS data and the rich
temporal information provided by dynamic US. Ali et al. recently reported a framework
utilizing ensemble deep learning and feature fusion approaches to handle data of different
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sources for heart disease prediction, and the reported accuracy was much higher than
existing systems [53].

However, there is still plenty of room for improvement in the presented approaches.
The images were acquired by one physician using a particular probe of one US machine.
This implies that the models might be overfitted for the features exclusively provided by
the training dataset, and less effective in the segmentation of US data acquired by other
physicians or other US machines. Thus, expanding the training dataset with diverse sources
is required to improve the model practicability. The inference speed of the DeepLabv3+
and Mask R-CNN model with the highest IoU score was approximately 2 and 6 FPS,
respectively, which was far slower than that accustomed by most clinician in clinical
operation and inappropriate for real-time analysis in its present state. Given that the
blooming development of DL in recent years, improvement of inference speed with high
precision is expected in the future by adopting updated, less complicated architectures
combined with upgrades of the hardware. For example, Wang et al., recently reported
the SOLO architecture simply consisting of an instance mask branch and a semantic
category branch to accelerate the end to end process for instance segmentation. SOLO was
reported to possess accuracy on par with Mask R-CNN yet double inference speed [54].
Srinivasu et al. recently proposed a MobileNet V2-based model that successfully classified
skin diseases with minimal computational efforts [55]. Another issue encountered by
both the semantic and instance segmentation approaches employed in the present work
is the handling of multiple, disconnected regions labeled as MN. Semantic segmentation
labels individual pixel with a particular class. Ideally, a well-trained model for semantic
segmentation should learn that all the pixels classified as MN were locally connected, and
herein that there existed globally only one entity of MN in one image. However, our model
occasionally segmented several disconnected blocks as MN in one image in the test video.
We fixed this by simply assigning the segmented region of the largest area as the MN,
which appeared to work well in our dataset. However, erroneous inference was anticipated
to arise when the correct segmentation did not possess the largest area, there existed
more than one segmentation of the largest area, and the MN was segmented by several
disconnected regions yet only the part with the largest area was chosen as the nerve. The
similar segmentation issues may occur in the instance segmentation approach except that
the disconnected segmentations were confined in the bounding boxes. Again, we solved
this issue by simply choosing the segmented block of the largest area from the box of the
highest confidence score. Because the scoring was part of the model output and trainable,
we think this may make Mask R-CNN less erroneous in handling the multiple, disconnected
segmentations issue when compared with DeepLabv3+. Nevertheless, the best way to
eliminate these segmentation issues encountered in both approaches is to improve the
segmentation accuracy. Given the video format of our dataset, this may be achievable by
revising the model to adopt the information in time domain for MN segmentation, which is
similar to the strategy that experienced physiatrists typically employ to deal with MN with
blurred or ambiguous appearance. In general, they wound check the frames preceding
and following the doubtful one to clarify the nerve morphology. Note that in the present
work, we did not choose frameworks inherently advantageous for modeling sequence data,
such as recurrent neural networks [56], since there is only one MN in individual frame and
it was unnecessary to differentiate the object entity using the data sequence as required
in tracing object with multiple instances in one image yet of similar morphology. Other
reasons drove us to train the model on the basis of individual frame rather than the frame
sequence included that the former approach cost less computation time and memory, and it
was trained with a dataset of larger size, because it is obviously that the number of frames
much outnumbered that of videos.

Dataset imbalance with respect to various size scale of MN is also an issue. Mask
R-CNN adopts the FPN structure to improve the recognition of objects at different scales,
which is primarily achieved by selecting the feature map of a particular pyramid level
associated with the size of the proposed object candidate as the input for training of the
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mask segmenting the object [34]. Consequently, the training update of the model based on
the detector loss generated in the stage of object classification, bounding box regression and
segmentation, would be mainly conducted in paths connected with the selected feature
map through back propagation. However, incomplete training for the detection of a
particular class may occur if the training data of the class exhibit unbalanced distribution
across various scales. In our dataset, over 95% of the MN CSA were within the range
of 56 by 56 to 112 by 112 pixels, which corresponds to the feature map at pyramid Level
4 (P4). This alludes that paths connected with feature maps at level other than P4 were
trained with data less than 5% of the total. Given that there was no constraint imposed
on MN CSA in the present work, the insufficient training of the paths not connected with
feature map P4 may lead to less accurate model prediction when the MN CSA was out
of that of the 95%. We overcame the unbalanced distribution of objects scales by simply
augmenting the data with randomly resizing. Since the MN CSA of normal subjects is
expected to be smaller than that of CTS patients, increasing the diversity of the training
dataset by including that of normal subjects in the future may be beneficial for solving this
issue. Another potential approach is to increase the number of the minority cases in the
dataset by over-sampling techniques, as recently proposed by Ijaz et al. for prediction of a
variety of diseases, including cervical cancer, diabetes, and hypertension [57,58].

5. Conclusions

In summary, we successfully demonstrated the feasibility of automatically segmenting
MN in dynamic US using DL-based models. The inference effectiveness across a variety
of the state-of-the-art DL models was evaluated, whereas both DeepLabV3+ and Mask
R-CNN pretrained on coco dataset predicted MN with IoU scores around 0.83 in average.
The morphological dynamics of the MN during fingers motion extracted by the models
was consistent with that reported in literature. The morphological features of the MN
exhibited the minimal discrepancy in the spatiotemporal profile of the nerve centroid when
those predicted by the models and annotated by another expert were compared. This
finding implicates that the dynamic of the nerve centroid may exhibit the most consistent
behaviors when comparing the morphological patterns of MN acquired across a variety of
investigations. Our works highlight the potentiality of utilizing DL-based approaches as
clinical tools with minimal clinician labor-demanding for objective, real-time diagnosis of
CTS, and the possibility of revealing additional dynamic US features of CTS.
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Abbreviation

CNN, convolutional neural network; CSA, cross-sectional area; CTS, carpal tunnel syndrome;
DL, deep-learning; FCN, fully convolutional network; FPN, feature pyramid network; IoU, intersec-
tion over union; MN, median nerve; NCS, nerve conduction study; US, ultrasonography.
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